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1 Introduction

A popular approach to solving the nonlinear complementarity problem (NCP) is to

reformulate it as the global minimization via a certain merit function over IRn. For

this approach to be effective, the choice of the merit function is crucial. A popular

choice of the merit function is the squared norm of the Fischer-Burmeister (FB) function

Ψ : IRn × IRn → IR+ defined by

Ψ(a, b) :=
1

2

n∑

i=1

|φ(ai, bi)|2, (1)

for all a = (a1, · · · , an)T ∈ IRn and b = (b1, · · · , bn)T ∈ IRn. The aforementioned Fischer-

Burmeister function is denoted by Φ : IRn× IRn → IRn whose i-th component function is

Φi(a, b) = φ(ai, bi) with φ : IR2 → IR given by

φ(ai, bi) =
√

a2
i + b2

i − ai − bi. (2)

It is well-known that the FB function satisfies

φ(ai, bi) = 0 ⇐⇒ ai ≥ 0, bi ≥ 0, aibi = 0. (3)

It has been shown that φ2 is smooth (continuously differentiable) even though φ is not

differentiable. This merit function and its analysis were subsequently extended by Tseng

[12] to the semidefinite complementarity problem (SDCP) although only differentiability,

not continuous differentiability, was established. In fact, the FB function for the SDCP

is the matrix-valued function Φ : Sn × Sn → Sn defined by

Φ(X, Y ) := (X2 + Y 2)1/2 − (X + Y ),

while the squared norm of the FB function for the SDCP is the function Ψ : Sn×Sn → IR+

given by

Ψ(X, Y ) :=
1

2
‖Φ(X, Y )‖2,

where Sn denotes the set of real n × n symmetric matrices. The function Φ has been

proved to be strongly semismooth everywhere [11]. More recently, the squared norm of

the matrix-valued FB function Ψ was reported in [10] to be a smooth function and its

gradient is Lipschitz continuous.

The second-order cone (SOC), also called the Lorentz cone, in IRn is defined as

Kn := {(x1, x2) ∈ IR× IRn−1 | ‖x2‖ ≤ x1}, (4)

where ‖ · ‖ denotes the Euclidean norm. By definition, K1 is the set of nonnegative

reals IR+. The second-order cone complementarity problem (SOCCP) which is to find

x, y ∈ IRn satisfying

x = F (ζ), y = G(ζ), 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn, (5)
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where 〈·, ·〉 is the Euclidean inner product and F,G : IRn → IRn are continuous (possibly

nonlinear) functions. The FB function for the SOCCP is the vector-valued function

φ
FB

: IRn × IRn → IRn defined by

φ
FB

(x, y) := (x2 + y2)1/2 − (x + y), (6)

and the squared norm of the FB function for the SOCCP is ψ
FB

: IRn × IRn → IR+ given

by

ψ
FB

(x, y) :=
1

2
‖φ

FB
(x, y)‖2. (7)

Note that x2 and y2 in (6) mean x◦x and y ◦y, respectively (“◦” is introduced in Sec. 2);

and x + y means the usual componentwise addition of vectors. It is known that x2 ∈ Kn

for all x ∈ IRn. Moreover, if x ∈ Kn then there exists a unique vector in Kn denoted by

x1/2 such that (x1/2)2 = x1/2 ◦ x1/2 = x. Therefore, the FB function given as in (6) is

well-defined for all (x, y) ∈ IRn × IRn. Besides, it was shown in [5] that property (3) of φ

can be extended to φ
FB

. Thus, ψ
FB

is a merit function for the SOCCP since the SOCCP

can be expressed as an unconstrained minimization problem:

min
ζ∈IRn

f(ζ) := ψ
FB

(F (ζ), G(ζ)). (8)

Like in the NCP and the SDCP cases, ψ
FB

is shown to be smooth, and when ∇F and

−∇G are column monotone, every stationary point of (8) solves SOCCP; see [2].

The last hurdle to cross in applying (8) to solve (5) is to show that the gradient of ψ
FB

is sufficiently smooth to warrant the convergence of appropriate computational methods.

