
Operations Research Letters 35 (2007) 297–307

Operations
Research
Letters

www.elsevier.com/locate/orl

Pricing and distributed QoS control for elastic network traffic

Hans van den Berga,c, Michel Mandjesb,d, Rudesindo Núñez-Queijab,e,∗
aTNO Information and Communication Technology, P.O. Box 5050, 2600 GB Delft, The Netherlands

bCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
cDepartment of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands

dKorteweg-de Vries Institute for Mathematics, University of Amsterdam, The Netherlands
eDepartment of Mathematics & Computer Science, Eindhoven University of Technology, The Netherlands

Received 24 December 2005; accepted 31 March 2006
Available online 27 June 2006

Abstract

We study a processor-sharing model in which users choose between a high- and a low-priority service, based on their
utility functions and prices charged by the service provider. The latter aims at revenue maximization. The model is motivated
by file transmissions in data networks with distributed congestion control.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The vast majority of traffic on the Internet relates
to the transfer of documents (web pages, audio/video
downloads, file transfers, etc.), usually coordinated by
transmission control protocol (TCP). TCP is designed
to support the transmission of elastic jobs, i.e., jobs
that tolerate some variations in the throughput. By
noticing packet loss, the end-stations are provided with
information on the level of congestion along the path,
based on which they adapt their transmission rates.

A TCP-based data transfer starts with a slow-start
phase that estimates the bandwidth available, followed
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by the so-called congestion-avoidance phase, during
which all active users are assigned equal bandwidth
(assuming they have identical access rates and round-
trip times). This motivated the use of the so-called
processor sharing (PS) queueing discipline to model
the dynamic behavior of TCP flows sharing a common
network link [15].

TCP tends to share the network resources fairly
among the users. For instance, no distinction is made
on the basis of the sizes of the documents to be trans-
ferred. It can be argued, however, that such an equal
sharing policy has important drawbacks. Consider for
instance the situation in the Internet where essentially
two types of flows can be distinguished: there are
many small flows (commonly referred to as mice), and
a small number of extremely long flows (elephants),
such that the elephants make up a significant fraction
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of the offered load [2,6]. If resources are shared fairly,
the performance experienced by (many) short flows is
seriously degraded by the small number of long flows.

This problem can be avoided by using e.g., the
following simple flow-size based priority discipline.
Flows with sizes less than a threshold value t are trans-
mitted with high priority, whereas flows larger than t
get low-priority service. In practice, it may not be re-
alistic that end users actively choose the best priority
class for each document, but automated agents can be
used to make these decisions for the individual users.

An attractive property of the above policy is that
for short flows it outperforms the non-priority system
considerably, whereas for long flows there is typically
just a slight performance degradation. This can be un-
derstood as follows. Suppose the threshold is such that
the short (high-priority) flows account for a load �h,
and the long (low-priority) flows for �l, where � :=
�h + �l < 1 (the server’s speed is normalized to 1).
Then the short jobs see a PS queue with load �h, rather
than a PS queue with load �. On the other hand, as
we will show below, the long jobs roughly experience
a PS queue with load �l and server speed 1 − �h,
which leads to a performance (expressed in terms of
the transfer delay for a job of given size) compara-
ble to a (single class) PS queue with total load � and
server speed 1.

The idea of improving performance, particularly of
short flows, by discriminating between jobs of dif-
ferent sizes has a rich history [25,12,11] resulting in
service disciplines such as shortest remaining pro-
cessing time (SRPT), multi-level processor sharing
(MLPS) and foreground–background processor shar-
ing (FBPS). The subject recently regained attention in
the context of flow transfers in the Internet and file
retrieval from web servers [1,3,4,8,26].

When remaining service requirements are known,
SRPT assigns full capacity to the job(s) which have
the least amount of service left. It is known that SRPT
minimizes the number of jobs in the system (and,
therefore, the mean delay) among all work-conserving
policies [25]. FBPS is the stochastic counterpart of
SRPT: full service is given to the jobs that so far
have received the least amount of service. For ser-
vice requirement distributions with decreasing haz-
ard rate functions, FBPS minimizes the mean delay
among all work-conserving and non-anticipating (i.e.,
without knowledge of residual service requirements)

disciplines [23]. MLPS is a discrete-class analogue of
FBPS, where jobs move to lower-priority classes as
the amount of service received passes certain thresh-
old values. Like FBPS, MLPS does not require in-
formation about the residual job sizes, but does keep
track of the received amounts of service. Moreover,
large jobs still affect short jobs through their service
requirements up to the threshold levels. The simple
two-class priority discipline sketched above, over-
comes these problems if users are allowed to choose
the service classes themselves. By imposing charges
on network usage, incentives can be given such that
short flows choose the high-priority class and long
flows choose the low-priority class. Thus, appropri-
ate pricing schemes provide the opportunity of dis-
tributed control: end users choose the priority class
which determines the performance received, whereas
the network elements’ complexity can be kept low
(the high-priority packets should be marked, and then
the desired prioritization can be achieved by standard
priority schedulers).

