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Abstract

We consider the problem of finding a feasible single-commodity flow in a strongly connected
network with fixed supplies and demands, provided that the sum of supplies equals the sum of
demands and the minimum arc capacity is at least this sum. A fast algorithm for this problem
improves the worst-case time bound of the Goldberg-Rao maximum flow method[3] by a constant
factor. Erlebach and Hagerup[1] gave an linear-time feasible flow algorithm. We give an arguably
simpler one.
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Let G be a directed network with vertex set V , arc set E, non-negative arc capacities
c(v, w), and real-valued vertex imports b(v). A supply is a positive import; a demand

is the absolute value of a negative import. A flow on G is a non-negative real-valued
function on the arcs such that the flow on each arc does not exceed its capacity. Given a
flow f , the balance at a vertex v is ef(v) = b(v)+

∑
(u,v)∈E f(u, v)−

∑
(v,w)∈E f(v, w). A

flow is feasible if all balances are zero. A necessary (but not sufficient) condition for the
existence of a feasible flow is that the imports sum to zero, since for any flow the sum
of balances equals the sum of imports. We assume henceforth that the sum of imports is
indeed zero; that is, the sum of supplies equals the sum of demands. We further assume
that the sum of supplies is one; if not, we can scale the imports and the arc capacities
to make this true.

The problem of finding a feasible flow in a strongly connected network arises as a small
part of the fast maximum flow method of Goldberg and Rao[3]. They gave the following
linear-time algorithm to find a feasible flow if all arc capacities are at least two: “We
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choose an arbitrary vertex . . . as . . . root. Then we form an in-tree and an out-tree . . . . We

route all of the positive balances [supplies] to the root using the in-tree, and we route the

resulting flow excess from the root to the negative balances [demands] using the out-tree.”

Goldberg and Rao also remarked that Knuth’s[4] wheels-within-wheels decomposition of
a strongly connected graph implies the existence of a feasible flow if all arc capacities
are at least one, and that this flow can be computed in almost-linear time by building
the wheels-within-wheels decomposition using a fast disjoint set data structure[6]. We
note that this computation can be made linear-time by using depth-first search[5] and a
linear-time disjoint set data structure[2] to build the wheels-within-wheels decomposition.

Being able to find a feasible flow for arc capacities at least one instead of two gives a
constant-factor improvement in the worst-case time bound of the Goldberg-Rao maxi-
mum flow method, but as Goldberg and Rao observed, the wheels-within-wheels approach
is more complicated than the simple expedient of routing flow through an in-tree and
an out-tree. Erlebach and Hagerup[1] partially addressed this issue by giving a slightly
complicated but linear-time algorithm for arc capacities at least one that does not use a
disjoint set data structure but instead relies on properties of depth-first search exploited
by Tarjan[5] in his strong components algorithm. We give a modification of the origi-
nal linear-time Goldberg-Rao algorithm that works for arc capacities at least one. Our
algorithm and its proof are simpler than those of Erlebach and Hagerup. To develop
our algorithm, we first describe the Goldberg-Rao algorithm in more detail, then point
out its capacity bottleneck and finally provide a way to overcome it. The Goldberg-Rao
algorithm consists of the following three steps:

1. Choose an arbitrary vertex r as root. Find an in-tree T rooted at r containing all ver-
tices with a supply and an out-tree U rooted at r containing all vertices with a demand.
Initialize all arc flows to zero.

2. Ignoring demands, move the supplies forward toward r along the arcs of T . Specifi-
cally, initialize the current supply s(v) of each vertex v in T to be min{0, b(v)}, and then
process the nonroot vertices of T in leaf-to-root order. To process a vertex v with parent
w in T , add s(v) to f(v, w) and to s(w).

3. Move the demands backward toward r along the arcs of U . Specifically, initialize the
current demand d(v) of each vertex v in U to be min{0,−b(v)}, and then process the
nonroot vertices of U in leaf-to-root order. To process a vertex w with parent v in U ,
add d(w) to f(v, w) and to d(v).

The flow increase on an arc is at most one (the sum of supplies) in Step 2 and at
most one (the sum of demands) in Step 3, so the final flow satisfies the capacity con-
straints if every arc has capacity at least two. The only arcs requiring capacity more
than one are those in both T and U . If (v, w) is such an arc, Step 3 increases the flow
on (v, w) by the final value of the current demand of w. We denote this value by D(w);
it is the sum of (original) demands of all descendants of w in U . To prevent Step 3
from making f(v, w) exceed c(v, w), we restrict Step 2 to increase f(v, w) by only up to
1−D(v) ≤ c(v, w) −D(w). This may cause Step 2 to leave residual supplies at vertices
in U other than r, but Step 3 (slightly modified) cancels these supplies, as we shall show.
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Here is the resulting version of the Goldberg-Rao algorithm, with the modifications to
the original algorithm in boldface:

1′. Choose an arbitrary vertex r as root. Find an in-tree T rooted at r containing all ver-
tices with a supply and an out-tree U rooted at r containing all vertices with a demand.
Initialize all arc flows to zero. For each nonroot vertex v, compute D(v), the sum

of demands of descendants of v in U; if v is not in U, D(v) = 0.

2′. Ignoring demands, move the supplies forward toward r along the arcs of T as far

as is safe. Specifically, initialize the current demand s(v) of each vertex v in T to be
min{0, b(v)}, and then process the nonroot vertices of T in leaf-to-root order. To process
a vertex v with parent w in T , let x = min{s(v),1−D(v)}; add x to f(v, w) and to
s(w), and subtract x from s(v).

3′. Move the demands backward toward r along the arcs of U , canceling residual

supplies. Specifically, initialize the current net demand d(v) of each vertex v to be
min{0,−b(v)}−s(v), and then process the nonroot vertices of U in leaf-to-root order. To
process a vertex w with parent v in U , add d(w) to f(v, w) and to d(v).

Lemma 1 Let x be any vertex in U . Step 2′ maintains the invariant S(x) =
∑

v∈P s(v) ≤
D(x), where P = {v | v is a descendant of x in U already processed in Step 2′}.
Proof: Before any vertices are processed in Step 2′, S(x) = 0 ≤ D(x). Suppose the
invariant holds just before Step 2′ processes v with parent w in T . Let unprimed and
primed variables denote values just before and just after the processing of v. If S′(x) =
S(x), then the invariant holds after the processing of v. Otherwise, s′(v) = S′(x)−S(x) >
0. In this case s(v) ≤ 1 − S(x), which implies that s′(v) ≤ (1 − S(x)) − (1 − D(v)) =
D(v)−S(x). Hence S′(x) ≤ D(v) ≤ D(x); that is, the invariant holds after the processing
of v. Thus Step 2′ maintains the invariant. ⊔⊓

Corollary 1 When a vertex w is processed in Step 3′, d(w) ≥ 0.
Proof: Just after Step 2′, S(w) ≤ D(w) by Lemma 1. When w is processed in Step 3′,
d(w) = D(w) − S(w). ⊔⊓

Each flow change in Step 2′ is an increase, and by Corollary 1 this is also true for each
flow change in Step 3′. The increase of f(v, w) during Step 2′ is at most 1 −D(v) and
at most D(w) ≤ D(v) in Step 3′, summing to at most one. Thus the final f is a flow
if the arc capacities are at least one. Step 2′ leaves residual supplies only on vertices of
U ; after Step 3′, there is no residual supply or demand on any nonroot vertex. Thus the
final flow is feasible. We conclude that the algorithm correctly finds a feasible flow on a
strongly connected network with arc capacities of at least one. It is easy to implement
the algorithm to run in linear time.
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