In particular, we are concerned with the conjugate gradient methods and the semismooth

Newton’s methods [3]. The former methods generally require the Lipschitz continuity of

the gradient (f ∈ LC1 for short since f : IRn → IR is said to be an LC1 function if it

is continuously differentiable and its gradient is locally Lipschitz continuous), while the

latter require that the gradient is semismooth (f ∈ SC1 for short since f is called an SC1

function if it is continuously differentiable and its gradient is semismooth), in addition

to being Lipschitz continuous.

The main purpose of this paper is to show that the gradient function of ψ
FB

defined as

in (7) is globally Lipschitz continuous and semismooth, which is an important property

for superlinear convergence of semismooth Newton methods [9]. It should be noted that

this result is not a direct implication from a similar result on function Ψ(X, Y ) recently

published in [10]. Different analysis is necessary for the proof of Lipschitz continuity.

Throughout this paper, IRn denotes the space of n-dimensional real column vectors

and the supscript “T” denotes transpose. For any differentiable function f : IRn → IR,

∇f(x) denotes the gradient of f at x. For any differentiable mapping F = (F1, ..., Fm)T :

IRn → IRm, ∇F (x) = [∇F1(x) · · · ∇Fm(x)] is a n ×m matrix denoting the transposed
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Jacobian of F at x. For any symmetric matrices A,B ∈ IRn×n, we write A º B (respec-

tively, A Â B) to mean A−B is positive semidefinite (respectively, positive definite). For

nonnegative scalars α and β, we write α = O(β) to mean α ≤ Cβ, with C independent

of α and β.

2 Preliminaries

For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, we define their Jordan product associated

with Kn as

x ◦ y := (〈x, y〉, y1x2 + x1y2). (9)

The identity element under this product is e := (1, 0, . . . , 0)T ∈ IRn. We write x2 to mean

x ◦ x and write x + y to mean the usual componentwise addition of vectors. It is known

that x2 ∈ Kn for all x ∈ IRn. Moreover, if x ∈ Kn, then there exists a unique vector in

Kn, denoted by x1/2, such that (x1/2)2 = x1/2 ◦ x1/2 = x.

For any x = (x1, x2) ∈ IR× IRn−1, we define a linear mapping from IRn to IRn as

Lx : IRn −→ IRn

y −→ Lxy :=

[
x1 xT

2

x2 x1I

]
y .

It can be easily verified that x◦y = Lxy, ∀y ∈ IRn, and Lx is positive definite (and hence

invertible) if and only if x ∈ int(Kn). However, L−1
x y 6= x−1 ◦ y, for some x ∈ int(Kn)

and y ∈ IRn, i.e., L−1
x 6= Lx−1 .

In addition, any x = (x1, x2) ∈ IR× IRn−1 can be decomposed as

x = λ1u
(1) + λ2u

(2), (10)

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors of

x, with respect to Kn, given by

λi = x1 + (−1)i‖x2‖, (11)

u(i) =





1
2

(
1, (−1)i x2

‖x2‖
)
, if x2 6= 0,

1
2
(1, (−1)iw) , if x2 = 0,

(12)

for i = 1, 2, with w being any vector in IRn−1 satisfying ‖w‖ = 1.

The above spectral factorization of x, as well as x2 and x1/2 and the matrix Lx, have

various interesting properties (cf. [5]). We list some properties that we will use later.
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Property 2.1 For any x = (x1, x2) ∈ IR× IRn−1 with spectral values λ1, λ2 and spectral

vectors u(1), u(2), the following results hold.

(a) x2 = λ2
1u

(1) + λ2
2u

(2) ∈ Kn.

(b) If x ∈ Kn, then 0 ≤ λ1 ≤ λ2 and x1/2 =
√

λ1 u(1) +
√

λ2 u(2).

(c) If x ∈ int(Kn), then 0 < λ1 ≤ λ2, det(x) = λ1λ2, and Lx is invertible with

L−1
x =

1

det(x)




x1 −xT
2

−x2
det(x)

x1

I +
1

x1

x2x
T
2


 .