As indicated above, several papers have studied
the impact of flow-size-based scheduling disciplines.
In particular, [1] investigated an implementation of
a related two-level priority rule in Internet routers.
(There the priority of jobs is decreased when a cer-
tain size is attained.) The present paper adds the ele-
ment of pricing, thus offering the opportunity of dis-
tributed control. There is a growing body of literature
on QoS differentiation and pricing, see for instance
[7,13], various chapters of [16] and the recent work
by Hassin and Haviv [9] (in particular, pp. 86–87) and
[10]. Early works on a game-theoretic approach to
queueing systems are the seminal papers by Mendel-
son and Whang [17,18]. For given penalty functions,
they find incentive-compatible prices that maximize
the system’s ‘net value’. Stidham [27] considered a
model in which users are heterogeneous with respect
to both their utility functions and their sensitivity to
congestion (e.g., delay). The Paris metro pricing ap-
proach discussed in [22] offers different levels of ser-
vice by using logically separated networks with differ-
ent prices. Using game-theoretic techniques, [5] argue
that this mechanism does not work if there are multi-
ple competing providers: in order to maximize profits
the providers rather focus on one user type.

Our analysis is based on a fundamental queueing
model, in which jobs arrive according to a Poisson
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process with rate �, and jobs are i.i.d. distributed as a
random variable B. The jobs choose between a high-
priority and a low-priority queue, where within each
queue the capacity is shared in a PS manner. The server
speed of the queue is normalized to 1. To avoid that
all users opt for high-priority service for (all of) their
jobs, differentiated charges are imposed: users pay an
amount proportional to the job size, where the price
per, say, bit in the high-priority queue is higher than
in the low-priority queue. Evidently, users choose be-
tween the queues based on the performance offered
and the prices. Simultaneously, the network provider
can choose the prices so as to optimize its profit.

We analyze this system in two stages. We first iden-
tify the Nash equilibrium for given prices, i.e., the sit-
uation in which no user has incentives to unilaterally
change its policy. Next, knowing the users’ reactions
to the pricing structure, the network provider chooses
the prices so as to maximize the total revenue. Notice
that we do not a priori assume � := �EB < 1. Stability
is ensured by the fact that users may choose to refrain
from service (‘balk’) if prices are considered to be
too high for the quality of service offered. This will
surely be the case in an overload scenario, but even
for loads below 1, it could be that users choose not to
transmit a substantial part of the documents. (These
could then opt for service elsewhere.) Our analysis
shows that the revenue maximizing equilibrium is
such that medium-sized flows balk. This is intuitively
explained as follows: for small flows, the prioritization
has a significant positive effect on their transfer delay
making the relatively high price worth paying. The
transfer delay of the large flows, on the other hand, is
almost insensitive to prioritization of the small flows,
offering the network provider the possibility to use his
network resources efficiently by keeping the prices
relatively low. The medium-sized flows are not sensi-
tive enough to the prioritization to have any potential
for large revenues and at the same time they are too
sensitive to provide scope for efficient network usage.
We expect similar results to hold when there are more
than two priority classes. In the revenue optimizing
equilibrium, the classes with higher priority will at-
tract shorter flows, with possibly non-empty sets of
flow sizes that are not transmitted because they ‘fall
between’ two adjacent priority classes.

This paper is organized as follows. Section 2
sketches the model and describes the user behavior

for given prices. Section 3 contains the main result:
the structure of the revenue maximizing Nash equi-
librium, where we observe that small flows opt for
premium service and large flows for low-priority ser-
vice, whereas medium-size flows potentially balk.
Section 4 illustrates the theory through a numerical
example. Finally, some concluding remarks are made
in Section 5.

