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Abstract

In this paper we consider the robust portfolio selection problem involving two types of uncertainties;

the uncertainty in the distribution of exit time and the uncertainty in the distribution of portfolio return

conditional on exit time. To deal with these uncertainties, we propose a tractable approach by applying

worst-case VaR strategy to the case where partial information on the exit time distribution and on the

conditional distribution of portfolio return is available, and formulate the corresponding problems as

semidefinite programs which can be efficiently solved. Moreover, we present some numerical results with

real market data.
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1 Introduction

Black and Litterman (1992), as well as others, have pointed out that for the traditional mean-variance
framework, a small perturbation of the inputs may result in a large change in the optimal portfolio. The
implication for portfolio managers is that the asset allocation decision is very sensitive to the mean and
covariance matrix of return. In turn, this means that the expected return of the component risky assets and
the covariance matrix should be sufficiently precise. However, in practice, the expected return and covariance
are estimated from data, which are often prone to errors. Thus, because of the lack of robustness, portfolio
optimization based on inaccurate estimates impeded the widespread adoption of the mean-variance strategy
by practitioners; this also applies to strategies using risk measures other than variance such as value-at-risk
(VaR).

Traditional portfolio models are based on the implicit assumption that the investment horizon of an
investor is pre-specified, either finite or infinite, and that any investor operates the buy-hold strategy until
the explicit exit moment. In fact, as well as taking on asset risk, an investor typically faces exit time risk
because the time of his eventual exit upon entering the market is not acknowledged. However, portfolio
choice when the investor faces an uncertain exit time—more specifically, how to model the uncertainty of
the eventual exit—is a difficult problem to deal with because one must capture the distribution of the asset
returns under an uncertain exit time.

Clearly, there are two types of uncertainties in portfolio selection; the uncertainty in the distribution
of exit time and the uncertainty in the distribution of portfolio return conditional on exit time. For the
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second type of uncertainty, Costa and Paiva (2002) and Goldfarb and Iyengar (2003) studied robust portfo-
lio optimization in the mean-variance framework. El Ghaoui et al. (2003) and Zhu and Fukushima (2005)
investigated robust portfolio selection using worst-case VaR (WVaR) and worst-case conditional VaR, re-
spectively. For the first type of uncertainty, there is limited academic research on the issue. Martellini and
Urošević (2005) were the first to consider the uncertain exit time problem in the traditional mean-variance
framework excusively, and found that the portfolio decision is affected not only by exogenous factors but
also by endogenous factors.

This paper is motivated by El Ghaoui et al. (2003) and Huang et al. (2006). In contrast to the approach
developed by Martellini and Urošević (2005), we propose a WVaR approach, which is extensively discussed
in robust portfolio management when the distribution of returns is partially known. We show that it can
be extended to the case where only partial information on eventual exit time is given. Thus, our model can
incorporate two types of uncertainties; the uncertainty in the distribution of exit time and the uncertainty
in the return distribution conditional on exit time, which is different from Huang et al. (2006) where only
the uncertainty in exit time is considered.

The remainder of this paper is organized as follows. In Section 2, we discuss the two types of uncertainties
when constructing a portfolio with uncertain exit time by means of the original WVaR policy. In Section 3,
we generalize the robust optimization technique to deal with the uncertainties. In Section 4, we formulate
the portfolio management problem by adopting the generalized WVaR as the measure of risk. Section 5
presents some numerical experiments with real market data. In Section 6, we provide concluding remarks.

2 Preliminary Problem Formulation

First, let r(x,y) = x′y denote the return of a portfolio with decision vector x ∈ X ⊆ Rn and random vector
y ∈ Rn that represents the return of individual assets in the portfolio at maturity of the investment horizon
T . Suppose E(|r(x,y)|) < +∞ for each x ∈ X . For simplicity of presentation, we assume that y ∈ Rn has
a continuous density function p(y). By way of Jorion (2001), all the results can be applied to the case where
p(y) follows a discontinuous distribution. (For the purpose of clarity, we denote a random variable and its
realization by the same symbol, since they can be distinguished clearly from the context.)

