
Approximate formulations for 0-1 knapsack sets1

Abstract
We show that for each 0 < ε ≤ 1 there exists an extended formulation for the knapsack

problem, of size polynomial in the number of variables, whose value is at most (1 + ε) times the
value of the integer program.
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1 Introduction

Consider the feasible set for a 0− 1 knapsack problem,

FKNAP =

 x ∈ {0 , 1}n :
n∑

j=1

ajxj ≤ a0

 , (1)

where aj ≥ 0 for 0 ≤ j ≤ n. Here we prove the following result:

Theorem 1.1 Let 0 < ε ≤ 1. There exists an extended formulation

Ax + A′x′ ≤ b,

with O
(
ε−1n1+d1/εe

)
variables and O

(
ε−1n2+d1/εe

)
constraints such that

FKNAP ⊆
{
x ∈ Rn : ∃ (y, z) s.t. Ax + A′x′ ≤ b

}
,

and for any w ∈ Rn
+,

max
{
wT x : x ∈ FKNAP

}
≥ (1− ε) max

{
wT x : ∃ (y, z) s.t. Ax + A′x′ ≤ b

}
.

1.1 Motivation

The knapsack problem

max

wT x :
n∑

j=1

ajxj ≤ a0, x ∈ {0 , 1}n


is, possibly, the simplest combinatorial optimization problem. A celebrated classical result [8, 9],
proves the existence of fully polynomial-time approximation schemes for the knapsack problem –
that is to say, for each 0 < ε ≤ 1 there is an algorithm whose complexity grows as a polynomial in
ε−1 and n, and which yields a solution guaranteed to have value at least 1− ε times the optimum.

The constructions in [8, 9] are quintessentially combinatorial: they rely on scaling and dynamic
programming. Nevertheless, intuitively (because of the equivalence of optimization and separation)
one would expect that the same result should be achievable through the use of linear programming
techniques.

One can take this expectation in a different direction: can we find a “compact” and “strong”
system of constraints that approximates the knapsack polytope? In our context, what we mean by
this is that for each 0 < ε ≤ 1 there is a system of constraints

Bx ≤ b, (2)

such that
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(a) Every vector x ∈ {0 , 1}n with
∑n

j=1 ajxj ≤ a0 also satisfies Bx ≤ b,

(b) The number of constraints in (2) is polynomial in ε−1 and n, and

(c) For every w ∈ Rn
+,

max

wT x :
n∑

j=1

ajxj ≤ a0, x ∈ {0 , 1}n
 ≥ (1− ε) max

{
wT x : Bx ≤ b

}
.

We stress that, in (c) the approximation result must hold for every objective vector w ∈ Rn
+ (and,

hence, for every w ∈ Rn). Finding a system (2) that satisfies (a)-(c) is interesting at the very least
in the sense of theoretical completeness. In addition, there is a practical aspect to this goal: given
a mixed-integer program, any knapsack row could be strengthened while paying a polynomial cost
in formulation size.

It turns out that, in a sense, it may be too much to expect that a such a system does exist,
because we ask that the system be restricted to the original space of variables x. This observation
stems from a different paradigm, which in turn suggests an alternate approach: there are examples
of polyhedra P ⊆ Rn such that P is the projection (onto Rn) of a higher dimensional polyhedron
Q ⊆ RN (i.e., N > n), and such that Q is a simpler object than P , in the sense that fewer
inequalities are required to describe Q. In such a case, since P is a projection of Q, we can solve an
an optimization problem min

{
wT x : x ∈ P

}
by solving a similar problem over Q, and this may

be preferable since Q is simpler. Or, using the equivalence between separation and optimization,
we can always work in Rn but separate vectors from Q, thus obtaining a cutting-plane algorithm.
This is the genesis of so-called lift-and-project reformulation operators, see [10, 13, 2, 12, 11, 4].
Given a 0 − 1 integer program, such operators create “lifted” formulations that are polynomially
larger, both in terms of constraints and variables, but which are provably strong. In particular, [10]
shows how, in the case of the clique problem, the resulting formulation provably satisfies strong
inequalities. Also see [4, 5, 3, 6, 7].