2. Model description

Before presenting the model, we note that our
results would remain valid under less restrictive con-
ditions. In Remark 2.1 we briefly discuss which are
the essential properties that are used in the proofs.

To introduce the model, and for later comparisons,
we first study the situation with no prioritization. In
that case, the system is modeled as an M/G/1 PS queue.
With prioritization, the model becomes a two-class
M/G/1 PS queue with preemptive priority, as already
mentioned in the introduction. For this model we first
discuss the dynamics for static choices of the users.
Then we discuss how the users’ choices depend on the
prices charged. The issue of how the system manager
should set the prices so as to maximize the revenue is
discussed in Section 3.

2.1. No prioritization

Requests for file transfers arrive according to a Pois-
son process of rate � and the file sizes are distributed
as the random variable B with distribution function
F(x), x�0. We assume that F(x) is continuous.

In the absence of prioritization, users only have two
choices: either to transmit or not to transmit. The load
of files that are transmitted is equal to �∗ (the capacity
of the system is normalized to 1).

Assuming the system is in statistical equilibrium,
we denote the expected delay (transfer time) of a trans-
mitted file size x by D(x). In the sequel, the central
measure of performance will be the stretch of a
request: S(x) := D(x)/x. (The stretch is sometimes
called “slowdown” [28].) It is well known, see [24,11,
Section 4.4], that the stretch is independent of x:

S(x) ≡ 1

1 − �∗
.
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Suppose the price for transmitting a file of length x is
xp(x). The users’ utilities are reflected in the willing-
ness to pay function w(s), which is the amount per bit
that users are willing to pay for transmitting a file of
size x in sx time units. To the best of our knowledge,
this paper is the first to consider prices that depend on
the stretch. We assume that w(s) is non-increasing in
s, differentiable and that w(s) is independent of the
file size x. Even with this simple structure the dynam-
ics already lead to non-trivial behavior of the system,
as we shall see below. In the concluding remarks we
discuss the impact of the assumption that w does not
depend on x. (The proofs in this paper do allow for
some variation of w as a function of x, but we do not
deal with these issues here.) A file of length x is trans-
mitted if and only if

w(S(x)) − p(x)�0.

2.2. Static user choices

Now suppose that users can choose between a high-
priority and low-priority service, or they can choose
not to transmit. We write x ∈ H if users choose to
transmit files of size x with high priority and x ∈ L if
the low-priority service is used. Since not necessarily
all files are transmitted, it may be that P(x ∈ H) +
P(x ∈ L) < 1.

Thus, service requests that are to be transmitted ar-
rive according to two independent Poisson processes
to the two service classes, the arrival rates for the high-
priority and low-priority classes being �h = �P(B ∈
H) and �l = �P(x ∈ L), respectively. The mean file
size of the users requesting the high-priority service
equals

fh := 1

P(B ∈ H)

∫ ∞

x=0
x 1x∈H dF(x),

and the mean file size of those choosing the low-
priority service equals

fl := 1

P(B ∈ L)

∫ ∞

x=0
x 1x∈L dF(x),

where 1E is the indicator function, which equals 1 if
expression E is true and it equals 0 otherwise. Note
that, because of the possibility of balking, in general
E B �P(B ∈ H)fh +P(B ∈ L)fl. The total capacity
of the system (for both classes) is again normalized to

1 and we denote the loads on the two service classes
by �h=�hfh and �l=�lfl, respectively. In addition we
define �(2)

h := �hf
(2)
h , where f

(2)
h denotes the second

moment of the file-size distribution of the users that
choose the high-priority service:

f
(2)
h := 1

P(B ∈ H)

∫ ∞

x=0
x2 1x∈H dF(x).

We assume that the high-priority class has preemptive
priority over the low-priority class. Thus, whenever
there is at least one high-priority user active, the ser-
vice capacity is devoted to the high-priority class only.
Within each queue, the service discipline is PS.

We denote the expected delay (transfer time) of a
newly arriving high-priority request of size x by Dh(x)

and that of a low-priority request of size x by Dl(x).
Thus, the stretch of a high-priority file transfer is
given by Sh(x) := Dh(x)/x and that of a low-priority
transfer by Sl(x) := Dl(x)/x. Since the high-priority
service does not notice the low-priority service, the
stretch in the high-priority queue is again independent
of x:

Sh(x) ≡ Sh := 1

1 − �h
.