In the case where the exit time is uncertain, finding a proper way of specifying the distribution of asset
returns p(·) is obviously a difficult task. However, we can decompose the specification into two steps by
first specifying the conditional (on exit time) distribution of returns and then determining the distribution
of exit time. Just like Huang et al. (2006), the general formula of the unconditional density function can be
formulated in this manner: Let g(·) be the density function of exit time τ and pt(·) be the conditional (on
exit time t) density function of the asset returns. Then the corresponding unconditional density function is
given by

p(·) =
∫ T

0

pt(·)g(t)dt.

In particular, if the exit time τ follows a discrete distribution on time {t1, t2, · · · , tm} with Pr(τ = ti) = λi,∑m
i=1 λi = 1, λi ≥ 0, i = 1, · · · ,m, then we have

p(·) =
m∑

i=1

λipi(·), (1)

where we denote pi(·) for pti
(·) in the discrete case throughout for brevity.

From a practical point of view, we deal with a discrete version of the probability distribution of τ to
develop the model. The reason is not only that this treatment will result in a tractable model, but also that
it meets the practical purpose since the allowable exiting moment in reality is discrete. Then, by (1), we can
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obtain the unconditional mean ȳ and covariance Γ of portfolio return immediately as

ȳ =
∫

y∈Rn

yp(y)dy =
m∑

i=1

λiȳi, (2)

Γ =
∫

y∈Rn

(y − ȳ)(y − ȳ)′p(y)dy =
m∑

i=1

λiΓi, (3)

where ȳi and Γi are the conditional mean and covariance of portfolio return exiting at time τ = ti.

According to El Ghaoui et al. (2003), for a given probability level ε ∈ (0, 1], if the actual values of ȳ and
Γ are known with certainty, we get the following optimization problem of portfolio selection via minimizing
WVaR (here WVaR means the worst-case VaR subject to all probability distributions of portfolio return
with the common ȳ and Γ):

min
(x,γ,ς,∆)∈Rn×R×R×Sn

γ

s.t. 〈∆,Γ〉 − x′ȳ + κ(ε)2ς ≤ γ, (4)(
∆ x/2

x′/2 ς

)
º 0, x ∈ X ,

where ς ∈ R, ∆ ∈ Sn, Sn denotes the space of n × n symmetric matrices, 〈∆,Γ〉 = Tr(∆Γ) denotes the

standard scalar product in Sn, and κ(ε) =
√

1−ε
ε . Here κ(ε) is an upper bound of the ε-quantile of the

portfolio return with the probability ε that the portfolio loss −r(x,y) exceeds γ (see Bertsimas and Popescu
(2005) and El Ghaoui et al. (2003) for details). For two symmetric matrices A,B ∈ Sn, A º B (resp.
A Â B) means A − B is positive semidefinite (resp. definite). In this paper we assume Γ Â 0, i.e., there
are no redundant assets in the portfolio. X is specified by a set of constraints including budget constraints,
target return constraints, regulatory constraints, and so on.

Although (4) has a second-order-cone counterpart which is more popular in robust optimization, in this
paper we use the semidefinite formulation of WVaR because this formulation can be easily extended to
incorporate the uncertainty in eventual exit time, as shown later. More specifically, using (2) and (3), we
have

min
(x,γ,ς,∆)∈Rn×R×R×Sn

γ

s.t.
m∑

i=1

λi[〈∆,Γi〉 − x′ȳi] + κ(ε)2ς ≤ γ, (5)

(
∆ x/2

x′/2 ς

)
º 0, x ∈ X .

Note that in the special case where m = 1, problem (5) reduces to the original WVaR minimization problem.

