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Abstract

Let b ∈ Z
d be an integer conic combination of a finite set of integer vectors X ⊂ Z

d . In this note
we provide upper bounds on the size of a smallest subset X̃ ⊆ X such that b is an integer conic
combination of elements of X̃ . We apply our bounds to general integer programming and to the
cutting stock problem and provide an NP certificate for the latter, whose existence has not been
known so far.
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1 Introduction

The conic hull of a finite set X ⊂ R
d is the set

cone(X) = {λ1 x1 + · · ·+λt xt | t ≥ 0; x1, . . . ,xt ∈ X ; λ1, . . . ,λt ≥ 0} .

Carathéodory’s theorem (see, e.g. [7]) states that if b ∈ cone(X), then b ∈ cone(X̃), where X̃ ⊆ X is a
subset of X whose cardinality is bounded by the maximum number of linearly independent points of X
and thus is bounded by d.

The integer conic hull of a finite set X ⊂ R
d is the set

int cone(X) = {λ1 x1 + · · ·+λt xt | t ≥ 0; x1, . . . ,xt ∈ X ; λ1, . . . ,λt ∈ Z≥0} .

The analogous question here is the following: Given b ∈ int cone(X), how large is the smallest subset X̃
of X such that b ∈ int cone(X̃)?

It is easy to see that one cannot give an upper bound for the cardinality of a smallest subset X̃ in terms
of the dimension d. For example, if X ⊂ Z

d consists of the vectors xi j = 2i e j + ed for i = 0, . . . ,n− 1
and j = 1, . . . ,d − 1, where e j is the j-th unit vector, then all these vectors are needed to represent the
vector b ∈Z

d with b j = (2n−1), j = 1, . . . ,d−1, bd = n(d−1). Indeed, b = ∑n−1
i=0 ∑d−1

j=1 xi j is the unique
representation.
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The size of an integer a∈Z is the number of bits which are needed to represent a in binary encoding.
It is convenient to define it as size(a) = log(|a|+1). The size of a vector v ∈ Z

n, denoted size(v), is the
sum of the sizes of its components. In the example above, we have size(b) = n(d−1)+ log (n(d−1)),
and hence the number n(d−1) of nonzero terms that are necessary in order to provide b as a result of an
integer conic combination can be arbitrary large comparing to the dimension; this number has the same
order of magnitude as size(b).

In this note, we show the following integer analogues of Carathéodory’s theorem. The first theorem
provides polynomial bounds in the dimension and the largest size of a component of a vector in X .

Theorem 1. Let X ⊂ Z
d be a finite set of integer vectors and let b ∈ int cone(X). Then there exists a

subset X̃ ⊆ X such that b ∈ int cone(X̃) and the following holds for the cardinality of X̃ .

(i) If all vectors in X are nonnegative, then |X̃ | ≤ size(b).

(ii) If M = maxx∈X ‖x‖∞, then |X̃ | ≤ 2d log(4d M).

In the second theorem, we suppose that X is closed under convex combinations. The latter means that
every integer point in the convex hull of X also belongs to X . The theorem provides then an exponential
bound in the dimension.

Theorem 2. Let X ⊂Z
d be a finite set of integer vectors which is closed under convex combinations and

let b ∈ int cone(X). Then there exists a subset X̃ ⊆ X of cardinality |X̃ | ≤ 2d such that b ∈ int cone(X̃).
Furthermore if b = ∑x∈X λxx, λx ∈ Z≥0 for all x ∈ X, then there exist µx ∈ Z≥0, x ∈ X̃ , such that b =

∑x∈X̃ µxx and ∑x∈X λx = ∑x∈X̃ µx.

As an application of these results we prove that the cutting stock problem has an optimal solution whose
binary encoding length is polynomial in the input length and that the cutting stock problem with a fixed
number of item sizes has an optimal solution with a fixed number of patterns.

Related work

A finite set of vectors X is called a Hilbert basis, if each integer vector b ∈ cone(X) is a nonnegative
integer combination of elements in X . Cook, Fonlupt and Schrijver [2] provided the following integer
analogue of Carathéodory’s theorem: If cone(X) is pointed and if X ⊆ Z

d is an integral Hilbert basis,
then for every b ∈ cone(X) there exists a subset X̃ ⊆ X with |X̃ | ≤ 2d−1 such that b is an integer conic
combination of vectors in X̃ . Sebő [8] improved this bound to 2d− 2. Bruns et al. [1] have shown that
the bound d is not valid. If X is an integral Hilbert basis but cone(X) is not pointed, then an upper
bound in terms of the dimension d cannot be given [2]. Cook et al. [2] also considered integer programs
min{1T y | Ay = b, y ∈ Z

m
≥0}, where A ∈ {0,1}d×m and AT x ≤ 1 has the integer rounding property. The

authors showed that, if there exists an optimal solution to such an integer program, then there exists an
optimal solution with at most 2d−2 nonzero coefficients.