Proceeding along these lines, in [14] Van Vyve and Wolsey ask whether, given a knapsack∑n
j=1 ajxj ≤ a0, and 0 < ε ≤ 1, there is a formulation of the form Ax + A′x′ ≤ b, such that

(d) For each vector x ∈ {0 , 1}n with
∑n

j=1 ajxj ≤ a0 there exists x′ such that Ax + A′x′ ≤ b,

(e) The number of variables x′ and rows of A and A′ is polynomial in n and/or ε−1, and

(f) For every w ∈ Rn
+,

max

wT x :
n∑

j=1

ajxj ≤ a0, x ∈ {0 , 1}n
 ≥ (1− ε) max

{
wT x : Ax + A′x′ ≤ b

}
.

In this paper we answer this question in the affirmative, in the sense of “or” in (e): our formulation
is polynomially large in n for each fixed ε. The “and” case remains open.

1.2 The disjunctive procedure

The lifting techniques described in the previous section are underlaid by an older idea, that of
disjunctive programming [1]. The gist of this idea can be described as follows. Let P ⊆ [0, 1]n be
an arbitrary set, and suppose we are interested in solving an optimization problem of the form
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max
{
wT x : x ∈ P

}
for some w ∈ Rn. In the typical application, P is a non-convex set. Suppose

that there are polyhedra Q1, Q2, . . . , QL (contained in [0, 1]n) such that

P ⊆ Q1 ∪Q2 ∪ . . . ∪QL. (3)

(3) is called a disjunction, and the Qi, its terms. If (3) holds, Q = conv
(
Q1 ∪ . . . ∪QL

)
is a

relaxation for P , and therefore

max
{
wT x : x ∈ P

}
≤ max

{
wT x : x ∈ Q

}
. (4)

The optimization problem over Q can be written as:

min wT x (5)

x−
L∑

i=1

λixi = 0 (6)

L∑
i=1

λi = 1 (7)

λi ≥ 0 and xi ∈ Qi, 1 ≤ i ≤ L. (8)

This is a nonlinear formulation since both the λi and xi are variables. However, suppose that for
1 ≤ i ≤ L, Qi =

{
x ∈ [0, 1]n : Aix ≤ bi

}
, for appropriate matrices Ai and vectors bi. Then, as is

well-known, problem (5)-(8) can be linearized (through homogenization) as follows:

min wT x (9)

xj −
L∑

i=1

x̄i
j = 0, for every 1 ≤ j ≤ n (10)

L∑
i=1

x̄i
0 = 1 (11)

0 ≤ x̄i
0, 1 ≤ i ≤ L, (12)

Aix̄i − x̄i
0 bi ≤ 0, for all 1 ≤ i ≤ L, (13)

x̄i
j − x̄i

0 ≤ 0, for all 1 ≤ j ≤ n and 1 ≤ i ≤ L. (14)

Problems (5)-(8) and (9)-(14) are equivalent: for example, given a solution to 9)-(14), for 1 ≤ i ≤ L
we set λi = x̄i

0, and whenever, x̄i
0 > 0, we set xi

j = x̄i
j/x̄i

0 for 1 ≤ j ≤ n (and if x̄i
0 = 0 we choose xi

arbitrarily). We stress that the above arguments hold even if some of the Qi are empty.
Moreover, let W = max

{
wT x : x ∈ P

}
, and suppose there is a constant 0 ≤ γ < 1 such that

W ≥ (1 − γ) max
{
wT x : x ∈ Qi

}
for each 1 ≤ i ≤ L. Then, if

(
x, x̄1, . . . , x̄L

)
is an optimal

solution to (9)-(14) we have

(1− γ)
n∑

j=1

wj x̄
i
j ≤ x̄i

0 W,

(by (12)-(14)), and therefore (1 − γ)
∑n

j=1 wjxj ≤ W , by (10) and (11), thereby complementing
the bound (4). We will apply this technique in our construction.
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The strength of the disjunctive programming approach lies in the fact that we can use a dis-
junction (3) to generate a convex approximation to P that enforces combinatorial structure. It
amounts to, effectively, enumerating a number of cases; but the enumeration is implicit in that we
end up with one convex optimization problem.

2 The construction

To produce the construction in Theorem 1.1 we will apply the disjunctive procedure. We will first
motivate our approach and later give the actual formulation. Let H =

⌈
1
ε

⌉
. We assume, without

loss of generality, that n ≥ 2H.