It is easy to see that problem (5) is a semidefinite program, which would be efficiently solved if the inputs
λi, ȳi and Γi are well determined. However, they are usually generated from estimation of some data, and
hence suffer from inaccurate data and estimation errors, which implies that we cannot obtain their actual
values in practice. On the other hand, we have certain confidence that the actual values are not far from
the estimated values. Thus, if it is difficult to obtain the precise parameter values, an intuitive alternative
approach is to generalize it by assuming the inputs only known to belong to a given convex set via robust
optimization, a useful technique developed in the past decade.
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3 Robust Problem Formulation

Based on the above analysis, we assume that the probability vector of exit time and the conditional expected
return and covariance matrix lie in some specified sets containing almost all the possible scenarios:

λ ∈ Λ =
{
λ : e′λ = 1,λ ≥ 0,λ ∈ Ω ⊆ Rm

+

}
,

(ȳi,Γi) ∈ Ui ⊆ Rn × Sn, i = 1, · · · ,m,

where e = (1, · · · , 1) ∈ Rm, Ω consists of some information on the distribution of exit time, and for each
i = 1, · · · ,m, Ui consists of all possible mean and covariance matrix of conditional distribution on exit time
τ = ti, and there exists at least a pair (ȳi,Γi) in Ui such that Γi Â 0. Then, the robust formation of portfolio
selection with uncertain exit time is written as follows:

min
(x,γ,ς,∆)∈Rn×R×R×Sn

γ

s.t. max
λ∈Λ

max
(ȳi,Γi)∈Ui

m∑

i=1

λi[〈∆,Γi〉 − x′ȳi] + κ(ε)2ς ≤ γ, (6)

(
∆ x/2

x′/2 ς

)
º 0, x ∈ X .

Problem (6) is actually a min-max-max problem which is not easy to deal with immediately. To make it
more tractable, we add some artificial variables and rewrite the problem as

(P0) min
(x,γ,ς,∆,ν)∈Rn×R×R×Sn×Rm

γ

s.t. max
(ȳi,Γi)∈Ui

〈∆,Γi〉 − x′ȳi ≤ νi, i = 1, · · · ,m, (7)

max
λ∈Λ,

λ′ν + κ(ε)2ς ≤ γ,

(
∆ x/2

x′/2 ς

)
º 0, x ∈ X ,

where ν = (ν1, · · · , νm)′. Clearly, if Λ and Ui (i = 1, · · · ,m) are compact, and X is convex, then (P0) is a
convex programming problem. However, (P0) is not ready for application because of the “max” operation
involved in the constraints. In the following, we show that, under some special structure of the set of
parameters, it can be cast as a tractable convex programming problem, such as a semidefinite program.

3.1 Uncertainty on conditional return distribution

For simplicity, we consider the case where the moment pair (ȳi,Γi) is only known to belong to a given
polytope for each exit time ti (i = 1, · · · ,m). Mathematically, Ui is the convex hull of the vertices
(ȳ1

i ,Γ1
i ), · · · , (ȳLi

i ,ΓLi
i ), i.e.,

Ui = Co
{

(ȳ1
i ,Γ1

i ), · · · , (ȳLi
i ,ΓLi

i )
}

, (8)

where (ȳl
i,Γ

l
i) (l = 1, · · · , Li) are given. Notice that in (8) we do not limit the conditional distribution of

portfolio exiting at time ti to be normally distributed. To be more specific, we assume that the polytopic
uncertainty of mean and covariance matrix is separable, i.e.,

Ui = Ui(ȳi)× Ui(Γi),

4



where Ui(ȳi) = Co{ȳ1
i , · · · , ȳLi

i } and Ui(Γi) = Co{Γ1
i , ...,Γ

Li
i }. Then, for each i = 1, · · · ,m, the left-hand

side of constraint (7) in (P0) can be written as

max
(ȳi,Γi)∈Ui

〈∆,Γi〉 − x′ȳi = max
1≤l≤Li

〈∆,Γl
i〉 − min

1≤l≤Li

x′ȳl
i

= min {αi − βi : 〈∆,Γl
i〉 ≤ αi, βi ≤ x′ȳl

i, l = 1, · · · , Li} (9)

Thus, the operator “max” in constraint (7) can be replaced by (9) where “min” will be incorporated into
the objective function of problem (P0). Consequently, we obtain the following minimization problem over
(x, γ, ς,∆,ν,α,β) ∈ Rn ×R×R× Sn ×Rm ×Rm ×Rm:

(P1) min γ

s.t. α− β ≤ ν,

〈∆,Γl
i〉 ≤ αi, l = 1, · · · , Li, i = 1, · · · ,m,

βi ≤ x′ȳl
i, l = 1, · · · , Li, i = 1, · · · ,m,

max
λ∈Λ,

λ′ν + κ(ε)2ς ≤ γ, (10)
(

∆ x/2
x′/2 ς

)
º 0, x ∈ X ,

where α = (α1, · · · , αm)′ and β = (β1, · · · , βm)′.

