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Abstract

We study the approximability of minimum total weighted tardiness with a modified objective which includes an

additive constant. This ensures the existence of a positive lower bound for the minimum value. Moreover the new

objective has a natural interpretation in Just-In-Time production systems.
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1. Introduction

Minimizing the total weighted tardiness is one of
the classical scheduling objectives studied by many
researchers starting from the early days of schedul-
ing theory [11]. We are given a set N of n jobs with
the following characteristics. Job j, 1 ≤ j ≤ n, has to
be processed for an integer time pj on one of m (m ≥
1) machines, it has a due date dj , and a positive
weight wj . For a given schedule of the jobs the tardi-
ness Tj of job j is defined as max{Cj −dj , 0}, where
Cj is the completion time of the job. The objective
is to find the schedule which minimizes

∑n
j=1 wjTj.

In the 3-field notation used in scheduling [11], the
problem is denoted by α|β|

∑

j wjTj, where α is
the machine environment and β describes special
job characteristics. Some possible values for α are 1
(single machine), P (identical parallel machines), Q
(uniformly related machines) and R (unrelated ma-
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chines). Rm stands for unrelated machines whose
number is fixed. In the case of uniformly related ma-
chines, machine i has a speed si ≥ 1. The processing
of job j on machine i requires pj/si time units. In
the case of unrelated machines, job j takes pij units
of processing time if assigned to machine i. Some
possible values for β are rj (denotes release dates,
i.e., job j becomes available for processing at time
rj > 0), prec (denotes that the jobs are precedence-
constrained), pmtn (the jobs can be preempted, i.e.,
interrupted and later restarted).

According to [7] 1| |
∑

j wjTj is an “NP -hard
archetypal machine scheduling problem” whose ex-
act solution appears very difficult even on very small
inputs. We proceed to review briefly what is known
on minimizing total weighted tardiness on a single
machine.

Early on the problem was shown to be NP -hard
in the ordinary sense [20] when the jobs have only
two distinct due dates by a reduction from the knap-
sack problem. Much later even the case of a single
common due date was shown NP -hard [30]. The
problem was shown to be strongly NP -hard for an
arbitrary number of due dates in [17]. Lawler and
Moore [19] have presented a pseudopolynomial so-
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lution for the case when all jobs have a single com-
mon due date. Very little is known about approxi-
mation algorithms. The only case that seems to be
better understood is the usually easier case of agree-
able weights: in that case pj < pi implies wj ≥ wi.
Lawler gave a pseudopolynomial algorithm for the
agreeable-weighted case [17]. A few years later he
showed how to modify that algorithm to obtain an
FPTAS for the case of unit weights [18]. Interest-
ingly, the complexity of the unit weight problem,
1| |

∑

j Tj, was open for many years until it was
shown NP -hard [8]. Kolliopoulos and Steiner [15]
gave pseudopolynomial algorithms for the case of 1|
|
∑

j wjTj when there is only a fixed number of differ-
ent due dates. They have also developed an FPTAS
if, in addition, the weights wj are bounded by a poly-
nomial function of n. Cheng, Ng, Yuan and Liu [4]
have recently shown that the schedule which mini-
mizes maxj wjTj yields an (n−1)-approximation for
1| |

∑

j wjTj. To our knowledge this is the only non-
trivial known approximation guarantee for a version
of the problem with general input data. We are not
aware of any approximation guarantees for multi-
machine weighted tardiness scheduling problems.

Minimizing total tardiness becomes provably hard
to approximate with an extension to 1| |

∑

j Tj as
mild as that of the jobs having nontrivial release
dates. The flow time Fj of a job j is defined as Cj−rj .
There is a straighforward approximation-preserving
reduction from minimizing total flow time on a single
machine to 1|rj |

∑

j Tj . Therefore from the hardness

result of [14] it is NP -hard to obtain an O(n1/2−ε)-
approximation for the latter problem for any ε > 0.