(d) x ◦ y = Lxy for all y ∈ IRn, and Lx Â 0 if and only if x ∈ int(Kn).

For any function f : IR → IR, the following vector-valued function associated with Kn

(n ≥ 1) was considered in [6, 7]

f
soc

(x) = f(λ1)u
(1) + f(λ2)u

(2) ∀x = (x1, x2) ∈ IR× IRn−1. (13)

For a recent treatment, see [1, 5]. If f is defined only on a subset of IR, then f
soc

is

defined on the corresponding subset of IRn.

Since we aim to prove that the merit function ψ
FB

defined as in (7) has a Lipschitz

continuous gradient, we now write down the gradient function of ψ
FB

as below. Let

φ
FB

, ψ
FB

be given by (6) and (7), respectively. Then, from [2, Prop. 1], we know that

∇xψFB
(0, 0) = ∇yψFB

(0, 0) = 0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψFB
(x, y) =

(
LxL

−1
(x2+y2)1/2 − I

)
φ

FB
(x, y),

∇yψFB
(x, y) =

(
LyL

−1
(x2+y2)1/2 − I

)
φ

FB
(x, y).

(14)

If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), then x2
1 + y2

1 6= 0 and

∇xψFB
(x, y) =


 x1√

x2
1 + y2

1

− 1


 φ

FB
(x, y),

∇yψFB
(x, y) =


 y1√

x2
1 + y2

1

− 1


 φ

FB
(x, y). (15)

Next, we also state some important technical lemmas which will be used in proving

our main results. Lemma 2.1 describes the behavior of (x, y) when x2 + y2 lies on the

boundary of Kn; and Lemma 2.2 measures how close x2 + y2 comes to the boundary

of Kn. Lemma 2.3 says the matrices appeared in the gradient function (14) of ψ
FB

is

uniformly bounded.
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Lemma 2.1 [2, Lemma 2] For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1 with x2 + y2 6∈
int(Kn), we have

x2
1 = ‖x2‖2,

y2
1 = ‖y2‖2,

x1y1 = xT
2 y2,

x1y2 = y1x2.

Lemma 2.2 [2, Lemma 3] For any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with x1x2 +

y1y2 6= 0, we have

(
x1 − (x1x2 + y1y2)

T x2

‖x1x2 + y1y2‖
)2

≤
∥∥∥∥∥x2 − x1

x1x2 + y1y2

‖x1x2 + y1y2‖

∥∥∥∥∥
2

≤ ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖.

Lemma 2.3 [2, Lemma 4] There exists a scalar constant C > 0 such that ‖LxL
−1
(x2+y2)1/2‖F ≤

C, ‖LyL
−1
(x2+y2)1/2‖F ≤ C for all (x, y) 6= (0, 0) satisfying x2 + y2 ∈ int(Kn). (‖A‖F

denotes the Frobenius norm of A ∈ IRn×n.)

3 Main results

In this section, we will present the proof that the gradient function of ψ
FB

is Lipschitz

continuous. In fact, we will argue that ∇ψ
FB

is differentiable everywhere except (x, y) =

(0, 0) with ‖∇2ψ
FB

(x, y)‖ being uniformly bounded. Then, by applying the Mean-Value

Theorem for vector-valued functions, we conclude that ∇xψFB
and ∇yψFB

are globally

Lipschitz continuous. We need the following three important lemmas to prove our main

results.

Lemma 3.1 Let ω : IRn × IRn → IRm be defined by ω(x, y) := u(x, y) ◦ v(x, y), where

u, v : IRn × IRn → IRm are differentiable mappings. Then, ω is differentiable and

∇xω(x, y) = ∇xu(x, y)Lv(x,y) +∇xv(x, y)Lu(x,y),

∇yω(x, y) = ∇yu(x, y)Lv(x,y) +∇yv(x, y)Lu(x,y).
(16)