Now we are in a position to establish the following proposition:

Proposition 1 If (x∗, γ∗, ς∗,∆∗,ν∗,α∗,β∗) solves problem (P1), then α∗−β∗ = ν∗, and (x∗, γ∗, ς∗,∆∗,
ν∗) solves problem (P0). Conversely, if (x̄, γ̄, ς̄ , ∆̄, ν̄) solves problem (P0), then (x̄, γ̄, ς̄ , ∆̄, ν̄, ᾱ, β̄) solves
problem (P1), where (ᾱ, β̄) is an optimal solution to (9) with (x,∆) = (x̄, ∆̄), and moreover ᾱ− β̄ = ν̄.

It should be mentioned that there are various other approaches to specify the structure of Ui in the
literature, and one can refer to El Ghaoui et al. (2003), Goldfarb and Iyengar (2003) and references therein
for details.

3.2 Uncertainty on exit time

In this subsection, we discuss the distribution of exit time under the componentwise bounded uncertainty
and semi-ellipsoidal uncertainty, individually.

3.2.1 Componentwise bounded uncertainty

Suppose Λ in (10) is given as a componentwise bounded set such that

ΛB =
{

λ : e′λ = 1,λ ≤ λ ≤ λ

}
, (11)

where λ and λ are two given constant vectors. The condition e′λ = 1 ensures λ to be a probability
distribution, and the non-negativity constraint λ ≥ 0 is included in the bound constraints λ ≤ λ ≤ λ. Since
ΛB can be easily specified and reformulated in a tractable way, it is one of the most often used uncertain
sets in robust optimization formulation.

Consider the following linear program:

max
λ∈Rm

ν′λ

s.t. e′λ = 1, λ ≤ λ ≤ λ.
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We obtain the corresponding dual program as follows:

min
(z,ξ,ω)∈R×Rm×Rm

z + λ
′
ξ + λ′ω

s.t. ez + ξ + ω = ν, ξ ≥ 0, ω ≤ 0. (12)

In relation to (P1), let us consider the following minimization problem over (x, γ, ς,∆,ν,α,

β, z, ξ,ω) ∈ Rn ×R×R× Sn ×Rm ×Rm ×Rm ×R×Rm ×Rm:

(P2) min γ

s.t. α− β ≤ ν,

〈∆,Γl
i〉 ≤ αi, l = 1, · · · , Li, i = 1, · · · ,m,

βi ≤ x′ȳl
i, l = 1, · · · , Li, i = 1, · · · ,m,

z + λ
′
ξ + λ′ω + κ(ε)2ς ≤ γ,

ez + ξ + ω = ν, ξ ≥ 0,ω ≤ 0,(
∆ x/2

x′/2 ς

)
º 0, x ∈ X .

Proposition 2 If (x∗, γ∗, ς∗,∆∗,ν∗,α∗,β∗, z∗, ξ∗,ω∗) solves problem (P2), then (x∗, γ∗, ς∗,∆∗,ν∗,α∗,
β∗) solves (P1). Conversely, if (x̄, γ̄, ς̄ , ∆̄, ν̄, ᾱ, β̄) solves problem (P1), then (x̄, γ̄, ς̄ , ∆̄, ν̄, ᾱ, β̄, z̄, ξ̄, ω̄) solves
problem (P2), where (z̄, ξ̄, ω̄) is an optimal solution to problem (12) with ν = ν̄.

