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1. Introduction

We present a Markov chain method to solve the
problem

min f(x) s.t. x ∈ S ⊂ Rd, (1)

where f is a continuous function and S is a com-
pact set. In particular, let R(., .) be a Markov ker-
nel called the candidate kernel on (S,B), where
B denotes the Borel sigma field on S. We focus
on Algorithm 1.1.

Algorithm 1.1. Markov Chain Algorithm

1. Start with X0 ∈ S, k = 0.

2. Generate Yk+1 using candidate kernel
R(Xk, .).

3. Let 0 ≤ Pk ≤ 1 be a random variable and
set

Xk+1 =

{
Yk+1 with probability Pk,

Xk with probability 1− Pk.

4. Go to step 2.

The distribution of Pk may depend on the en-
tire sequence of iterates X0, Y1, X1, . . . , Yk+1 thus
∗Corresponding author.

allowing for adaptive tuning of algorithmic pa-
rameters. We provide conditions under which
the sequence {f(Xk)} converges in probability
to the global minimum function value f∗ of f
over S (value convergence) in the second section
and present the proof in the third. This result
is applied to variants of (1) with noisy objective
functions in the fourth section. Numerical ex-
periments on a noisy protein folding problem are
presented in the fifth.

Note that Algorithm 1.1 includes Simulated
Annealing (SA) and several of its variants as
special cases. SA was originally proposed as a
stochastic search algorithm for discrete optimiza-
tion [11] using a Metropolis acceptance filter pa-
rameterized by the so-called ‘temperature’. Its
convergence properties for a logarithmic temper-
ature schedule are well-known [8]. Recent gen-
eralizations of SA in the discrete domain include
[9,10]. SA has also been extended to continuous
problems [6,12,13,17]. Convergence analyses of
continuous SA similar to this paper include [6,13].
An elegant proof for value convergence of SA in
probability was presented in [6] where a globally
reaching candidate kernel was used to allow for
adaptive temperature schedules. This proof tech-
nique was adapted in [13] where locally reaching
kernels were allowed but a deterministic temper-
ature schedule was employed.
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Convergence of discrete SA for noisy objective
functions has been analyzed frequently in the lit-
erature (see [2,3,7,16,19] and references therein).
Recent work on continuous domain stochastic
search methods for noisy problems includes [1,5].
Continuity of the objective function was exploited
in [5] to develop a novel estimation procedure.
However, the technique was analyzed only for the
special case of Pure Random Search (PRS) ren-
dering it impractical. The convergence analysis in
[1] was based on the restrictive assumptions that
the objective function values have independent,
heteroskedastic Normal distributions, the candi-
date point distribution does not depend on the
current iterate, and tuning of algorithmic param-
eters is not adaptive.

Thus, to the best of our knowledge, Algorithm
1.1 is the first rigorously analyzed continuous do-
main Markov Chain Monte Carlo framework that
simultaneously allows for generalized, stochastic
acceptance probabilities, adaptive tuning of algo-
rithmic parameters, and as we will show, noisy
objective functions without restrictive assump-
tions on their distribution.

2. Sufficient Conditions for Convergence

We state five sufficient conditions for value con-
vergence in probability. The first three are from
[6].

Condition 2.1. The feasible region S is a
bounded and closed subset of Rd. f is continu-
ous on S. Hence, there exists an x∗ ∈ S where f
achieves its minimum f∗. Assume moreover that
for every ε > 0, the set {x ∈ S : |x− x∗| < ε} has
positive Lebesgue measure.

Condition 2.2. For every open subset G in S,
the candidate Markov kernel R(x,G) is continu-
ous in x.

Condition 2.3. The candidate Markov kernel R
is absolutely continuous in its second argument
and its density is uniformly bounded away from
0. That is, R is of the form

R(x,B) =
∫

B

r(x, y)dy with (2)

γ = inf
x,y∈S

r(x, y) > 0. (3)

The next two conditions are on the acceptance
probability filter Pk. For each β > 0, we define a
subset Uβ of S × S as Uβ = {(x, y) : x ∈ S, y ∈
S, f(y) ≥ f(x) + β}. Let Uk(β) be the event that
(Xk, Yk+1) ∈ Uβ .