For the stretch in the low-priority queue the following
asymptotic result was obtained in [20, Theorem 5.6.1]

Sl(x) = 1

1 − �h − �l
+ �(2)

h /2

x(1 − �h − �l)
2

+ o(x−1),

as x → ∞. In the case where the low-priority class
has an exponential file-size distribution, the o(1/x) is
known explicitly [21]:

Sl(x) = 1

1 − �h − �l
+ �(2)

h

2x(1 − �h)
2

×
(

1 + �l × 2(1 − �h) − �l

(1 − �h − �l)
2

×(1 − e−(1−�l/(1−�h))x/fl)

)
.

In the sequel we shall simply ignore the o(1/x) term
in the expression for Sl(x) and assume that

Sl(x) = 1

1 − �h − �l
+ �(2)

h /2

x(1 − �h − �l)
2

, (1)

holds with equality, for all x.
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Remark 2.1. The results derived later in this paper al-
low for a more general framework than that described
here. The two essential properties of the model that
we use in the proofs of our results are: (i) the stretch
in the high-priority class depends only on �h (and not
on the file size) and (ii) the stretch in the low-priority
queue is decreasing in the file size.

2.3. Users adjust to prices

Users may submit their transfer requests to be ser-
viced in either service class or refrain from service
altogether, depending on the current prices, loads and
traffic characteristics in the queues. Suppose the high-
priority queue charges a price xph(x) for transmitting
a file of length x, while the low-priority queue charges
a price xpl(x).

The arrival rates �h and �l, the loads �h and �l as
well as the entire file-size distributions

Fh(x) := P(B �x|B ∈ H)

and

Fl(x) := P(B �x|B ∈ L)

of the files transmitted with high and low priority (and
their means fh and fl) are consequences of the users’
choices. A file of length x should be sent to the high-
priority queue if both

w(Sh) − ph(x)�0 and

w(Sh) − ph(x)�w(Sl(x)) − pl(x). (2)

It is put in the low-priority queue if

w(Sl(x)) − pl(x)�0 and

w(Sl(x)) − pl(x) > w(Sh) − ph(x), (3)

whereas the file is not transmitted if

w(Sh) − ph(x) < 0 and

w(Sl(x)) − pl(x) < 0. (4)

The system is in equilibrium if these choices are con-
sistent with the definitions of �h, �l, �h, �l and �(2)

h ,
i.e., if x ∈ H if (2) is satisfied, x ∈ L if (3) holds and
x /∈ H ∪ L in case (4) is true.

3. Revenue maximization

We assume that the operator managing the system
aims at maximizing the revenue. Then, for all x, any
maximizing price functions p∗

h(x) and p∗
l (x) satisfy

one of the following three relations

w(Sl(x)) − p∗
l (x)�w(Sh) − p∗

h(x) = 0, (5)

w(Sh) − p∗
h(x) < w(Sl(x)) − p∗

l (x) = 0, (6)

max{w(Sh) − p∗
h(x), w(Sl(x) − p∗

l (x))} < 0. (7)

These equations are obtained from (2)–(4) by increas-
ing the prices until users are about to change their
choices. Relation (5) corresponds to files transmitted
using the premium service, (6) to files using the sec-
ondary service and (7) to files not transmitted. In all
cases, a user with a file of size x is charged exactly
what he is willing to pay for the service chosen.

We next determine which of the price functions sat-
isfying the above relations achieve(s) maximum rev-
enue. In fact, the problem is equivalent to finding a
revenue maximizing partition Ah ∪Al ∪A0 of the real
line [0, ∞) such that files with sizes x ∈ Ah (Al)
are transmitted with high (low) priority and files with
sizes x ∈ A0 are not transmitted. Indeed, such a par-
tition determines the loads and the service require-
ment distributions in both queues and, therefore (using
(5)–(7)), the price functions: If x ∈ Ah, p∗

h(x)=w(Sh)

and p∗
l (x) > w(Sl(x)). If x ∈ Al, p∗

h(x) > w(Sh) and
p∗

l (x) = w(Sl(x)). If x ∈ A0, p∗
h(x) > w(Sh) and

p∗
l (x) > w(Sl(x)).
We state the main result in the following proposi-

tion which relies on three lemmas that we shall prove
subsequently.

Proposition 3.1. There exist threshold values 0� th
� tl �∞ so that the partition

A∗
h ∪ A∗

0 ∪ A∗
l

with A∗
h = [0, th), A∗

l = [tl, ∞) and A∗
0 = [th, tl) rep-

resents a revenue optimizing Nash equilibrium.