The proposed model. In this paper we attempt to
tackle this apparently very difficult class of problems
from a different perspective. We present a large num-
ber of approximation results for scheduling prob-
lems of the form α|β|

∑

j wj(Tj + dj). It is clear
that for optimization purposes this modified objec-
tive is equivalent to minimizing the total weighted
tardiness as it adds the schedule-independent con-
stant

∑

j wjdj to the objective. Part of the diffi-
culty of finding good multiplicative approximations
for

∑

j wjTj seems to be that the optimum can be
zero (one can determine whether this is the case for
1| |

∑

j wjTj by scheduling the jobs in the Earliest
Due Date (EDD) order) or in general very small
compared to the job processing times. This type of
irregularity arises for other objectives too, for exam-
ple for the maximum lateness Lmax. For job j, the
lateness Lj is defined as Cj − dj . The usual way to

deal with this difficulty is to use a formulation which
adds a positive constant to the objective. In the late-
ness setting the added constant transforms the late-
ness of job j from Cj − dj to Cj + qj where qj > 0,
is the so-called delivery time of the job. All known
approximation results for minimizing “lateness” are
for this modified objective. The conceptual starting
point of the described transformation is to let the
due dates be nonpositive and then interpret −dj as
expressing the nonnegative delivery time. The re-
sulting metric, which depends on Cj + qj , turns out
to be interesting in its own right but it actually elim-
inates the due dates and the lateness from the prob-
lem statement. See the survey [12] for an extensive
discussion of this type of transformation.

Our modified objective maintains information
about the tardy jobs and has a natural interpeta-
tion of its own. In particular it has an interesting
application in Just-in-Time (JIT) production sys-
tems. An example of such a system is a manufac-
turer supplying parts for the auto industry. As the
name suggests, it is desirable in a JIT system for
all jobs (e.g., car parts) to be completed as close to
their due date as possible. This usually results in
substantial reduction of work-in-process inventory
and thus inventory carrying costs, which are pro-
portional to the length of time each job spends in
the system. The customers (e.g. auto industry for
the parts) require JIT delivery of the jobs. It is then
reasonable to assume that early jobs get delivered,
i.e., leave the system, only when they are due and
tardy jobs are delivered as soon as they are com-
pleted. It is easy to see that our modified objective
function

∑

j wj(Tj + dj) corresponds to this as it
equals the sum of weighted completion times of the
tardy jobs plus the sum of the weighted due dates
of the early jobs. Then the total work-in-process
inventory carrying cost for the manufacturer is ex-
actly

∑

j wj(Tj + dj), where wj represents the cost
of holding job j in inventory for one unit of time.

Kovalyov and Werner [16] have studied the ap-
proximability of the unit-weight case on parallel
machines with common due date, i.e., Pm|dj =
d|

∑

j Tj. Using the fact that it is NP-complete to
decide whether there is a schedule with zero tar-
diness, they prove that, unless P = NP, there is
no polynomial-time ρ-approximation algorithm for
Pm|dj = d|

∑

j Tj with ρ < ∞. This shows that
solutions with zero value for the objective function
must be avoided to have any hope for a constant
factor approximation. We can do this by adding an
appropriate quantity b > 0 to the objective func-
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tion. They also show, however, that unless P = NP,
there is no polynomial-time (ρ + 1)−approximation
algorithm for Pm|dj = d|

∑

j Tj + b with ρ < 1/b.
This also implies that there is no FPTAS for the
problem if b is bounded by a polynomial in the input
length of the instance unless P = NP. They proceed
to construct an FPTAS for Pm|dj = d|

∑

j Tj + d.
Our objective function extends this modification to
the weighted case with different due dates.