Condition 2.4. For any initial iterate X0, ε > 0,
β > 0, and δ > 0, there exists an integer N such
that

P [Pk > ε,Uk(β)] < δ ∀k ≥ N.

We also define a subset V of S×S as V = {(x, y) :
x ∈ S, y ∈ S, f(y) ≤ f(x)}. Vk is defined as the
event that (Xk, Yk+1) ∈ V .

Condition 2.5. For any initial iterate X0, ε > 0,
β > 0, and δ > 0, there exists an integer N such
that

P [1− Pk > ε,Vk] < δ ∀k ≥ N.

The first two conditions are regularity conditions.
Condition 2.1 ensures in the presence of Condi-
tion 2.3 that neighborhoods of a global minimizer
are visited infinitely often. Note that the second
part of Condition 2.1 is satisfied when S is ‘lo-
cally full dimensional’ at x∗, meaning that there
exists a δ > 0 such that the open ball of ra-
dius δ centered at x∗ is contained in S. Equa-
tion (3) in Condition 2.3 states that the density
function of the Markov kernel is globally reaching,
which helps ensure value convergence under weak
conditions on the acceptance probability filter.
The Hit-and-Run candidate generator proposed
by one of us [20] is perhaps the most effective (see
[12] and references therein) globally reaching can-
didate generator Markov chain in the literature.
Hit-and-Run also satisfies Condition 2.2 [18].

The intuition behind the last two conditions
is as follows. Optimization algorithms based on
Markov chain candidate generators typically com-
pute the difference between the function values at
the current iterate and the candidate point. In-
tuitively, the probability of accepting a candidate
point whose objective function value is ‘strictly
worse’ than the current iterate should asymptot-
ically vanish. This is characterized by the defini-
tion of set Uβ and Condition 2.4. On the other
hand, if the function value at the candidate point
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is at least as good as the current iterate, there is
probably no harm in accepting it. In fact, as we
will show later, it suffices to let the probability
of accepting points that are ‘no worse’ asymptot-
ically approach 1. This is characterized by the
definition of set V and Condition 2.5. In short,
Condition 2.4 requires the acceptance probabil-
ity filter to employ asymptotically diminishing
exploration, while Condition 2.5 ensures asymp-
totically increasing exploitation.

As an example, we illustrate that the accep-
tance probability in SA satisfies these two condi-
tions. In that case, given (Xk = x, Yk+1 = y), Pk

is a deterministic function pk(x, y) given by

pk(x, y) =

{
exp[− f(y)−f(x)

tk
] if f(y) > f(x),

1 if f(y) ≤ f(x),

where {tk} is a deterministic sequence of numbers
that converges to zero. Condition 2.5 is trivially
satisfied for all k. To see that Condition 2.4 is also
satisfied fix β > 0 and ε > 0. Since tk converges to
0, there exists an integer M such that tk < β

1/ε for
all k ≥ M . For all such values of k, pk(x, y) < ε
whenever (x, y) ∈ Uβ . Similarly, it is easy to con-
firm that Conditions 2.4 and 2.5 are met in essen-
tially all variants of continuous SA, for example,
SA with an adaptive temperature schedule [?, ?],
Barker acceptance criterion [4] with a determinis-
tic temperature schedule, generalized acceptance
probability proposed by Tsallis [21] with a de-
terministic temperature schedule, and Improving
Hit-and-Run [22]. The main result in this paper
is

Theorem 2.6. For every initial iterate X0 ∈
S, the sequence of function values {f(Xk), k =
0, 1, 2, . . .} generated by Algorithm 1.1 converges
in probability to f∗ whenever Conditions 2.1-2.5
are satisfied.

3. Proof of Convergence

The proof technique is similar to Belisle [6].
For any ε > 0, let the set Sε = {x ∈ S : f(x) ≤
f∗+ ε}. For positive integers l,m, n we define the
following four events.
A = A(m,n) = the event that none of the states
Xn, Xn+1, ...Xn+m is in Sε.