Proof. Follows from Lemmas 3.2, 3.3 and 3.4. �

Lemma 3.2. In a revenue maximizing Nash equilib-
rium with corresponding partition Ah ∪ Al ∪ A0 it
holds that x�y for all x ∈ A0 and y ∈ Ah.
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Proof. Suppose we have a Nash equilibrium repre-
sented by the partition Ah ∪Al ∪A0. Unless the prices
satisfy (5)–(7), this partition cannot be optimal. Let
us therefore assume that these conditions are satis-
fied. (Thus, for example, for x ∈ Ah it holds that
ph(x) = w(Sh) and pl(x)�w(Sl(x)).) We will show
that if x < y for x ∈ A0 and y ∈ Ah, then the partition
does not maximize profit.

Let � > 0 and x > 0 be fixed and choose � =
�(�, x) > 0 such that

� := �
∫ x+�

u=x−�
u dF(u).

This is possible when � is small enough (at the end
we let � → 0). So we choose � such that � is the load
associated with the neighborhood (x − �, x + �).

Suppose (x − �, x + �) ⊂ A0 and that we move
this neighborhood to Ah. (Similar arguments apply if
only a left or a right neighborhood of x belongs to
A0; we do not need to consider singletons {x} be-
cause F is continuous.) The load in the high-priority
queue increases to �′

h = �h + � resulting in an in-
creased stretch S′

h = Sh + O(�), if � → 0. Users
that used the high-priority service prior to the shift
note the increased load �′

h through the larger stretch
S′

h. Suppose we reduce the prices in h to w(S′
h) so

that it is attractive for these users (as well as for the
newly switched users) to choose the high-priority ser-
vice. Thus, the revenue from the “old” users is reduced
by (w(S′

h) − w(Sh))�h = o(1), as � → 0, while the
users that switch generate an increase in revenue of
w(S′

h)� = w(Sh)� + o(�). Both mutations in revenue
do not depend on x.

The users of the low-priority service also experience
a larger stretch. Not only because �′

h > �h, but also

�′
h
(2) =�(2)

h +x�+o(�). The load of low-priority file
transfers is unaltered (�′

l = �l). Suppose prices for the
low-priority service are also adjusted so that its users
neither switch to the high-priority service, nor decide
to balk, and become p′

l(u) = w(S′
l(u)) for all u ∈ Al.

Observe that, for all u ∈ Al,

S′
l(u) − Sl(u) = 1

1 − �′
h − �′

l
+ �′

h
(2)

/2

u(1 − �′
h − �′

l)
2

− 1

1 − �h − �l
− �(2)

h /2

u(1 − �h − �l)
2

.

Note that the increase in stretch of flows using the
low-priority service is more pronounced when x is
larger because �′

h
(2) depends linearly on x. Thus,

S′
l(u) − Sl(u) is increasing in x and

∫
u∈Al

(w(Sl(u)) −
w(S′

l(u)))u dF(u), the net decrease in revenue due to
low-priority transmissions, is an increasing function
of x because � is fixed.

For fixed �, moving the neighborhood of x from A0
to Ah is profitable if

w(Sh)� + o(�) > (w(S′
h) − w(Sh) + o(�))�h

+
∫

u∈Al

(w(Sl(u)) − w(S′
l(u)))u dF(u). (8)

Neglecting the o(�) terms (i.e., dividing by �, letting
� → 0 and using that w(s) is differentiable), the right-
hand side is increasing in x, thus there is a threshold
x′ such that moving the neighborhood of x from A0
to Ah is profitable for x < x′. Similarly, we can argue
that moving a neighborhood of y with load � from Ah
to A0 is profitable for y > x′.

Summarizing, if we have a partition with x ∈ A0
and y ∈ Ah and x < y then either y > x′ or x < x′, and
thus the partition can be improved so as to increase
the revenue. �

Lemma 3.3. In a revenue maximizing Nash equilib-
rium with corresponding partition Ah ∪ Al ∪ A0 it
holds that x�y for all x ∈ A0 and y ∈ Al.