In particular, when ω(x, y) = x ◦ y, there hold

∇xω(x, y) = Ly, ∇yω(x, y) = Lx;

and when ω(x, y) = x2 ◦ y2, there hold

∇xω(x, y) = 2LxLy2 , ∇yω(x, y) = 2LyLx2 .
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Proof. This is the product rule associated with Jordan product. Its proof is straight-

forward, so we omit it. 2

Lemma 3.2 For any x, y ∈ IRn, let z(x, y) := (x2 + y2)1/2, F (x, y) := LxL
−1
z(x,y)(x + y),

and G(x, y) := LyL
−1
z(x,y)(x + y). Then, we have

(a) z is differentiable at (x, y) 6= (0, 0) ∈ IRn × IRn with x2 + y2 ∈ int(Kn). Moreover

∇xz(x, y) = LxL
−1
z(x,y), ∇yz(x, y) = LyL

−1
z(x,y).

(b) F,G are differentiable at (x, y) 6= (0, 0) ∈ IRn×IRn with x2+y2 ∈ int(Kn). Moreover,

‖∇F (x, y)‖, ‖∇G(x, y)‖ are uniformly bounded at such points.

Proof. (a) That the function z is differentiable is an immediate consequence of [7]. See

also [1, Prop. 4]. Since, z2(x, y) = x2 + y2, applying Lemma 3.1 yields

2∇xz(x, y)Lz(x,y) = 2Lx, 2∇yz(x, y)Lz(x,y) = 2Ly.

Hence, the desired results follow.

(b) For symmetry, it is enough to show that F is differentiable at (x, y) 6= (0, 0) with

x2 + y2 ∈ int(Kn) and that ‖∇xF (x, y)‖, ‖∇yF (x, y)‖ are uniformly bounded. It is clear

that F is differentiable at such points. The key part is to show the uniform boundedness

of ‖∇xF (x, y)‖, ‖∇yF (x, y)‖. Let λ1, λ2 be the spectral values of x2 + y2, then

λ1 := ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖,
λ2 := ‖x‖2 + ‖y‖2 + 2‖x1x2 + y1y2‖.

Thus, by Property 2.1(b), z(x, y) := (x2 + y2)1/2 has the spectral values
√

λ1,
√

λ2 and

z(x, y) = (z1, z2) =
(√

λ1 +
√

λ2

2
,

√
λ2 −

√
λ1

2
w2

)
, (17)

where w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖ if x1x2 + y1y2 6= 0 and otherwise w2 is any vector in IRn−1

satisfying ‖w2‖ = 1.

Now, let u := L−1
z(x,y)(x + y). By applying Property 2.1(c), we compute u as below.

u = L−1
z(x,y)(x + y)

=
1

det(z(x, y))




z1 −zT
2

−z2
det(z(x, y))

z1

I +
1

z1

z2z
T
2




[
x1 + y1

x2 + y2

]

=
1

det(z(x, y))

[
(x1 + y1)z1 − (x2 + y2)

T z2

−(x1 + y1)z2 + det(z)
z1

(x2 + y2) + (x2+y2)T z2

z1
z2

]

:=

[
u1

u2

]
.
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We notice that F (x, y) = LxL
−1
z(x,y)(x + y) = Lxu = x ◦ u, where the last equality is due

to Property 2.1(d). Then, by applying Lemma 3.1, we obtain

∇xF (x, y) = Lu +∇xu(x, y)Lx, (18)

∇yF (x, y) = ∇yu(x, y)Lx

To show that ‖∇xF (x, y)‖ is uniformly bounded, we shall verify that both ‖Lu‖ and

‖∇xu(x, y)Lx‖ are uniformly bounded. We prove them as follows.

(i) To see ‖Lu‖ is uniformly bounded, it is sufficient to argue that |u1|, ‖u2‖ are both

uniformly bounded. First, we argue that |u1| is uniformly bounded. From the above

expression of u, we have

u1 =
1

det(z(x, y))
(x1z1 − xT

2 z2) +
1

det(z(x, y))
(y1z1 − yT

2 z2).