B = B(l,m, n) = the event that at least one of
the transitions Xn+(k−1) → Xn+k, k = 1, 2...m
is a move from Sε to {x ∈ S : f∗ + ε < f(x) <
f∗ + ε+ 1/l}.
C = C(l,m, n) = the event that at least one of
the transitions Xn+(k−1) → Xn+k, k = 1, 2...m is
a move from Sε to {x ∈ S : f(x) ≥ f∗ + ε+ 1/l}.
D = the event that Xn+m /∈ Sε.
To prove theorem 2.6, we need to prove that for
every x0 ∈ S, ε > 0, and δ > 0, there exists an
integer N such that

P [Xn /∈ Sε|(X0 = x0)] < δ ∀n ≥ N. (4)

We begin by fixing x0 ∈ S, ε > 0 and δ > 0. For
simplicity of notation, henceforth, we may not
write the conditioning on (X0 = x0). It is to be
understood implicitly. Since D ⊂ A

⋃
B

⋃
C,

P [Xn+m /∈ Sε] = P [D] ≤ P [A]+P [B]+P [C].

Also, the symbol φ will be used to denote the
Lebesgue measure. The proof requires several
Lemmas which are now presented one by one.
Note that there exists an integer m0 such that
(1 − γφ(Sε))m0 < δ/6. Fix this m0. For integers
n, m and r, we define Gr ≡ G(n,m, r) as the
event that the candidate point Yn+r is in Sε, for
1 ≤ r ≤ m.

Lemma 3.1. There exists an integer n0 such that
for any integer r, 1 ≤ r ≤ m0, P [A(m0, n), Gr] ≤

δ
6m0

∀n ≥ n0.

Proof. Fix an integer r such that 1 ≤ r ≤ m0.
Then P [A(m0, n), Gr] is bounded above by

P [Xn+r−1 /∈ Sε, Xn+r /∈ Sε, Yn+r ∈ Sε]
= P [Xn+r−1 /∈ Sε, Yn+r ∈ Sε, Yn+r not accepted].

Let Hn+r be the event that candidate Yn+r is
not accepted by the acceptance probability fil-
ter. Moreover, let In+r(δ) be the event that
1 − Pn+r−1 > δ

12m0
. The above probability is

then bounded above by

P [Xn+r−1 /∈ Sε, Yn+r ∈ Sε,Hn+r, In+r(δ)]
+P [Xn+r−1 /∈ Sε, Yn+r ∈ Sε,Hn+r, I

c
n+r(δ)]

≤ P [Vn+r−1, In+r(δ)] +
δ

12m0
≤ δ

12m0
+

δ

12m0

=
δ

6m0
∀n ≥ nr for some nr,
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where the last step follows from Condition
2.5. Thus, there exists an integer n0 such
that for any integer r between 1 and m0,
P [A(m0, n), G(n,m0, r)] ≤ δ

6m0
for all n ≥ n0.

This completes the proof.

Lemma 3.2. Let m0 and n0 be as above. Then
P [A(m0, n)] < δ/3 for all integers n ≥ n0.

Proof. We define F ≡ F (n,m) as the event that
none of the candidate points Yn+1, ...Yn+m is in
Sε. We have A ⊂ (A

⋂
F )

⋃
(
⋃m

r=1(A
⋂
Gr)).

Therefore, P [A(m,n)] is bounded above by

P [A(m,n), F ] +
m∑

r=1

P [A(m,n), G(m,n, r)]

≤ P [Xn /∈ Sε, F ] +
m∑

r=1

P [A(m,n), G(m,n, r)]

≤ (1− γφ(Sε))m +
m∑

r=1

P [A,Gr],

where the last inequality follows since the prob-
ability that the candidate point will be in Sε is
at least γφ(Sε) regardless of the past at each
iteration. Then, from the definition of m0,
P [A(m0, n)] is bounded above by

δ

6
+

m0∑
r=1

P [A(m0, n), G(m0, n, r)] < δ/3 (5)

for all n ≥ n0 by Lemma 3.1.