Proof. The proof follows along the same lines as that
of Lemma 3.2. Again, suppose we have a partition with
corresponding maximal price functions. Let � > 0 and
x > 0 be fixed and choose � = �(x, �) > 0 such that

� = �
∫ x+�

u=x−�
u dF(u)

is the load associated with the neighborhood (x − �,

x + �). Suppose that this neighborhood is in A0 and
that we move it to Al. Users of the high-priority service
do not notice this shift. The users of the low-priority
service, however, are worse off since the load in their
service class increases to �′

l =�l +�. Suppose that we
adjust prices so as to compensate for this loss in utility,
thus decreasing system revenue. The net decrease in
revenue only depends on � (not on x). The users that
do switch generate an increase in revenue of

w(Sl(x))� + o(�),
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which is non-increasing in x. Thus, (for fixed �) there
is a threshold x′ such that moving the neighborhood
of x from A0 to Al is profitable whenever x > x′. The
proof can now be completed as in Lemma 3.2. �

For revenue optimizing Nash equilibria with A0 
=
∅, Lemmas 3.2 and 3.3 imply the following lemma.
In order to cover the case where possibly A0 = ∅, we
include an independent proof.

Lemma 3.4. In a revenue maximizing Nash equilib-
rium with corresponding partition Ah ∪ Al ∪ A0 it
holds that x�y for all x ∈ Al and y ∈ Ah.

Proof. Similar to the proofs of Lemmas 3.2 and 3.3
let � > 0 and x > 0 be fixed, with (x − �, x + �) ⊂ Al
and

� = �
∫ x+�

u=x−�
u dF(u).

We move the neighborhood (x −�, x +�) to Ah. Then
other users of the high-priority service experience an
increase in load from �h to �′

h = �h + �; in order to
keep these users in the high-priority service class, the
prices must be reduced, thus reducing the revenue from
these users. This decrease in revenue only depends on
� and not on x.

Users of low-priority transmissions also experience
a larger stretch since �(2)

h increases to �′
h
(2) = x� +

o(�). (Notice that the total load remains unchanged:
�h + �l = �h + � + �l − � = �′

h + �′
l.) Thus, the net

decrease in revenue due to users that do not switch is
more pronounced for larger x (for fixed �). The users
that do switch generate an increase in revenue of

w(Sh)� − w(Sl(x))� + o(�),

which is smaller for larger values of x. Thus, (for fixed
�) there is a threshold x′ such that moving the neigh-
borhood of x from Al to Ah is profitable for x < x′.
The proof can now be completed as in the proofs of
Lemmas 3.2 and 3.3. �

4. Numerical example

The value of the offered load � ≡ �EB has a signif-
icant impact on the nature of the revenue-maximizing

solution. For small values of the offered load �, it
can be expected that it is beneficial for the provider
to serve all arriving flows, a part in the high-priority
class, and a part in the low-priority class (hence th=tl).
With increasing (offered) load, our results indicate that
a part of the flows will not join. In this section we illus-
trate this effect through a numerical example. We also
assess the impact of the flow-size distribution F(·).

In this example we choose the willingness to pay
as w(s) = (a − s)/a, for some fixed number a > 0,
so that stretch and price are directly interchange-
able. The function w(s) has been normalized so that
users are willing to pay 1 price unit per bit if the
transmission has zero delay. A large value of a indi-
cates a high tolerance to delay (the users are willing
to pay a positive amount as long as s < a), which
may be reasonable for data transfer. For time critical
transmissions, a small value of a is more appropri-
ate. (In the case of more delay-sensitive traffic, it
would be more reasonable if w(s) were rather flat
for small values of s followed by a steeper fall off;
a simple quadratic form such as w(s) = 1 − bs2

could capture this, but we do not include this in
our numerical illustration here.) In our example we
take a = 2. The results above indicate that Ah is
of the form [0, th], and Al of the form [tl, ∞), for
0� th � tl < ∞.

Now we can compute the operator’s revenue R as
a function of the thresholds th and tl:

R(th, tl) = �hw(Sh) + �
∫ ∞

tl

xw(Sl(x)) dF(x)

= 1

a

(
�h(a−Sh(�h))+��l

(
a− 1

1−�h−�l

)

−�
�(2)

h (1 − F(tl))

2(1 − �h − �l)
2

)
.

This revenue should be maximized over all 0� th �
tl < ∞. We have performed this optimization for two
(unit-mean) flow-size distributions, exponential and
Pareto: Fexp(x)=1−e−x and FPar(x)=1−1/(x+1)2.
Notice that the Pareto distribution has a much heav-
ier tail than the exponential distribution; in fact, the
Pareto distribution chosen here has infinite variance,
motivated by the large variance in file sizes observed
in practice.
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Fig. 1. Maximum revenue and contribution of the high-priority class as a function of �.