Approximation ratios. Our results are based on ex-
ploiting the close relationship between the

∑

j wjCj

and
∑

j wj(Tj + dj) objectives in a large number
of scheduling environments. The approximability of
minimizing total weighted completion time is much
better understood, cf. the survey [3]. We prove
in Section 2 that approximating

∑

j wj(Tj + dj)
reduces to approximating

∑

j wjCj in the sense
that any ρ-approximation algorithm for minimizing
∑

j wjCj is a (ρ + 1)-approximation algorithm for
minimizing

∑

j wj(Tj + dj). We also show that it is
possible to further improve upon these guarantees
in cases where LP-based algorithms with certain
characteristics are available for approximating the
corresponding α|β|

∑

j wjCj problem. We propose
a family of linear relaxations for the modified tardi-
ness function and use it to prove that, in the cases
mentioned, a schedule with a ρ-approximation ra-
tio for α|β|

∑

j wjCj is also a schedule with the
same approximation ratio for the corresponding
α|β|

∑

j wj(Tj +dj) problem. Our final contribution
in Section 3 is an FPTAS for the single-machine
case where all the jobs have a common due date
D, i.e., for 1|dj = D|

∑

j wj(Tj + dj). This FPTAS
works without any restricting assumptions about
the weights.

2. Reduction to total weighted completion

time

In this section we show how to reduce the prob-
lem of finding an approximate solution to minimiz-
ing

∑

j wj(Tj + dj) to the problem of finding an
approximate solution to

∑

j wjCj . Using the 3-field
scheduling notation we examine problems belonging
to the family α|β|

∑

j wj(Tj + dj).
For any schedule σ let Cj(σ), Tj(σ) denote the

completion time and tardiness of job j in schedule σ.
Note also that Tj + dj = max{Cj , dj}. For an arbi-
trary (preemptive or nonpreemptive) schedule σ it
holds that

∑

j wjCj(σ) ≤
∑

j wj max{Cj(σ), dj} ≤
∑

j wjCj(σ) +
∑

j wjdj .

It follows from the first inequality that the mini-
mal total weighted completion time OPT∑

j
wjCj

is

a lower bound on the value OPT∑

j
wj max{Cj,dj}

of

an optimal solution for the modified objective func-
tion. Another trivial lower bound for this optimum is
the value

∑

j wjdj . Therefore any schedule σρ with
∑

j wjCj(σ
ρ) ≤ ρOPT∑

j
wjCj

fulfills

∑

j

wj max{Cj(σ
ρ), dj} ≤

ρOPT∑

j
wjCj

+
∑

wjdj ≤

(ρ + 1)OPT∑

j
wj max{Cj ,dj}

.

Thus we have proved the following.
Theorem 1 Consider a member α0|β0|

∑

j wjCj of
the family of scheduling problems α|β|

∑

j wjCj for
which there is a ρ-approximation algorithm. Then
the same algorithm achieves a (ρ+1)-approximation
for the problem α0|β0|

∑

j wj(Tj + dj).
We summarize the most important consequences

of Theorem 1 in Table 1. We omit from the table
bounds that are improved later on with an LP-based
approach.

An extension of Theorem 1 results as follows. One
could have a stochastic input where the vector P of
processing times of the jobs is a vector of random
variables from known distributions. In that case the
solution of a problem is no longer a simple schedule
but a scheduling policy Π [22] which yields a feasible
schedule for each realizationp of the processing time
vector. Accordingly the performance of a policy un-
der the total weighted completion time objective is
a random variable ZΠ(P) and an optimal policy Π∗

is one that minimizes the expectation E[ZΠ(P)]. A
policy Π is a ρ-approximation if

E[ZΠ(P)] ≤ ρE[ZΠ∗

(P)].