Lemma 3.3. Let m0 be as in Lemma 3.2. There
exists an integer l0 such that

P [B(l0,m0, n)] < δ/3 ∀n ≥ 0.

Proof. The proof of this lemma depends only on
Conditions 2.2 and 2.3 on the Markov kernel and
compactness of the feasible region S. In partic-
ular, it does not depend on the form of the ac-
ceptance probability. Since our conditions on the
Markov kernel are the same as those of Belisle [6],
and our feasible region S is compact, his proof
carries over to our case.

Lemma 3.4. Let m0 and l0 be as in Lemmas 3.2
and 3.3. There exists an integer n1 such that

P [C(l0,m0, n)] < δ/3 ∀n ≥ n1.

Proof. For k = 1, 2, . . . ,m0, let Ck(l0,m0, n)
be the event that the transition Xn+k−1 to
Xn+k is a move from Sε to {x ∈ S :
f(x) ≥ f∗ + ε + 1/l0}. Observe that
C(l0,m0, n) =

⋃m0
k=1 Ck(l0,m0, n). Therefore,

P [C(l0,m0, n)] ≤
∑m0

k=1 P [Ck(l0,m0, n)]. The
probability P [Ck(l0,m0, n)] is equal to

P [Ck(l0,m0, n),Pn+k−1 >
δ

6m0
]

+P [Ck(l0,m0, n),Pn+k−1 ≤
δ

6m0
]

≤ P [Un+k−1,Pn+k−1 >
δ

6m0
] +

δ

6m0

≤ δ

6m0
+

δ

6m0
=

δ

3m0
∀n ≥ n1

for some integer n1 by Condition 2.4.

Let n2 = max(n0, n1). Lemmas 3.2, 3.3, and 3.4
imply that equation (4) holds with N = n2 +m0.
The proof of Theorem 2.6 is now complete.

4. Application to Stochastic Optimization

In this section, we apply Theorem 2.6 to the im-
portant special case of global optimization prob-
lems with noisy objective functions. Consider a
specific version of problem (1) given by

min
x∈S

E[G(x)], (6)

i.e., f(x) in (1) is now the well-defined expected
value of a stochastic performance measure G(x).
We assume that analytical computation of the
expected value is hard, forcing us to estimate
f(x) subject to random errors. We use f̃ to de-
note function estimates. In particular, if the ac-
ceptance probability filter in Algorithm 1.1 used
function values for solving problem (1), it must
now use estimates f̃ instead while solving the
noisy problem (6). We use εk+1(x) to denote the
estimation error at point x ∈ S in iteration k+1,
i.e., εk+1(x) = f̃k+1(x)− f(x).

Condition 4.1. |εk+1(Xk)| → 0 in probability
and |εk+1(Yk+1)| → 0 in probability, i.e., for any
ε > 0 and δ > 0, there exists an integer N such
that P [|εk+1(Xk)| > ε] < δ for all k ≥ N , and
similarly for Yk+1.
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Note that when the estimates f̃ are unbiased,
it suffices for the sequence of error variances
σ2

k+1(Xk) and σ2
k+1(Yk+1) to converge to zero as

k → ∞ in order for Condition 4.1 to be satisfied
owing to Chebyshev’s inequality.

Corollary 4.2. Suppose Conditions 2.1-2.5 and
4.1 hold. Then for every initial state X0, the
sequence of objective function value estimates
(f̃k(Xk), k = 0, 1, 2...) converges in probability to
f∗.

Proof. Based on Theorem 2.6 and the fact that
f̃k(Xk) → f(Xk) in probability.

Corollary 4.2 can be used to prove convergence
of several simulation-optimization algorithms. As
an example, we consider SA with an adaptive
temperature schedule Tk for problems with noisy
function evaluations. Intuitively, the following
condition means that the errors converge to zero
faster than the temperature.

Condition 4.3. The sequence of ratios
{ |εk+1(Xk)|

Tk
} converges to 0 in probability. Simi-

larly, sequence of ratios { |εk+1(Yk+1)|
Tk

} converges
to 0 in probability.