We compare the revenues with those in the model
without priority. Then the provider wishes to solve

max
A⊆[0,∞)

�Aw

(
1

1 − �A

)
,

where �A := �
∫
x∈A

x dF(x). It can be easily verified
that the provider’s optimum load is �� := 1 − 1/

√
a,

irrespective of the flow-size distribution. If the offered
load � ≡ �EB is smaller than ��, then all flows will
be served, and the (normalized) revenue is

�

a

(
a − 1

1 − �

)
.

If ���� a part of the flows balks, yielding a revenue
1/a(

√
a − 1)2 = (a − 2

√
a + 1)/a. For a = 2, we

find that �� ≈ 0.2929 and for all ���� we obtain a
revenue of 3

2 − √
2 ≈ 0.0858.

In Fig. 1 we plot the maximum revenue in the non-
prioritized system as well as the contributions of both
priority classes to the maximum revenue in the pri-
oritized system, as a function of the arrival rate. For
the prioritized system we do so for both exponential
and Pareto distributed flow sizes. In Fig. 2 we plot
the corresponding optimal thresholds in the prioritized
system. We observe that for both file-size distribu-
tions it is optimal to carry the complete load as long
as the arrival rate is not too large. For exponentially

distributed file sizes, “medium”-sized flows are re-
jected for ��0.34, for the Pareto distribution the turn-
ing point is a bit smaller at about � = 0.31.

However, there are also significant differences
between the exponential case and the Pareto case.
Observe that in the exponential case both classes sig-
nificantly contribute for all values of �, whereas in the
Pareto case, only the high-priority queue contributes
to the maximum revenue for small arrival rates. Notice
that this entails that there is no gain from the priori-
tization in case of small arrival rates when file sizes
have a Pareto distribution. We indeed see from Fig. 1
that in those cases the non-prioritized system achieves
an equally high maximum revenue. For exponential
file sizes, the low-priority class offers the system
manager the potential for efficient resource usage at
all values of the offered traffic. We further observe
that for larger traffic loads, the system specializes in
very short and very long flows, with a growing range
of flow sizes that will not be transmitted.

From the users’ perspective, the acceptance rate and
the corresponding carried loads are more relevant mea-
sures of performance. These are depicted in Figs. 3
and 4. With the Pareto distribution, for all values of
�, virtually all accepted transactions are carried in the
high-priority queue, but (due to the heavy-tailed dis-
tribution) the load in the low-priority queue is never-
theless significant. When the file-size distribution is
exponential, both the numbers of transactions as well
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Fig. 2. Optimal thresholds as functions of �.
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Fig. 3. Accepted rates of transactions.

as the corresponding loads on both queues are signif-
icant for all values of �.

5. Concluding remarks

Even under the simplistic assumption that the will-
ingness to pay function w does not depend on x,
we have shown non-trivial behavior of the system. In
general, for file transfers it is reasonable to assume that

if w(x, s) does depend on x, then it is non-increasing in
x, since if there exists an x such that w(u, s)�w(x, s)

for all u�x, then a file of size x could be split in
smaller ones, thus reducing the total charge. For a re-
lated discussion see [19].

Our assumption on w can be relaxed without
affecting the proofs, as long as (8) holds. Impos-
ing this condition (8) a priori, however, seems
rather unnatural and therefore we chose not to aim
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Fig. 4. Optimal loads as functions of �.

for the largest generality under which our results
hold, but rather focus on the qualitative behavior
of the system for a particular, yet not unreasonable,
choice for w.

We already argued in the introduction that we ex-
pect similar results to hold when there are more than
two priority classes. In the revenue optimizing equi-
librium, the classes with higher priority will attract
shorter flows, with possibly non-empty sets of flow
sizes that are not transmitted because they ‘fall be-
tween’ two adjacent priority classes.

We further expect that assuming that the high-
priority class consists of streaming users (who use a
fixed amount of bandwidth while in the system, unlike
elastic users), will not qualitatively impact the results.
Crucial properties in our analysis are that the highest
priority service is not affected by other classes, and
that it is only affected by the flows in the same class
through the class load. However, for mimicking the
results of the present paper, we need a result on the
stretch of the low-priority files, to replace the estimate
(1). Such a result is unfortunately not available for
the situation in which the high-priority class consists
of streaming flows.
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