See e.g, [22,29] for more details. Under this new defi-
nition of OPT for the stochastic case and taking ex-
pectations where needed in the relations above, we
can conclude that the stochastic analogue of Theo-
rem 1 holds as well. A number of constant-factor ap-
proximation results of this type are shown in [23,29]
for P |rj , prec|E[

∑

j wjCj ] and its special cases. Un-
der the same probabilistic assumptions these results
translate to constant-factor (increased by one) ap-
proximations for P |rj , prec|E[

∑

j wj(Tj + dj)].
It is possible to improve upon the guarantee of

Theorem 1 and bring down the approximation ratio
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Problem ratio for
∑

j
wj(Tj + dj) reference for

∑

j
wjCj

P |rj, pmtn|
∑

j
wj(Tj + dj)

P |rj|
∑

j
wj(Tj + dj) 2 + ε [1]

Rm|rj , pmtn|
∑

j
wj(Tj + dj)

Rm|rj |
∑

j
wj(Tj + dj)

Q|pmtn|
∑

j
(Tj + dj) 2 [10]

Q|rj|
∑

j
wj(Tj + dj) 2 + ε [2]

Table 1
Approximation ratios ρ + 1 obtained by Theorem 1 for various instantiations of α|β|

∑

j
wj(Tj + dj). The references give

the sources for the corresponding ρ approximation ratio achieved for α|β|
∑

j
wjCj . We omit bounds that are improved by

Theorem 3.

by 1 in cases where LP-based algorithms with cer-
tain characteristics are available for approximating
the total weighted completion time.

The earliness of a job j in a schedule σ is defined
as Ej(σ) := max{dj − Cj(σ), 0}. We will use math-
ematical programming formulations with variables
Tj, Ej , Cj to denote respectively the tardiness, earli-
ness, and completion time of job j, j = 1, . . . , n. We
propose a family of mathematical programs which
is parameterized based on a set of constraints C(C).
In principle the constraints in C(C) are general con-
vex. A set of constraints C(C) is a a valid set of com-
pletion time constraints if the completion times Cj

(j = 1, 2, ..., n) must satisfy the constraints C(C) for
every feasible schedule.

As a concrete example for C(C), consider the
problem 1|prec|

∑

j wj(Tj + dj), i.e., scheduling
precedence-constrained jobs on a single machine. A
valid set of completion time constraints, which was
introduced in [26], is the following:

Ck ≥ Cj + pk for each pair j, k s.t.j ≺ k
∑

j∈S

pjCj ≥
1

2

(

p2(S) + p(S)2
)

∀S ⊆ N

Here p(S) =
∑

j∈S pj , p2(S) denotes
∑

j∈S p2
j and

j ≺ k represents the precedence constraint that job
j has to be finished before job k can start process-
ing. Queyranne has shown that a separation oracle
exists for the exponentially large set of constraints
and hence one can optimize over them in polynomial
time. Various other valid sets have also been given
in the literature. See for example the ones based
on linear-ordering variables [25,5,21] and the time-
indexed formulation in [9]. Note that the first two of
these use constraint sets of polynomial size.

Let C(C) be a valid set of completion time con-
straints for problem α|β|

∑

j wj(Tj + dj). We em-

phasize that the Tj or Ej variables do not have to
appear in any constraint in C(C). The only variables
involved may be completion time variables and pos-
sibly other auxiliary ones. In fact, in all the formu-
lations we employ the tardiness and earliness vari-
ables do not appear in C(C). We propose the follow-
ing family of linear programs, denoted FP (C):

minimize

n
∑

j=1

wj(Tj + dj) (1)

Tj = Cj − dj + Ej j = 1, . . . , n (2)

C(C) (3)

Tj , Ej , Cj ≥ 0 j = 1, . . . , n (4)

Since every job is either early or tardy in any fea-
sible schedule, i.e., at most one of the two variables
Tj and Ej can be positive, it is easy to see that the
Tj and Ej values must satisfy (2) for any feasible
schedule. Of course equations (2) do allow solutions
in which both Tj and Ej are positive, thus FP (C) is
normally not an exact formulation for the problem
α|β|

∑

j wj(Tj +dj), it is only a linear programming
relaxation.

Our results are based on the following algorithm
schema for the generic problem α|β|

∑

j wj(Tj +dj).
The values of the completion time variables returned
by an optimal solution of FP (C) may not be integer
and we refer to these values as the fractional com-
pletion times. Our schema assumes the existence of
a subroutine A(α, β) which finds a feasible sched-
ule σ that comes with a job-by-job approximation
guarantee for the completion times, i.e., if Cj is the
fractional completion time and Cj(σ) is the comple-
tion time in σ for job j, then we have Cj(σ) ≤ ρCj ,
j = 1, . . . , n, for some ρ ≥ 1.

