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Abstract

In Mandelbaum and Yechiali (1979) a simple formula is derived for the expected station-

ary remaining service time in a FIFO M/G/1 queue, conditional on the number of customers

in the system being equal to j, j ≥ 1. Fakinos (1982) derived a similar formula using an

alternative method. Here we give a short proof of the formula using rate conservation law

(RCL), and generalize to handle higher moments which better illustrates the advantages of

using RCL.
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1 Introduction

For a stable FIFO M/G/1 queue in (time) stationarity, let Rj = (Sr|L = j) denote the remaining

service time of the customer in service conditional that the number of customers in the system

(L) equals j, j ≥ 1. Let λ denote the arrival rate, E(S) = 1/µ denote mean service time and

let ρ
def= λ/µ < 1.

Mandelbaum and Yechiali [1979] proved that

E(Rj) =
1− ρ

λ

P (L > j)
P (L = j)

. (1.1)

Fakinos [1982] derived similar relationships using different methods. Recently, in Ross[2006],

this result is used for purposes of obtaining bounds on stationary queue length.

A basic application is that an arriving customer who finds j customers in the system upon

arrival, experiences a delay as precisely the sum Rj +S1+ · · ·+Sj−1, where the Si are iid regular

(unbiased) service times of the customers waiting in line. Thus the conditional expected delay

can be computed if E(Rj) can be computed. Examples include call centers where an estimate

of expected delay needs to be given to an arriving customer; further examples involve admission

control (see for example Mandelbaum and Yechiali [1983]).

Here, in the present paper, we give a short proof of (1.1) using rate conservation law (RCL),

E(X ′) = λE(J); see Section 5.5 (Theorems 5.5 and 5.6) in Sigman[1995]. (E(X ′) denotes time

average right derivative of a process {X(t)}, λ is the rate at which jumps occur for the process,

and −E(J) is the average jump size, all of which can be viewed as sample-path averages.) We

then generalize to derive higher moments.
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2 Proof of (1.1)

Proof : Let Sr(t) denote remaining service time of the served customer at time t, L(t) the

number of customers in the system at time t, and πj = P (L = j); recall from PASTA that

πj is both the proportion of time there are j customers in the system and the proportion of

arrivals who find j customers in the system. We will proceed by induction: Suppose that the

result holds for some j ≥ 1. We will show that the result then holds for j + 1 too. To this end

let X(t) = Sr(t)I{L(t) = j + 1} and observe that X ′(t) = −I{L(t) = j + 1}. There are three

sources of jumps for the process X(t),

1. Arrivals who find j + 1 customers in the system. The rate of such jumps is given by

λ1 = λπj+1 and a jump size is of the form −J(1) = X(0+)−X(0−) = 0−Rj+1 = −Rj+1

(by PASTA).

2. Arrivals who find j customers in the system. The rate of such jumps is given by λ2 = λπj

and a jump size is of the form −J(2) = X(0+)−X(0−) = Rj−0 = Rj (again by PASTA).

3. Departures who leave j + 1 customers behind. The rate of such jumps is given by λ3 =

λπj+1 because (via basic sample-path principles1) the proportion of departures who leave

j customers behind is πj and the long-run departure rate is λ. A jump size is of the form

−J(3) = X(0+)−X(0−) = S, a typical service time with mean E(S) = 1/µ.

RCL thus takes the form E(X ′) = λ1E(J(1)) + λ2E(J(2)) + λ3E(J(3)) and becomes

πj+1 = −λπj+1E(Rj+1) + λπjE(Rj) + λπj+1E(S). (2.2)
1A function that has jumps of only magnitude 1 (such as, but not restricted to, the sample paths of a birth

and death process) must satisfy “the long-run rate at which the function jumps from state j to j + 1 equals the

long-run rate at which it jumps from j + 1 to j. Formally this is sometimes referred to as Burke’s theorem.
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Plugging in the induction hypothesis (1.1) for E(Rj) and solving for E(Rj+1) then yields

E(Rj+1) =
1

λπj+1
[(1− ρ)P (L > j)− (1− ρ)πj+1] (2.3)

=
1

λπj+1
[(1− ρ)P (L > j + 1)] (2.4)

=
1− ρ

λ

P (L > j + 1)
P (L = j + 1)

; (2.5)

we arrive at (1.1) for j + 1. Thus it now suffices to prove (1.1) when j = 1. Repeating the

above RCL analysis with X(t) = Sr(t)I{L(t) = 1}, the only modification needed is that the

type 2 arrivals (rate λ2 = λπ0) find the system empty and hence enter service immediately;

−J(2) = X(0+)−X(0−) = S. Thus RCL yields

π1 = −λπ1E(R1) + λπ0E(S) + λπ1E(S)

= −λπ1E(R1) + ρ(π0 + π1).

Solving for E(R1) while using the fact that π0 = 1− ρ and P (L > 0) = ρ then yields

E(R1) =
1− ρ

λ

P (L > 1)
P (L = 1)

;

the proof is now complete.

3 Second moments and beyond

Using the first moment formula (1.1) we can “bootstrap” it via RCL to obtain second moments,

E(R2
j ) and then use second moments to obtain third moments and so on. It is this aspect of the

RCL method that better illustrates its efficiency. We briefly illustrate the method by obtaining

E(R2
1) and then, more generally, E(Rn

1 ), and then E(Rn
2 ). Finally we show how to use Laplace

transforms to obtain such recursions.
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Let X(t) = S2
r (t)I{L(t) = 1} and observe that X ′(t) = −2Sr(t)I{L(t) = 1}. The same

jump sources as for deriving (1.1) apply here. Moreover

E(R1) =
E(SrI{L = 1})

π1
.

RCL thus yields

E(R1) = −λ

2
E(R2

1) +
λπ0

2π1
E(S2) +

λ

2
E(S2),

and we can solve for E(R2
1) in terms of E(R1) derived earlier:

E(R2
1) = (1 +

π0

π1
)E(S2)− 2

λ
E(R1). (3.6)

Continuing recursively for higher moments, E(Rn
1 ), we use X(t) = Sn

r (t)I{L(t) = 1} which

then yields

E(Rn
1 ) = (1 +

π0

π1
)E(Sn)− n

λ
E(Rn−1

1 ), n ≥ 2. (3.7)

Now that we have all first moments E(Rj) for any j ≥ 1 and all moments for j = 1, we can

obtain all moments for j = 2 by using X(t) = Sn
r (t)I{L(t) = 2}:

E(Rn
2 ) =

πj−1

πj
E(Rn

1 ) + E(Sn)− n

λ
E(Rn−1

2 ), n ≥ 2. (3.8)

Interestingly, all these moment recursions can be obtained by first deriving expressions for

the Laplace transform. For a non-negative random variable X, let LX(s) = E(e−sX), s ≥

0, denote the Laplace transform of X. Further, let Xe denote a random variable with the

equilibrium distribution (stationary excess) of X, with density P (X > x)/E(X), x ≥ 0. Then,

for example, using RCL on X(t) = e−sSr(t){L(t) = 1} leads to

LR1(s) + λE(R1)LR1,e(s) = ρ(1 +
π0

π1
)LSe(s). (3.9)

(Here, R1,e = (R1)e.) Setting s = 0 yields E(R1) and then taking first derivatives with respect

to s and setting s = 0 yields E(R2
1), and so on.
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