Following the similar arguments as in [2, Lemma 4] yields

u1 =
1

det(z(x, y))
(x1z1 − xT

2 z2) +
1

det(z(x, y))
(y1z1 − yT

2 z2)

=

[
O(1) +

(x1 − xT
2 w2)

2
√

λ1

]
+

[
O(1) +

(y1 − yT
2 w2)

2
√

λ1

]
,

where O(1) denotes terms that are uniformly bounded with bound independent of (x, y).

Moreover, by Lemma 2.2, if x1x2 + y1y2 6= 0 then |x1 − xT
2 w2| ≤ ‖x2 − x1w2‖ ≤

√
λ1. If

x1x2 +y1y2 = 0 then λ1 = ‖x‖2 +‖y‖2 so that by choosing w2 to further satisfy xT
2 w2 = 0

we obtain |x1 − xT
2 w2| ≤ ‖x2 − x1w2‖ ≤ ‖x‖ ≤ √

λ1. Similarly, it can be verified that

|y1 − yT
2 w2| ≤

√
λ1. Thus, |u1| is uniformly bounded.

Secondly, we argue that ‖u2‖ is also uniformly bounded. Again, using the expression

of u and following the similar arguments as in [2, Lemma 4], we obtain

u2 =
1

det(z(x, y))

[
− x1z2 +

det(z(x, y))

z1

x2 +
xT

2 z2

z1

z2

]

+
1

det(z(x, y))

[
− y1z2 +

det(z(x, y))

z1

y2 +
yT

2 z2

z1

z2

]

=


O(1)− x1w2

2
√

λ1

+

√
λ2√
λ1

(xT
2 w2)

2(
√

λ1 +
√

λ2)
w2


 +


O(1)− y1w2

2
√

λ1

+

√
λ2√
λ1

(yT
2 w2)

2(
√

λ1 +
√

λ2)
w2




=

[
O(1)− x1w2

2(
√

λ1 +
√

λ2)
−

√
λ2(x1 − xT

2 w2)

2(
√

λ1 +
√

λ2)
√

λ1

w2

]

+

[
O(1)− y1w2

2(
√

λ1 +
√

λ2)
−

√
λ2(y1 − yT

2 w2)

2(
√

λ1 +
√

λ2)
√

λ1

w2

]
.
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Using the same explanations as above for u1 yields that each term is uniformly bounded.

Thus, ‖u2‖ is uniformly bounded. This together with |u1| being uniformly bounded

implies that ‖∇xF (x, y)‖ = ‖Lu‖ =

∥∥∥∥∥

[
u1 uT

2

u2 u1I

]∥∥∥∥∥ is also uniformly bounded.

(ii) Now, it comes to show that ‖∇xu(x, y)Lx‖ is uniformly bounded. From the definition

of u := L−1
z(x,y)(x + y), we know that z(x, y) ◦ u = x + y. Applying Lemma 3.1 gives

∇xz(x, y)Lu +∇xu(x, y)Lz(x,y) = I,

which leads to

∇xu(x, y)Lz(x,y) = I −∇xz(x, y)Lu = I − (LxL
−1
z(x,y))Lu

⇒ ∇xu(x, y) =
(
I − LxL

−1
z(x,y)Lu

)
L−1

z(x,y)

⇒ ∇xu(x, y)Lx =
(
I − LxL

−1
z(x,y)Lu

)
L−1

z(x,y)Lx

⇒ ∇xu(x, y)Lx = L−1
z(x,y)Lx − LxL

−1
z(x,y)LuL

−1
z(x,y)Lx

⇒ ∇xu(x, y)Lx = (LxL
−1
z(x,y))

T − (LxL
−1
z(x,y))Lu(LxL

−1
z(x,y))

T .

Therefore,

‖∇xu(x, y)Lx‖ ≤ ‖(LxL
−1
z(x,y))

T‖+ ‖LxL
−1
z(x,y)‖ · ‖Lu‖ · ‖(LxL

−1
z(x,y))

T‖.
By Lemma 2.3, ‖LxL

−1
z(x,y)‖ is uniformly bounded, so is ‖(LxL

−1
z(x,y))

T‖. This together

with ‖Lu‖ being uniformly bounded shown as above yields ‖∇xu(x, y)Lx‖ is uniformly

bounded.