Algorithm Schema(C)
1. Compute an optimal solution to FP (C). Let
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T j , Ej Cj , be the resulting values of the variables,
j = 1, . . . , n.

2. By invoking an appropriate algorithm A(α, β),
compute a feasible schedule σ for α|β|

∑

j wjCj in

which Cj ≤ ρCj , j = 1, . . . , n, for some ρ ≥ 1.
3. Output the schedule σ.

The analysis of our various algorithms hinges on
the following crucial lemma.
Lemma 2 If the algorithm A(α, β) assumed in Step
2 of the Algorithm Schema exists, the output
schedule σ achieves a ρ-approximation for problem
α|β|

∑

j wj(Tj + dj).

PROOF. The schedule σ is feasible for the ma-
chine environment α and job characteristics β by
construction. Denote by Tj(σ), Ej(σ) and Cj(σ) the
tardiness, earliness and completion time of job j in
schedule σ. Then for j = 1, . . . , n,

Tj(σ) = Cj(σ) − dj + Ej(σ) ≤

ρCj − dj + Ej(σ). (5)

If job j is not tardy, Tj(σ) = 0 and the contribution
of job j to the objective is wjdj . If job j is tardy, the
contribution of j to the objective is wj(Tj(σ) + dj)
which by (5) is at most

wj(Tj(σ) + dj) ≤ wj(ρCj + Ej(σ)) = ρwjCj .

But from (2)

wj(T j + dj) = wj(Cj + Ej),

hence wj(Tj(σ) + dj) equals

wjCj(σ) ≤ ρwjCj ≤ ρwj(T j + dj)

and the lemma is shown.
2

The analysis of Lemma 2 holds also in the case
where the algorithm A(α, β) returns a preemptive
schedule, in which case the schedule σ output by the
Algorithm Schema will be preemptive as well.
The following theorem has been shown.
Theorem 3 If for a problem α|β|

∑

j wj(Tj + dj)
(i) a valid set of completion time constraints ex-
ists (ii) FP (C), where C(C) is replaced by a spe-
cific valid set, can be solved in polynomial time
and (iii) a ρ-approximation algorithm for

∑

j wjCj

with the job-by-job guarantee exists, then there is
ρ-approximation algorithm for

∑

j wj(Tj + dj).
The main problems for which our requirements

are satisfied are shown in Table 2.

We remark that each ratio ρ in Table 2 implies
the same upper bound ρ on the integrality gap of
the corresponding linear relaxation, i.e., of the cor-
responding member of the family FP (C) of linear
relaxations. Furthermore, α|β|

∑

j wjCj is a special
case of α|β|

∑

j wj(Tj + dj) with dj = 0 for j =
1, ..., n, and all our inequalities reduce to the ones
describing the associated α|β|

∑

j wjCj problem in
this case. Therefore, if a ratio is known to be tight
for a relaxation of α|β|

∑

j wjCj , then it is also tight
for the corresponding α|β|

∑

j wj(Tj + dj) problem.

3. An FPTAS for the common due date case

In this section we will present an FPTAS for the
problem 1|dj = D|

∑

wj(Tj + dj), i.e., scheduling
on a single machine when all the jobs have the same
due date D. Even this special case is NP -hard as
shown by Yuan [30]. Lawler and Moore [19] have
presented an O(n2D) pseudopolynomial algorithm
for this problem. We show how to transform this
pseudopolynomial algorithm to an FPTAS.

Similarly to [18] and [15], we are going to scale
and round down the processing times by a constant
K, which is to be determined later. Unlike [18] and
[15], we will not only scale down the due dates by
the same constant K but we will also round them to
an integer value.