3.2.2 Semi-ellipsoidal uncertainty

Suppose λ belongs to a semi-ellipsoid, (From the perspective of robust optimization, we may assume that λ

belongs to an ellipsoid, i.e., λ ∈ Λ̄E = {λ : λ = λ0 +Aη, ‖η‖ ≤ 1}. However, to ensure λ to be a probability
distribution, it should meet the requirements e′Aη = 0 and λ0 + Aη ≥ 0, which in turn restricts λ within a
semi-ellipsoid. In this sense, we call λ semi-ellipsoidal uncertainty.) i.e.,

ΛE =
{

λ : λ = λ0 + Aη, e′Aη = 0,λ0 + Aη ≥ 0, ‖η‖2 ≤ 1
}

, (13)

where e′λ0 = 1 and λ0 ≥ 0, i.e., λ0 is a nominal distribution that is the center of the ellipsoid, and A ∈ Sm

is the scaling matrix of the ellipsoid.

Consider the following convex program

max
η∈Rm

ν′Aη

s.t. e′Aη = 0, λ0 + Aη ≥ 0, ‖η‖2 ≤ 1. (14)

The dual of (14) is the second-order cone program

min
(ζ,ω,ξ,z)∈R×Rm×Rm×R

ζ +
(
λ0

)′
ω

s.t. − ξ −Aω + A′ez = A′ν, ‖ξ‖2 ≤ ζ, ω ≥ 0. (15)

Similarly to (P2), consider the following minimization problem over (x, γ, ς,∆,ν,α,β, z, ξ,ω, ζ) ∈ Rn×R×
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R× Sn ×Rm ×Rm ×Rm ×R×Rm ×Rm ×R:

(P3) min γ

s.t. α− β ≤ ν,

〈∆,Γl
i〉 ≤ αi, l = 1, · · · , Li, i = 1, · · · ,m,

βi ≤ x′ȳl
i, l = 1, · · · , Li, i = 1, · · · ,m,

(λ0)′ν + ζ +
(
λ0

)′
ω + κ(ε)2ς ≤ γ,

−ξ −Aω + A′ez = A′ν, ‖ξ‖2 ≤ ζ, ω ≥ 0,(
∆ x/2

x′/2 ς

)
º 0, x ∈ X .

Proposition 3 If (x∗, γ∗, ς∗,∆∗,ν∗,α∗,β∗, z∗, ξ∗,ω∗, ζ∗) solves problem (P3), then (x∗, γ∗, ς∗,∆∗,ν∗,
α∗,β∗) solves (P1). Conversely, if (x̄, γ̄, ς̄ , ∆̄, ν̄, ᾱ, β̄) solves problem (P1), then (x̄, γ̄, ς̄ , ∆̄, ν̄, ᾱ, β̄, z̄, ξ̄, ω̄, ζ̄)
solves problem (P3), where (z̄, ξ̄, ω̄, ζ̄) is an optimal solution to problem (15) with ν = ν̄.

4 Robust Portfolio Selection

In this section we consider the situation that random returns of risky assets are just specified by a set of
exit time distributions and a set of conditional return distributions on exit time, and formulate the portfolio
management problem by adopting WVaR as the measure of risk.

Let µ be the worst-case minimum expected return required by the investor. Mathematically, this can be
expressed as

min
λ∈Λ

m∑

i=1

[
min

ȳi∈Ui(ȳi)
λi(x′ȳi)

] ≥ µ. (16)

Clearly, the worst-case minimum expected return involves two types of uncertainties, the uncertainty in the
exit time distribution and the uncertainty in the expected return conditional on exit time.

In relation to (9), the left-hand side of (16) is equivalent to

min
λ∈Λ

m∑

i=1

λiβi

s.t. βi = min
1≤l≤Li

x′ȳl
i, i = 1, · · · ,m.

Therefore, the feasible portfolio set X is specified as
{

x : e′x = 1,x ≤ x ≤ x,min
λ∈Λ

β′λ ≥ µ, βi = min
1≤l≤Li

x′ȳl
i, i = 1, · · · ,m

}
. (17)

where e′x = 1 is the budget constraint and the inequalities x ≤ x ≤ x ensure diversification of an optimal
portfolio with given lower and upper bounds x and x.