2 Proofs of the theorems

To prove the above stated assertions, we exploit the fact that, if the sum of some vectors in X can be
expressed as the sum of other vectors in X , then we can eliminate one (or more) vector used in the
integer conic combination. A similar idea has also been applied by Sebő [8] to prove his conjectures for
Hilbert bases in particular cases.

Lemma 3. Let X ⊂ Z
d
≥0 be a finite set of nonnegative integer vectors and let b ∈ int cone(X). If |X | >

∑d
i=1 log(bi +1), then there exists a proper subset X̃ of X such that b ∈ int cone(X̃).
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Proof. Let b = ∑x∈X λxx with λx > 0 integer for all x∈ X . Clearly, ∑x∈X̃ x≤ b for any subset X̃ ⊆ X . This

implies that the number of different vectors which are representable as the sum of vectors of a subset X̃
of X is bounded by ∏d

i=1(bi + 1). If 2|X | > ∏d
i=1(bi + 1), there exist two subsets A,B ⊆ X , A 6= B, with

∑x∈A x = ∑x∈B x. Consequently, there exist two disjoint subsets of X , A′ = A \B and B′ = B \A, with
∑x∈A′ x = ∑x∈B′ x. Suppose that A′ 6= /0 and set λ = min{λx : x ∈ A′}. Then we can rewrite

∑
x∈X

λxx = ∑
x∈X\A′

λxx+ ∑
x∈A′

λxx

= ∑
x∈X\A′

λxx+ ∑
x∈A′

(λx−λ)x+λ ∑
x∈A′

x

= ∑
x∈X\A′

λxx+ ∑
x∈A′

(λx−λ)x+λ ∑
x∈B′

x

= ∑
x∈X

µxx,

where µx = λx if x ∈ X \ (A′ ∪B′), µx = λx + λ if x ∈ B′ and µx = λx −λ if x ∈ A′. Thus, µx ≥ 0 for all
x ∈ X and at least one of the µx, x ∈ A′, is zero. Thus if 2|X | > ∏d

i=1(bi +1), one can find a proper subset
X̃ of X such that b ∈ int cone(X̃).

Lemma 4. Let X ⊆ Z
d be a finite set of integer vectors and let b ∈ int cone(X). If

|X |> d log(2 |X | max
x∈X

‖x‖∞ +1), (1)

then there exists a proper subset X̃ of X such that b ∈ int cone(X̃).

Proof. Suppose that b = ∑x∈X λxx with λx > 0 integer for all x ∈ X . Let n denote the cardinality of X ,
n = |X |. Suppose that n > d log(2n maxx∈X ‖x‖∞ + 1). For every subset X̃ ⊆ X , ‖∑x∈X̃ x‖∞ is bounded
by n maxx∈X ‖x‖∞. This implies that the number of different vectors which are representable as the
sum of vectors of a subset X̃ of X is bounded by (2nmaxx∈X ‖x‖∞ + 1)d . By our assumption we have
2n > (2n maxx∈X ‖x‖∞ + 1)d . Therefore there exist two subsets A,B ⊆ X , A 6= B, with ∑x∈A x = ∑x∈B x
and we can proceed as in the proof of Lemma 3.

Proof of Theorem 1. Part (i) follows immediately from Lemma 3. To prove part (ii), it suffices to show
that |X | > 2d log(4d M) implies (1). Suppose that |X | > 2d log(4d M), that is, M < 2 |X |/(2d)/(4d).
Then

d log(2 |X |M +1) < d log
(
|X |
2d 2|X |/(2d) +1

)

≤ d log
(

2|X |/(2d)
(
|X |
2d +1

))

= |X |
2 +d log

(
|X |
2d +1

)

≤ |X |
2 +d |X |

2d

= |X |.

To prove Theorem 2 we apply the rewriting technique used in the above proof of Theorem 1 together with
a technique which was used by Hayes and Larman [4] to prove that the integer hull of knapsack polytopes
has a polynomial number of vertices in fixed dimension. Recall that our set X ⊆ Z

d is closed under
convexity. This implies that if two points x1,x2 ∈ X are congruent to each other modulo 2, then 1/2(x1 +
x2) is integer and hence also contained in X . We say that b = ∑x∈X λxx, λx ∈ Z≥0, is a representation of
b of value ∑x∈X λx with potential ∑x∈X λx‖

(
1
x

)
‖, where ‖ · ‖ is the Euclidean norm in R

d+1.
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Proof of Theorem 2. We show that, if there exists a representation of b of value γ, then there exists
a representation with the same value and at most 2d nonzero coefficients. Let b = ∑x∈X λxx, be the
representation of b of value γ with the smallest potential. If the number of nonzero coefficients is greater
than 2d , then there exists x1 6= x2 ∈ X such that λx1 > 0, λx2 > 0 and x1 ≡ x2 (mod 2). Since X is closed
under convex combinations, 1/2(x1 +x2) belongs to X . Suppose without loss of generality that λx1 ≥ λx2 .
Then λx1 x1 +λx2x2 = (λx1 −λx2)x1 +2λx2(1/2(x1 + x2)). Since