Accordingly, let us define dj := ddj/Ke and
pj := bpj/Kc for j = 1, 2, ..., n. Assume that we
apply the Lawler-Moore dynamic programming al-
gorithm to this scaled down problem and let σA

be the optimal sequence found by the algorithm.
Let σ∗ be the sequence minimizing

∑n
j=1 wjTj and

denote by T (σ∗) this optimum value. Let TσA(j)

be the tardiness of the jth job in the sequence
σA with the scaled down data (i.e., pj and dj)
and let TσA(j) be the tardiness of the same job
in σA with the original data. In addition, define
TσA

:=
∑n

j=1 wσA(j)TσA(j). Then we clearly have

TσA(j) ≤ TσA(j)/K for j = 1, 2, ..., n. Furthermore,

TσA
:=

∑n
j=1 wσA(j)TσA(j) ≤ T (σ∗)/K since σA

is optimal for the scaled down data. Let T ′
σA

de-
note the total weighted tardiness of the sequence
σA when we use processing times p′j := Kpj for
each job j and the original due dates dj . Note that
p′j = Kpj ≤ pj ≤ K(pj + 1). We can write

KTσA
≤ T (σ∗) ≤ TσA

which is less than
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Problem ratio for
∑

j
wj(Tj + dj) reference for

∑

j
wjCj

1|prec|
∑

j
wj(Tj + dj) ρ = 2 [13]

1|rj , prec, pmtn|
∑

j
wj(Tj + dj) ρ = 2 [13]

1|rj , prec|
∑

j
wj(Tj + dj) ρ = e + ε [27]

P |rj, prec, pmtn|
∑

j
wj(Tj + dj) ρ = 3 [13]

P |rj, prec|
∑

j
wj(Tj + dj) ρ = 4 [24]

Q|rj, prec, pmtn|
∑

j
wj(Tj + dj) ρ = O(log m) [6]

Q|rj, prec|
∑

j
wj(Tj + dj)

R| |
∑

j
wj(Tj + dj) 1.5 [28]

R|rj |
∑

j
wj(Tj + dj) 2 [28]

R|pmtn|
∑

j
wj(Tj + dj) 2 [28]

R|rj , pmtn|
∑

j
wj(Tj + dj) 3 [28]

Table 2
Approximation ratios achieved by Theorem 3 for various instantiations of α|β|

∑

j
wj(Tj +dj). The references give the sources

for the corresponding A(α, β) subroutine required by the Algorithm Schema.

n
∑

j=1

wσA(j) max{K

j
∑

i=1

(pσA(i) + 1) − dσA(j), 0}

≤ T ′
σA

+ Kn

n
∑

j=1

wj .

Furthermore,

KTσA
= K

n
∑

j=1

wσA(j) max{

j
∑

i=1

pσA(i) − dσA(j), 0}

which is at least

K

n
∑

j=1

wσA(j) max{

j
∑

i=1

pσA(i) − (
dσA(j)

K
+ 1), 0}.

The latter quantity can be lower bounded by
∑n

j=1 wσA(j) max{
∑j

i=1 KpσA(i) − dσA(j), 0} −

K
∑n

j=1 wσA(j) = T ′
σA

− K
∑n

j=1 wj .

Combining the above we obtain T ′
σA

−K
∑n

j=1 wj

≤ T (σ∗) ≤ TσA
≤ T ′

σA
+Kn

∑n
j=1 wj , which implies

TσA
− T (σ∗) ≤ K(n + 1)

n
∑

j=1

wj (6)

Choose K = εD/(n+1). By (6) the error is at most
ε
∑

j wjD = ε
∑

j wjdj ≤ εOPT. The running time
of the algorithm that computes σA on the scaled
input is O(n2(D/K)) = O(n3/ε). We have proved
the following theorem.
Theorem 4 There is an FPTAS for the prob-
lem 1|dj = D|

∑

j wj(Tj + dj), i.e., minimizing

∑

j wj(Tj + dj) on a single machine when all the
jobs have a common due date.
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