To motivate our approach, given x ∈ {0, 1}n define

suppt(x) = {1 ≤ j ≤ n : x̂j = 1} .

Our disjunction will include terms of two types, corresponding to the cardinality of suppt(x) for
x ∈ FKNAP . For each set S ⊆ {1, 2, . . . , n} with

∑
j∈S aj ≤ a0 and |S| ≤ H, our disjunction

contains a term QS , as follows:

(i) Suppose |S| < H. Then QS consists of the single point x with suppt(x) = S. The formulation
for QS is trivial, namely, we simply enforce xj = 1 for all j ∈ S, and xj = 0 for all j /∈ S.

(ii) Suppose now |S| = H. Say that x ∈ {0, 1}n is S-good if S ⊆ suppt(x) and for each j ∈
suppt(x) − S we have aj ≤ mini∈S{ai}. In other words, {aj : j ∈ S} consists of the H
largest aj in {aj : j ∈ suppt(x)}. Our goal is to we define QS so that QS ∩ {0, 1}n consists
exactly of the S-good points. While there may exist many polyhedra QS that achieve this
goal (for example, conv{x : x is S-good}) they may not necessarily be endowed with simple
formulations. However, we can find such a QS with a compact formulation: xj = 1 for each
j ∈ S, xj = 0 if aj > mini∈S{ai}, 0 ≤ xj ≤ 1 for all j, and

∑n
j=1 ajxj ≤ a0.

Clearly, if x ∈ FKNAP then x ∈ QS for at least one S enumerated in (i) or (ii); in other words,
we have a valid disjunction. The purpose of the terms in (ii) is to cut-off fractional extreme points
x̂ where 0 < x̂j < 1 for some index j with “large” aj – loosely speaking, we explicitly enumerate
the H largest aj where xj > 0; and force xj = 1 for every such index and xj = 0 for indices
corresponding to aj larger than any of the enumerated elements.

2.1 Formal description

Here we will provide a formal description and analysis of our lifted formulation, which is a homog-
enized version of the constraints given in (i) and (ii) above. However our analysis is self-contained
and does not directly appeal to the disjunctive procedure.

(a) For each integer 0 ≤ h < H, and each subset S ⊆ {1, 2, . . . , n} with |S| = h and
∑

j∈S aj ≤ a0,
we have variables yS

j , for 0 ≤ j ≤ n, as well as the constraints:

yS
j ≥ 0, 0 ≤ j ≤ n, (15)

yS
j − yS

0 = 0, ∀ j ∈ S, (16)

yS
j = 0, ∀ j /∈ S ∪ {0}. (17)
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(b) For each each subset S ⊆ {1, 2, . . . , n} with |S| = H and
∑

j∈S aj ≤ a0, we have variables zS
j ,

for 0 ≤ j ≤ n, as well as the constraints:

zS
j ≥ 0, 0 ≤ j ≤ n, (18)

zS
j − zS

0 ≤ 0, 1 ≤ j ≤ n, (19)

zS
j − zS

0 = 0, ∀ j ∈ S, (20)

zS
j = 0, if j /∈ S ∪ {0} and aj > min

i∈S
{ai}, (21)

n∑
j=1

ajz
S
j − a0 zS

0 ≤ 0. (22)

(c) Let F be the family of sets enumerated in (a) and (b). We have the additional constraints:∑
S∈F

yS
j +

∑
S∈F

zS
j − xj = 0, for each index 1 ≤ j ≤ n, (23)

∑
S∈F

yS
0 +

∑
S∈F

zS
0 = 1. (24)

Lemma 2.1 Formulation (15)-(24) has O
(
ε−1n1+d1/εe

)
variables and O

(
ε−1n2+d1/εe

)
constraints.

Proof. Recall that we assume, without loss of generality, that n ≥ 2H. The total number of vectors
yS is at most

H−1∑
h=0

(
n

h

)
≤ (H − 1)

(
n

H

)
,

whereas the total number of vectors zS is at most
(n
H

)
. Consequently the total number of variables

is, at most,
H(n + 1)nH = O

(
ε−1n1+d1/εe

)
,

as desired. Since we impose O(n) constraints on each vector, the total number of constraints is as
stated.

Lemma 2.2 Constraints (15)-(24) define a valid relaxation for FKNAP , i.e. the projection of the
feasible set for (15)-(24) to the space of the x variables contains the feasible set for FKNAP .