From (i) and (ii), we conclude that ‖∇xF (x, y)‖ is uniformly bounded. Similar ar-

guments apply to ‖∇yF (x, y)‖; and hence, ‖∇F (x, y)‖ is uniformly bounded. Thus, we

complete the proof. 2

Lemma 3.3 Let ψ
FB

be defined as (7). Then, ∇ψ
FB

is continuously differentiable every-

where except for (x, y) = (0, 0). Moreover, ‖∇2ψ
FB

(x, y)‖ is uniformly bounded for all

(x, y) 6= (0, 0).

Proof. For any (x, y) ∈ IRn × IRn, let z := (x2 + y2)1/2. We prove this lemma by

considering the following two cases.

(i) Consider all points (x, y) 6= (0, 0) with x2 + y2 ∈ int(Kn). Since

∇xψFB
(x, y) =

(
LxL

−1
z − I

)
φ

FB
(x, y)

= x− LxL
−1
z (x + y)− φ

FB
(x, y),

∇yψFB
(x, y) =

(
LyL

−1
z − I

)
φ

FB
(x, y)

= y − LyL
−1
z (x + y)− φ

FB
(x, y),
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we can compute ∇2ψ
FB

(x, y) as follows:

∇2
xxψFB

(x, y) = I −∇x

(
LxL

−1
z (x + y)

)
−

(
LxL

−1
z − I

)
, (19)

∇2
xyψFB

(x, y) = −∇y

(
LxL

−1
z (x + y)

)
−

(
LyL

−1
z − I

)
,

∇2
yxψFB

(x, y) = −∇x

(
LyL

−1
z (x + y)

)
−

(
LxL

−1
z − I

)
,

∇2
yyψFB

(x, y) = I −∇y

(
LyL

−1
z (x + y)

)
−

(
LyL

−1
z − I

)
.

The continuity of ∇2ψ
FB

at (x, y) thus follows. It is easy to see that ‖LxL
−1
z ‖, ‖LyL

−1
z ‖

are uniformly bounded by Lemma 2.3 (‖ · ‖ and ‖ · ‖F are equivalent in IRn×n). Let

F (x, y) := LxL
−1
z (x + y) and G(x, y) := LyL

−1
z (x + y). By Lemma 3.2, we know that∥∥∥∥∇x

(
LxL

−1
z (x + y)

)∥∥∥∥ = ‖∇xF (x, y)‖ is uniformly bounded. Likewise, we have that
∥∥∥∥∇y

(
LxL

−1
z (x + y)

)∥∥∥∥,
∥∥∥∥∇x

(
LyL

−1
z (x + y)

)∥∥∥∥,
∥∥∥∥∇y

(
LyL

−1
z (x + y)

)∥∥∥∥ are all uniformly bounded.

Thus, we can conclude that ‖∇2
xxψFB

(x, y)‖, ‖∇2
xyψFB

(x, y)‖, ‖∇2
yxψFB

(x, y)‖, ‖∇2
yyψFB

(x, y)‖
are all uniformly bounded which implies that ‖∇2ψ

FB
(x, y)‖ is also uniformly bounded.

(ii) Consider all points (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn). Since

∇xψFB
(x, y) =


 x1√

x2
1 + y2

1

− 1


 φ

FB
(x, y)

= x− x1√
x2

1 + y2
1

(x + y)− φ
FB

(x, y),

∇yψFB
(x, y) =


 y1√

x2
1 + y2

1

− 1


 φ

FB
(x, y)

= y − y1√
x2

1 + y2
1

(x + y)− φ
FB

(x, y),

we can compute ∇2ψ
FB

(x, y) as follows:

∇2
xxψFB

(x, y) = I −

 x1√

x2
1 + y2

1

I +
x1y

2
1 + y3

1

(x2
1 + y2

1)
3/2

[
1 0

0 0

]
−


 x1√

x2
1 + y2

1

− 1


 I,(20)