4.1 Portfolio formulation with componentwise bounded uncertainty on exit
time

In the case of componentwise bounded uncertainty in discrete distribution of exit time, by (11), the dual
problem of the linear program involved in (17), i.e.,

min
λ∈Rm

β′λ

s.t. e′λ = 1, λ ≤ λ ≤ λ, (18)
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is expressed as

max
(δ,ρ,v)∈R×Rm×Rm

δ + λ
′
ρ + λ′v

s.t. eδ + ρ + v = β, ρ ≤ 0, v ≥ 0. (19)

By the duality theory of linear programming, the optimal objective value of (19) gives a lower bound of
the optimal value of problem (18). Moreover, if both the primal problem (18) and the dual problem (19)
have optimal solutions, then the duality gap is zero. Therefore, it can be easily verified that X coincides
with the set XB , which is expressed as

XB =

{
x : ∃(δ,ρ,v)

e′x = 1, x ≤ x ≤ x, eδ + ρ + v = β,ρ ≤ 0, v ≥ 0,

δ + λ
′
ρ + λ′v ≥ µ, βi = min

1≤l≤Li

x′ȳl
i, i = 1, · · · ,m

}
.

Thus, along with (P2) and Proposition 2, the robust portfolio selection problem with componentwise
bounded uncertainty on exit time can be formulated as the following semidefinite program with variables
(x, γ, ς,∆,α,β, z, ξ,ω, δ, ρ,v) ∈ Rn ×R×R× Sn ×Rm ×Rm ×R×Rm ×Rm ×R×Rm ×Rm:

(P4) min γ

s.t. e′x = 1,

x ≤ x ≤ x,

eδ + ρ + v = β,

ρ ≤ 0, v ≥ 0,

δ + λ
′
ρ + λ′v ≥ µ,

z + λ
′
ξ + λ′ω + κ(ε)2ς ≤ γ,

ez + ξ + ω = α− β,

ξ ≥ 0,ω ≤ 0,(
∆ x/2

x′/2 ς

)
º 0,

βi ≤ x′ȳl
i,

〈∆,Γl
i〉 ≤ αi, l = 1, · · · , Li, i = 1, · · · ,m.

It can be seen that the equalities βi = min
1≤l≤Li

x′ȳl
i hold at optimality.

4.2 Portfolio formulation with semi-ellipsoidal uncertainty on exit time

In the case of semi-ellipsoidal uncertainty in distribution of exit time, by (13) and (17), X is given by


 x :

e′x = 1, x ≤ x ≤ x, βi = min
1≤l≤Li

x′ȳl
i, i = 1, · · · ,m,

β′λ0 + min
{η: e′Aη=0, λ0+Aη≥0, ‖η‖2≤1}

β′Aη ≥ µ



 .

Since the dual program of the second-order cone program

min
η∈Rm

β′Aη

s.t. e′Aη = 0, λ0 + Aη ≥ 0, ‖η‖2 ≤ 1 (20)

is given as

max
(%,ρ,v,δ)∈R×Rm×Rm×R

−%− (
λ0

)′
ρ

s.t. v + A′ρ + A′eδ = A′β, ‖v‖2 ≤ %, ρ ≥ 0, (21)
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by the duality theory of second-order cone program, the optimal objective value of (21) gives a lower bound
of the optimal value of problem (20). Moreover, if both the primal problem (20) and the dual problem (21)
have optimal solutions, then the duality gap is zero. Therefore, it can be easily verified that X coincides
with the following set XE , which is expressed as

XE =

{
x : ∃(%,ρ,v, δ)

e′x = x0,x ≤ x ≤ x,v + A′ρ + A′eδ = A′β, ‖v‖2 ≤ %, ρ ≥ 0,

β′λ0 − %− ρ′λ0 ≥ µ, βi = min
1≤l≤Li

x′ȳl
i, i = 1, · · · ,m

}
.