The next condition is typical when the tempera-
ture schedule is adaptive [6].

Condition 4.4. The sequence of temperatures
{Tk} converges to 0 in probability.

Corollary 4.5. Suppose Conditions 2.1-2.3 hold
for problem (6) to which we apply SA such
that Conditions 4.3-4.4 are satisfied. Then the
sequence of objective function value estimates
(f̃k(Xk), k = 0, 1, 2...) converges in probability to
f∗.

Proof. It suffices to show that Conditions 2.4, 2.5
and 4.1 hold. Conditions 4.3 and 4.4 clearly im-
ply Condition 4.1. For brevity, let ∆k denote
f(Yk+1) − f(Xk) and Ξk denote εk+1(Yk+1) −
εk+1(Xk). Then note that for SA with noisy ob-
jective function evaluations, the acceptance prob-
ability Pk is given by

exp{− [∆k + Ξk]+

Tk
}.

Proof for Condition 2.4.
Let δ > 0 and ε > 0 be given. First notice
that for any three real numbers a, b, and c ≥ a,
[a + b]+ ≤ [c + b]+. Hence, exp(−[a + b]+) ≥
exp(−[c + b]+). We will use this with a = β

Tk
,

b = Ξk

Tk
, and c = ∆k

Tk
. Observe that the event

Uk(β) implies that ∆k ≥ β. Hence, it implies
that Pk ≤ exp(−[β+Ξk]+

Tk
). Thus, Pk > ε implies

exp(−[β+Ξk]+

Tk
) > ε. Therefore, we can write

P [Pk > ε,Uk(β)] ≤ P [exp(
−[β + Ξk]+

Tk
) > ε]

≤ P [
β

2Tk
< log

1
ε
, Ek(β/2)] + P [Ec

k(β/2)]

where Ek(β/2) is the event that |Ξk| < β/2. The
second term in the inequality can be made smaller
than δ/2 for all k ≥ n0 due to Condition 4.1.
Therefore, the above inequality reduces to

P [Pk > ε,Uk(β)] < P [
β

2Tk
< log

1
ε
] +

δ

2

= P [
β

2 log 1
ε

< Tk] +
δ

2
∀k ≥ n0.

The first term can be made smaller than δ/2
for all k ≥ n1 due to Condition 4.4. There-
fore, we have P [Pk > ε,Uk(β)] < δ for all
k ≥ max{n0, n1}.
Proof for Condition 2.5.
Let δ > 0 and ε > 0 be given. First no-
tice that for any two real numbers a and b,
[a+b]+ ≤ [a]++[b]+. Therefore, exp(−[a+b]+) ≥
exp(−([a]+ + [b]+)). Using this with a = ∆k

Tk
and

b = Ξk

Tk
, we get Pk ≥ exp(−[∆k]+

Tk
) exp(−[Ξk]+

Tk
).

Thus, the event 1 − Pk > ε implies the event
1 − exp(−[∆k]+

Tk
) exp(−[Ξk]+

Tk
) > ε. Observe that

Vk implies [∆k]+ = 0. Therefore, the probability
P [1− Pk > ε,Vk] is bounded above by

P [1− exp(
−[Ξk]+

Tk
) > ε] ≤ P [log

1
1− ε

<
[|Ξk|]
Tk

]

< δ ∀k ≥ n0 by Condition 4.3.

This completes the proof.

As an example, suppose Tk is a deterministic se-
quence of temperatures that converges to 0 as
k → ∞ and estimates f̃ are unbiased. Then
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Chebyshev’s inequality implies that Condition 4.3
is satisfied when the ratios σ2

k+1(Xk)/T 2
k and

σ2
k+1(Yk+1)/T 2

k converge to zero as k →∞.