∇2
xyψFB

(x, y) = −

 x1√

x2
1 + y2

1

I − x2
1y1 + x1y

2
1

(x2
1 + y2

1)
3/2

[
1 0

0 0

]
−


 y1√

x2
1 + y2

1

− 1


 I,

∇2
yxψFB

(x, y) = −

 y1√

x2
1 + y2

1

I − x2
1y1 + x1y

2
1

(x2
1 + y2

1)
3/2

[
1 0

0 0

]
−


 x1√

x2
1 + y2

1

− 1


 I,

∇2
yyψFB

(x, y) = I −

 y1√

x2
1 + y2

1

I +
x3

1 + x2
1y1

(x2
1 + y2

1)
3/2

[
1 0

0 0

]
−


 y1√

x2
1 + y2

1

− 1


 I,
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where 0 denotes the (n − 1) × (n − 1) zero matrix. Following the similar arguments as

in case (3) of [2, Prop. 2], one can verify that ∇xxψFB
, ∇xyψFB

, ∇yxψFB
, and ∇yyψFB

are

continuous at (x, y) too in this case (the verifications may be very tedious). Here we

provide an alternative approach to verify it. Let (a, b) 6= (0, 0) and a2 + b2 6∈ int(Kn).

We want to prove that

∇xxψFB
(x, y) → ∇xxψFB

(a, b), as (x, y) → (a, b). (21)

Due to the neighborhood of such (a, b), we have to consider two subcases: (1) (x, y) 6=
(0, 0) with x2 + y2 ∈ int(Kn) and (2) (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn). It is clear

that (21) holds in subcase (2) because the formula given in (20) is continuous. In subcase

(1), we have

∇xxψFB
(x, y) = I −∇x

(
LxL

−1
z (x + y)

)
−

(
LxL

−1
z − I

)
(22)

= I −
[
Lu +

(
LxL

−1
z

)T −
(
LxL

−1
z

)
(Lu)

(
LxL

−1
z

)T
]
−

(
LxL

−1
z − I

)
.

In view of (19), (20) and (22), it suffices to show the following three statements for (21)

to be held in this subcase (1):

(a) LxL
−1
z → a1√

a2
1 + b2

1

I, as (x, y) → (a, b).

(b) Lu → a1 + b1√
a2

1 + b2
1

I, as (x, y) → (a, b).

(c) Lu − (LxL
−1
z )(Lu)(LxL

−1
z )T → a2

1(a1 + b1)

(a2
1 + b2

1)
3/2

I, as (x, y) → (a, b).

First, we know from [2, Prop. 2] that there holds

LxL
−1
z (x + y) → a1√

a2
1 + b2

1

(a + b) as (x, y) → (a, b),

which implies LxL
−1
z → a1√

a2
1 + b2

1

I, as (x, y) → (a, b) since both (x + y) and LxL
−1
z

are continuous and (x + y) → (a + b) when (x, y) → (a, b). Secondly, if we look into the

entries of Lu and compare them with the entries of LxL
−1
z (see [2, eq. (27)]), then it is

clear that Lu → a1 + b1√
a2

1 + b2
1

I, as (x, y) → (a, b). Finally, part(c) follows immediately from

part (a) and (b). Thus, we complete the verifications of (21). The other cases can be

argued similarly for ∇xyψFB
, ∇yxψFB

, and ∇yyψFB
. In addition, it is also clear that each

term in the above expressions (20) is uniformly bounded. Thus, we obtain that ∇2ψ
FB

is continuously differentiable near (x, y) and ‖∇2ψ
FB

(x, y)‖ is uniformly bounded. 2

11



Theorem 3.1 Let ψ
FB

be defined as (7). Then, ∇ψ
FB

is globally Lipschitz continuous,

i.e., there exists a constant C such that for all (x, y), (a, b) ∈ IRn × IRn,

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖, (23)

‖∇yψFB
(x, y)−∇yψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖

and is semismooth everywhere.

Proof. Because of symmetry, we only need to show that the first part of (23) holds. For

any (x, y) ∈ IRn × IRn, let z := (x2 + y2)1/2.