Now, together with (P3) and Proposition 3, the robust portfolio selection problem with semi-ellipsoidal un-
certainty on exit time can be formulated as the following semidefinite program with variables (x, γ, ς,∆,α,β,

z, ξ,ω, ζ, %,ρ,v, δ) ∈ Rn ×R×R× Sn ×Rm ×Rm ×R×Rm ×Rm ×R×R×Rm ×Rm ×R:

(P5) min γ

s.t. e′x = 1,

x ≤ x ≤ x,

v + A′ρ + A′eδ = A′β,

‖v‖ ≤ %, ρ ≥ 0,

β′λ0 − %− ρ′λ0 ≥ µ,

(λ0)′(α− β) + ζ +
(
λ0

)′
ω + κ(ε)2ς ≤ γ,

−ξ −Aω + A′ez = A′(α− β),

‖ξ‖2 ≤ ζ, ω ≥ 0(
∆ x/2

x′/2 ς

)
º 0,

βi ≤ x′ȳl
i,

〈∆,Γl
i〉 ≤ αi, l = 1, · · · , Li, i = 1, · · · ,m.

Similarly to the previous case, the equalities βi = min
1≤l≤Li

x′ȳl
i hold at optimality.

5 Numerical Experiments

In this section, we present a simple but illustrative numerical experiment with the robust portfolio selection
problem involving an uncertain exit time. Without loss of generality, we only consider the case of compo-
nentwise bounded uncertainty. The reason is that a nonempty box must contain a smaller semi-ellipsoid
and at the same time must be contained by a larger semi-ellipsoid. Therefore, for both the componentwise
bounded and semi-ellipsoidal uncertainties, the results will be similar. Moreover, as mentioned in Section 3,
componentwise bounded uncertainty is one of the most often used uncertain sets in robust optimization.

We take the example given by Huang et al. (2006), where the portfolio to be constructed consists of
10 stocks from the Tokyo Stock Exchange. Suppose that the investment horizon is two days, and that the
investor may exit market at the end of the first day, i.e., m = 2. Because of inconsistent behavior of returns
among different time periods, we divide the return series into two sub-samples, i.e., Li = 2 (i = 1, 2), and then
estimate the corresponding expected returns and covariance matrices, which are regarded as the scenarios
of the conditional distribution of return. (We collect the historical daily closing prices of these stocks from
January 19, 1994 to December 31, 2004, which includes 2701 samples. For the return computations of one
day and two days, we use y1

t = Vt−Vt−1
Vt−1

× 100, t = 2, 3, 4, ... and y2
t = Vt−Vt−2

Vt−2
× 100, t = 3, 5, 7, ..., where

Vt denotes the closing price of stock at the day t, see Huang et al. (2006) for details.) Thus, we obtain
(ȳl

i,Γ
l
i), l = 1, 2, i = 1, 2. In this example, we set x = 0, x = e. Let WVaR-I denote the original WVaR

given in El Ghaoui (2003), where the investor terminates his portfolio at the end of investment horizon, and
let WVaR-II denote our model which incorporates the uncertainty in exit time. Numerical experiments for
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WVaR-I and WVaR-II are performed using the semidefinite programming formulation (P4). (We solve the
problem by Matlab701 and SeDuMi1.05 (Sturm, 2001) on PC with Intel Pentium 4 CPU 3.00GHz, 1.5GB
RAM.) In the computation of WVaR-I, we set λ1 = λ1 = 0 and λ2 = λ2 = 1.

Table 1: Comparison of performances of WVaR-I and WVaR-II.