(
1
x1

)
and

(
1
x2

)
are not co-linear, we have

(λx1 −λx2)‖
(

1
x1

)
‖+2λx2‖

( 1
1/2(x1+x2)

)
‖ = (λx1 −λx2)‖

(
1
x1

)
‖+λx2‖

(
1
x1

)
+

(
1
x2

)
‖

< (λx1 −λx2)‖
(

1
x1

)
‖+λx2

(
‖
(

1
x1

)
‖+‖

(
1
x2

)
‖
)

= λx1‖
(

1
x1

)
‖+λx2‖

(
1
x2

)
‖.

Thus replacing λ1/2(x1+x2) by λ1/2(x1+x2) +2λx2 , λx1 by λx1 −λx2 and λx2 by 0 yields a representation of b
with the same value and smaller potential, which is a contradiction. Therefore λ has at most 2d nonzero
components.

3 Applications

Integer programming

We can now prove a corollary concerning integer programs with equations and nonnegativity constraints
on the variables. The result states that, if there exists an optimal solution to such an integer program,
then there exists one which is polynomial in the number of equations and the maximum binary encoding
length of an integer in the objective function vector and the constraint matrix.

Corollary 5. Let min{cT y | Ay = b, y≥ 0, y integer} be an integer program, where A∈Z
d×n and c∈Z

n.
If this integer program has a finite optimum with optimal value γ, then there exists an optimal solution
y∗ ∈ Z

m
≥0 which satisfies the following.

(i) The number of nonzero components of y∗ is at most size(b) + size(γ), if A and c are nonnegative.

(ii) The number of nonzero components of y∗ is at most 2(d + 1)(log(d + 1)+ s + 2), where s is the
largest size of a coefficient of A and c.

Proof. The integer vector
( γ

b

)
is an integer conic combination of the column vectors of the matrix

(
cT

A

)
.

The optimal solutions correspond to the coefficients in the integer conic combinations for
( γ

b

)
. The

assertion follows thus from Theorem 1.

Cutting stock

Let a,b ∈ Z
d
>0 and β ∈ Z>0. The cutting stock problem defined by a, b and β is the integer program

min 1T λ
s.t M λ = b,

λ ≥ 0 integer,
(2)

where the columns of the matrix M are exactly the integer solutions to the knapsack constraint aT x ≤
β, x ≥ 0, called patterns. The above integer program was introduced by Gilmore and Gomory [3]. The
cutting stock problem is NP-hard, however, it was not known, whether the problem has an optimal
solution whose encoding length is polynomial in the input, see for example [5, 6].

A polynomial algorithm for the case d = 2 was given by McCormick, Smallwood and Spieksma [6].
The authors prove that there exists an optimal solution in this case, which has at most 3 nonzero entries
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in λ. It is open, whether the cutting stock problem can be solved in polynomial time, if the number of
sizes d is fixed.

It is easy to see that the cutting stock problem defined by a, b and β has a feasible solution if and
only if ai ≤ β for all i = 1, . . . ,d. In this case, the unit vectors ei, i = 1, . . . ,d, are among the columns of
matrix M in (2). Using these vectors only, one can obtain a feasible solution λ with 1T λ = ∑d

i=1 bi. Thus
the problem is feasible and bounded and therefore has an optimal solution.

Corollary 6. Let a ∈ Z
d
>0, β ∈ Z>0 and b ∈ Z

d
>0 define a cutting stock problem (2) and let ai ≤ β, i =

1, . . . ,d. Then there exists an optimal solution to (2) with at most min{2size(b),2d} nonzero components.

Proof. As mentioned above, ai ≤ β, i = 1, . . . ,d, implies that an optimal solution exists. Let γ denote
the optimal value of (2). Then γ ≤ ∑d

i=1 bi, and therefore log(γ + 1) ≤ ∑d
i=1 log(bi + 1) = size(b). By

Corollary 5 (i), there exists an optimal solution λ such that the number of nonzero components is at most
size(γ)+ size(b) ≤ 2size(b). The second bound follows immediately from Theorem 2, since the set of
patterns is closed under convex combinations.
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Combinatorial Theory. Series B, 40(1):63–70, 1986.

[3] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem.
Operations Research, 9:849–859, 1961.

[4] A. C. Hayes and D. G. Larman. The vertices of the knapsack polytope. Discrete Applied Mathemat-
ics, 6:135–138, 1983.

[5] O. Marcotte. An instance of the cutting stock problem for which the rounding property does not
hold. Operations Research Letters, 4(5):239–243, 1986.

[6] S. T. McCormick, S. R. Smallwood, and F. C. R. Spieksma. A polynomial algorithm for multipro-
cessor scheduling with two job lengths. Mathematics of Operations Research, 26(1):31–49, 2001.

[7] A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.
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