Proof. This follows from our discussion the disjunctive procedure, but a direct proof is as follows.
Consider a 0-1 vector x̂ ∈ FKNAP . Write J = suppt(x̂).

Suppose first that |J | < H. Then we define yJ
j = x̂j for 1 ≤ j ≤ n, and yJ

0 = 1; and set yS
j = 0 for

all other sets S and all j, and all zS
j = 0. Note that this argument is correct even when J = ∅.

Suppose now that |J | ≥ H. Let S ⊆ J consist of the H indices j ∈ J with largest aj (ties arbitrarily
broken). Then we set zS

j = 1 for all j ∈ J , zS
0 = 1, and set zT

j = 0 for all other combinations of T
and j; and all y to 0.

Write W ∗ = max
{
wT x :

∑n
j=1 ajxj ≤ a0, x ∈ {0 , 1}n

}
.

Lemma 2.3 Suppose (x̂, ŷ, ẑ) satisfy (15)-(24). Let w ∈ Rn
+. Then
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(i) For any set S included in case (a) of the construction,

W ∗ŷS
0 ≥

n∑
j=1

wj ŷ
S
j .

(ii) For any S included in case (b) of the construction,

W ∗ẑS
0 ≥ (1− ε)

n∑
j=1

wj ẑ
S
j .

Proof. (i) If ŷS
0 = 0 the result is clear, and if ŷS

0 > 0 then the 0 − 1 vector with entries ŷS
j /ŷS

0

(1 ≤ j ≤ n) satisfies (1) from which the result follows.

(ii) As in (i) assume that ẑS
0 > 0, and define x̄j = ẑS

j /ẑS
0 for 1 ≤ j ≤ n. By construction in case

(b), we have that x̄ is a feasible solution to the linear program:

W̃ = max
n∑

j=1

wjxj (25)

Subject to: (26)
0 ≤ xj ≤ 1, 1 ≤ j ≤ n, (27)
xj = 1, ∀ j ∈ S, (28)
xj = 0, if j /∈ S and aj > min

i∈S
{ai}, (29)

n∑
j=1

ajxj ≤ a0. (30)

Thus, in order to conclude with case (ii) it suffices to prove that W ∗ ≥ (1 − ε)W̃ . To this end,
let x̃ be an extreme point optimal solution to the LP (25)-(30). We assume x̃ is not integral for
otherwise the result is clear.

Clearly, there exists exactly one index p such that 0 < x̃p < 1.
Let i = argminj∈S{wj}, and suppose that wi < wp. Then we increase x̃p by 1 − x̃p, decrease

x̃i by 1− x̃p, and reset S ← S − {i} ∪ {p}. By (29), we have ai ≥ ap. Thus, after the change, the
vector x̃ still satisfies (30), as well as (27). Moreover, the objective value of x̃ has increased.

Thus (whether the change was performed or not), we have:

(C.1) 0 < x̃q < 1 for one entry q,

(C.2) There is a set S with |S| = H such that x̃i = 1 for all i ∈ S, and if an index q as in (C.1)
exists, then wq ≤ mini∈S{wi}.

(C.3) x̃ satisfies (30),

(C.4)
∑

j wj x̃j ≥ W̃ .

Consider the 0− 1 vector x̃ defined by x̃j = bx̃jc for 1 ≤ j ≤ n. By (C.3) this vector satisfies the
knapsack constraint (1). Furthermore, by (C.1) and (C.2), we have that∑

j wj x̃j −
∑

j wj x̃j∑
j wj x̃j

≤ 1
H
≤ ε,
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and therefore

(1− ε)
∑
j

wj x̃j ≤
∑
j

wj x̃j ≤W ∗,

as desired.
Lemma (2.3), together with constraints (23) and (24) of our system, complete the proof of

Theorem 1.1.

3 Conclusion

An interesting open question is whether the lift-and-project operators in [10, 13, 12] can be used to
obtain a result similar to Theorem 1.1. However, these operators do not create disjunctions based
on the structure of the constraints of an integer program, in particular, the numerical value of coef-
ficients. In contrast, this is a critical feature in our approach (namely in our construction of the zS

vectors), and we feel that this is an ingredient that is necessary to cut-off highly fractional extreme
points. See [6, 4, 5] for results concerning the weakness of standard lift-and-project operators.
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