µ λ = 0, λ = e Mean (%) WVaR (%)

(%) ε = 10% Exit time 1 Exit time 2 Exit time 1 Exit time 2

0.005
WVaR-I 0.0056 0.0050 3.8639 4.9755

WVaR-II 0.0056 0.0050 3.8639 4.9755

0.010
WVaR-I 0.0083 0.0100 4.0025 5.1423

WVaR-II 0.0100 0.0129 4.1181 5.2704

0.020
WVaR-I 0.0136 0.0200 4.4054 5.6239

WVaR-II 0.0200 0.0316 5.0651 6.4081

0.025
WVaR-I 0.0163 0.0250 4.6582 5.9262

WVaR-II — — — —

To compare the performance of the optimal portfolios resulting from WVaR-I and WVaR-II for various
values of the required minimal worst-case expected return µ, Table 1 shows the expected values and WVaRs
when ε = 0.1. Actually, by (P4), we can compute the actual expected returns and corresponding WVaRs
by means of the WVaR-I and WVaR-II models when the investor exits the market at different times. It
is obvious that the larger the required minimal worst-case expected return, the larger the associated risk.
Ostensibly, for the same µ, the risk of WVaR-II appears to be larger than that of WVaR-I. However, higher
risk is compensated by higher return. Moreover, the larger value of WVaR-II does not necessarily means
higher risk than that of WVaR-I, which is only because the investor considers more seriously the uncertainty
of future extreme scenarios and hence takes a conservative strategy. On the other hand, in the WVaR-
II model, the worst-case expected return can be guaranteed even if the investor terminates his portfolio
before maturity. For example, when µ = 0.01, if the investor exits the market at the end of first day, the
actual portfolio return resulting from WVaR-I is 0.0083, which is less than the required minimal expected
return µ = 0.01. In this case, the optimal portfolio of WVaR-II meets this requirement. Moreover, it will
be easy to show quantitatively that WVaR-II is much preferred to WVaR-I in general if we define unit
return-risk ratio as L=(actual return)/risk. For example, if µ = 0.020 and the exit takes place at the first
day, then L(WVaR-I)=0.0136/4.4054=0.0031, while L(WVaR-II)=0.0200/5.0651=0.0039, i.e., L(WVaR-I)≤
L(WVaR-II), which implies that for the same risk, the investor considering the uncertain exit time may obtain
more risk premium. This interesting phenomenon also applies to other cases (µ = 0.01, 0.02).

Table 2: WVaR-II for various pairs (λ1, λ1) (µ = 0.02).

PPPPPPPλ1

λ1 0.0 0.2 0.4 0.6 0.8 1

0.0 5.6239 5.7052 5.8088 5.9449 6.1313 6.4081

0.1 — 5.5808 5.6828 5.8167 5.9998 6.2723

0.2 — 5.4536 5.5538 5.6854 5.8653 6.1335

0.3 — — 5.4216 5.5510 5.7275 5.9913

0.4 — — 5.2860 5.4131 5.5863 5.8456

0.5 — — — 5.2715 5.4413 5.6961
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To explore the impact of the uncertainty in exit time on WVaR, Table 2 reports the values of WVaR-II
for vaious choices of λ and λ. (In our example, λ2 = 1−λ1 and λ2 = 1−λ1, so we need only consider λ1 and
λ1.) Obviously, for a fixed λ1 in Table 2, an increase of λ1 results in an increase of WVaR-II. On the contrary,
WVaR-II decreases as λ1 increases. For example, when λ1 increases from 0 to 0.5, WVaR-II decreases from
5.9449 to 5.2715 with fixed λ1 = 0.6. We can explain this phenomenon as follows: the uncertainty of exit
time is dependent on the area of the uncertain set of λ. The larger the area, the greater the uncertainty. This
is because the area of λ equals Sλ = (λ1 − λ1) · (λ2 − λ2) = (λ1 − λ1)

2. Thus, for fixed λ1, as λ1 increases,
the interval of [λ1, λ1] shrinks (λ1 − λ1 decreases), which reduces the area of λ ((λ1 − λ1)

2 decreases), and
hence reduces the uncertainty of exit time, i.e., the distribution of exit time belongs to a smaller box, and
hence, WVaR-II decreases.

6 Conclusion

The uncertainty in exit time and the uncertainty in the conditional distribution of portfolio on exit time
give rise to an important and complicated problem in practice. In this paper, we extend the original WVaR
approach developed by El Ghaoui et al. (2003) to combine the two types of uncertainties, and formulate the
problem as a semidefinte program, which can be efficiently solved. A simple numerical experiment shows
the usefulness of the proposed model.
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