(i) First, we prove that ∇xψFB
is Lipschitz continuous at (0, 0). We have to discuss three

subcases for completing the proof of this part.

If (x, y) = (0, 0), it is obvious that (23) is satisfied.

If (x, y) 6= (0, 0) with x2 + y2 ∈ int(Kn), then

‖∇xψFB
(x, y)−∇xψFB

(0, 0)‖ = ‖∇xψFB
(x, y)‖ = ‖x− LxL

−1
z (x + y)− φ

FB
(x, y)‖.

It is already known that x and φ
FB

(x, y) are Lipschitz continuous (see [11, Cor. 3.3]). In

addition, Theorem 3.2.4 of [8, pp. 70] says that the uniform boundedness of∇
(
LxL

−1
z (x+

y)
)

(by Lemma 3.2) yields the Lipschitz continuity. Thus, (23) is satisfied for this subcase.

If (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn), then

‖∇xψFB
(x, y)−∇xψFB

(0, 0)‖ = ‖∇xψFB
(x, y)‖ =

∥∥∥∥∥∥
x− x1√

x2
1 + y2

1

(x + y)− φ
FB

(x, y)

∥∥∥∥∥∥
.

Since

∣∣∣∣∣∣
x1√

x2
1 + y2

1

∣∣∣∣∣∣
≤ 1 and both (x + y), φ

FB
(x, y) are known Lipschitz continuous, the

desired result follows.

(ii) Secondly, we prove that ∇xψFB
is Lipschitz continuous at (a, b) 6= (0, 0). Let (x, y) ∈

IRn× IRn, we wish to show that (23) is satisfied. In fact, if the line segment [(a, b), (x, y)]

does not contain the origin, then we can write

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖
≤

∥∥∥∥
∫ 1

0
∇2ψ

FB
[(a, b) + t((x, y)− (a, b))]dt

∥∥∥∥
≤ C‖(x, y)− (a, b)‖,

where the first inequality is from the Mean-Value Theorem (see [8, Theorem 3.2.3]),

and the second inequality is by Lemma 3.3. On the other hand, if the line segment

[(a, b), (x, y)] contains the origin, we can construct a sequence {(xk, yk)} converging to

12



(x, y) but for each k, the line segment [(a, b), (xk, yk)] does not contain the origin and

apply the above inequalities to get

‖∇xψFB
(xk, yk)−∇xψFB

(a, b)‖ ≤ C‖(xk, yk)− (a, b)‖,
which, by the continuity, implies

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖.
Thus, (23) is satisfied.

To complete the proof of this theorem, we only need to show that ∇ψ
FB

is semismooth

at the origin as, by Lemma 3.3, ∇ψ
FB

is continuously differentiable near any (0, 0) 6=
(x, y) ∈ IRn×IRn. From (14) and (15), we know that for any t ∈ IR+ and (x, y) ∈ IRn×IRn

we have

∇ψ
FB

(tx, ty) = t∇ψ
FB

(x, y) .

Thus, ∇ψ
FB

is directionally differentiable at the origin and for any (0, 0) 6= (x, y) ∈
IRn × IRn

∇2ψ
FB

(x, y)(x, y) = (∇ψ
FB

)′((x, y); (x, y)) = ∇ψ
FB

(x, y) .

This means that for any (0, 0) 6= (x, y) ∈ IRn × IRn converging to (0, 0),

∇ψ
FB

(x, y)−∇ψ
FB

(0, 0)−∇2ψ
FB

(x, y)(x, y) = ∇ψ
FB

(x, y)− 0−∇ψ
FB

(x, y) = 0 ,

which, together with the Lipschitz continuity of ∇ψ
FB

and the directional differentiability

of ∇ψ
FB

at the origin (∇ψ
FB

is, however, not differentiable at the origin), shows that

∇ψ
FB

(x, y) is (strongly) semismooth at the origin. The proof is completed. 2

From Theorem 3.1, we immediately obtain that the function ψ
FB

defined as in (7) is

an SC1 function as well as an LC1 function.
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