5. Numerical Experiments: Protein Fold-
ing with Noise

A challenging test problem commonly used for
testing global optimization software is the follow-
ing energy minimization problem from the pro-
tein folding literature [14,15]. Let x1, x2, . . . , xn

be the 3-dimensional coordinates of n molecules.
Our goal is to place these n molecules in the box
[−1, 1]3 in R3 such that the potential energy of
interaction ψ(·) between these molecules is mini-
mized. This can be formulated as follows.

min
x1,x2,...,xn∈R3

ψ(x1, . . . , xn) :=
n∑

i<j

r(||xi − xj ||2)

xi ∈ [−1, 1]3, i = 1, 2, . . . , n,

where ||.||2 denotes the Euclidean distance, and
the function r(s) := s−12 − 2s−6 is the Lennard-
Jones potential between two molecules. The num-
ber of local minima in the above objective func-
tion is exponential in n.

We introduce the additional complication
whence the potential energy of interaction among
n molecules at x = (x1, x2, . . . , xn) is computed
by a ‘stochastic black-box’, which receives x as
input and produces a random number as out-
put with distribution Θ(x) whose expectation is
ψ(x) and variance is σ2(x). Since our goal is
to minimize the expected value function ψ(·),
we use estimates ψ̃k(x) of the expected value
ψ(x) in iteration k of Algorithm 1.1. For sim-
plicity, we generate these estimates by repeat-
edly querying the black-box. In particular, let
Θ1(x),Θ2(x), . . . ,ΘNk(x) be Nk independent and
identically distributed outputs produced by the
stochastic black-box on receiving x as input and
ψ̃k(x) be their sample average. Note that ψ̃k(x)
is unbiased and converges almost surely to ψ(x)
as k →∞ by the Strong Law of Large Numbers.
Moreover, the variance of the estimation error is
σ2(x)/Nk.

We employed the Hit-and-Run candidate gen-
erator from [20] and SA with deterministic tem-
perature schedules so that the ratio of variance to

temperature square converges to zero with itera-
tions. Numerical results for the 3 molecule case,
which is a 9-dimensional problem with optimum
objective function value −3 [14], are presented
in Table 1. The first column lists an abbreviation
for the distribution Θ(x) whose expectation is our
objective function. For each Θ(x), the tempera-
ture schedule Tk and sample size Nk were param-
eterized by real numbers α and β as Tk = k−α

and Nk = kβ . It suffices to choose any α > 0
to satisfy Condition 4.4, and any β > 2α so that
the variance of our objective function estimate de-
creases faster than the square of the temperature.
We used 0.5 < α < 1 so that the corresponding
β value is between 1 and 2 ensuring a moderate
increase in sample size with iterations. For every
combination of Θ(x), Tk, Nk, we performed 30
independent runs of 1000 iterations each with an
independently generated random starting point in
[−1, 1]9. The fourth column lists the mean of the
estimated objective function value reached at ter-
mination with standard deviation in the fifth col-
umn. Figure 1 shows progress of the mean of the
estimated objective function value for two such
combinations. The quality of these results is ev-
ident since the Adaptive SA algorithm in [14] is
not able to decrease the objective function value
below -2.5 in 12000 iterations on the noise free
version of our example.

Table 1
Noisy protein folding results. N1 is
Normal(ψ(x), 0.1), N2 is Normal(ψ(x), 1),
U1 is Uniform(ψ(x) − 1, ψ(x) + 1), U2 is
Uniform(ψ(x)− 0.1, ψ(x) + 0.1).

Θ(x) α β value std.
N1 0.80 1.65 -2.9944 0.0046

0.70 1.50 -2.9869 0.0103
N2 0.80 1.70 -3.0068 0.1187

0.65 1.35 -2.9866 0.0860
U1 0.60 1.30 -2.9802 0.0207

0.75 1.70 -2.9896 0.0087
U2 0.75 1.60 -2.9874 0.0086

0.85 1.80 -2.9951 0.0006
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Figure 1. Evolution of the mean of the estimated objective function value with iterations for two example
rows in Table 1. The first fourteen iterations are not shown as their objective function values were too
big to fit in the plot. Notation such as N1(0.8, 1.65) in the title of a plot indicates that the distribution
Θ(x) is N1 given in Table 1, α = 0.8 and β = 1.65 respectively.
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