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Abstract. We consider the problem of on-line scheduling a set of n jobs on two parallel batch processing
machines. Each machine can handle an infinite number of jobs as a batch simultaneously. The processing
time of a batch is the time required for processing the longest job in the batch. Each job becomes
available at its release date, which is not known in advance, and its processing time only becomes known
at its arrival. We deal with the problem of minimizing the makespan. We provide an algorithm for the
problem that is better than one given in the literature, improving the competitive ratio from 3

2 to
√

2.
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1 Introduction

We consider the problem of on-line scheduling on two parallel batch processing machines. A
parallel batch processing machine is modeled as a system that can handle up to b jobs simul-
taneously as a batch. The processing time of a batch is the time required for processing the
longest job in the batch, and all the jobs in a batch start and complete at the same time. We
are given a set of n independent jobs. Each job Jj (1 ≤ j ≤ n) becomes available at its release
date rj, which is not known in advance, and its processing time pj only becomes known at its
arrival. The problem involves assigning all the jobs to batches and machines and determining the
starting times of the resulting batches in such a way that the makespan, i.e., max

1≤j≤n
Cj , is min-

imized, where Cj is the completion of job Jj . According to the scheduling notation introduced
by Graham et al. [4], this model is expressed as

P2|b = ∞, rj , on-line|Cmax.

Scheduling of batch processing machines has been extensively studied in the last decade
[1, 2, 3, 6, 7, 9, 10, 11, 12]. According to the limit on the size of each batch, there are two
distinct models. One is the restrictive model in which the bound b on each batch size is effective,
i.e., b < n. Problems of this model is motivated by the burn-in operations in semiconductor
manufacturing, in which a batch of integrated circuits are placed in an oven and then exposed
to a high temperature. Each circuit has a prespecified minimum burn-in time and the burn-in
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oven has a limited capacity. The other is the unrestrictive model in which there is effectively no
limit on the sizes of batches, i.e., b = ∞. Scheduling problems of this model arise in situations
where compositions need to be hardened in kilns and the kiln is sufficiently large that it does not
restrict batch sizes. According to the characteristics of the information known before scheduling,
scheduling research can be divided into two categories. The first category is off-line, in which
there is a basic assumption that the scheduler has full information on the problem instance, such
as the total number of jobs to be scheduled, their release dates and their processing times, before
solution algorithms are applied. The second category is on-line, in which, contrary to the off-line
case, at any point in time, the scheduler only knows the jobs that have already arrived and has
no information at all on whether any more jobs will come. In this situation, the scheduler has
to schedule jobs irrevocably.

For many on-line scheduling problems, because of a lack of information, it is normally not
possible to have on-line algorithms that guarantee to deliver optimal solutions. Researchers
therefore turn to studying approximation on-line algorithms for this kind of problems. The
quality of an on-line algorithm is typically assessed by its competitive ratio: the nearer the ratio
is to 1, the better the algorithm is. We say that an algorithm has a competitive ratio ρ (or is a
ρ-competitive algorithm) if for any input instance, it always returns a feasible solution with an
objective value not greater than ρ times of the optimal (off-line) solution.

Let us survey the previous related results. Lee and Uzsoy [5] provided a number of heuristics
for the off-line scheduling problem 1|rj , b < n|Cmax. Liu and Yu [8] proved that the problem is
NP -hard even if there are only two release dates and derived a pseudo-polynomial time algorithm
for the case where the number of release dates is fixed. Zhang et al. [13] considered the on-line
version of the problem. They dealt with both the unrestrictive and restrictive models. For the
unrestrictive model, they derived an optimal on-line algorithm with a competitive ratio of

√
5+1
2 .

For the restrictive model, they provided a 2-competitive algorithm and a lower bound of
√

5+1
2 on

the competitive ratio of any on-line algorithm. In the same paper, they considered the problem
Pm|b = ∞, rj , on-line|Cmax and developed an 1 + βm-competitive on-line algorithm, where m is
the number of machines, and 0 < βm < 1 is a solution of the equation βm = (1−βm)m−1, which
yields β2 = 1

2 . In a recent paper, Zhang et al. [14] addressed the problems P |b < n, rj, pj =
p, on-line|Cmax and P |b = ∞, rj , pj = p, on-line|Cmax, in both of which there is an assumption
that the processing times of the jobs to be scheduled are identical. They first proved that
there is no on-line algorithm with a competitive ratio smaller than

√
5+1
2 (1 + γm resp.) for

P |b < n, rj , pj = p, on-line|Cmax (for Pm|b = ∞, rj , pj = p, on-line|Cmax, where 0 < γm < 1 is a
solution of the equation (1 + γm)m+1 = γm + 2). They then provided on-line algorithms with
competitive ratios matching the lower bounds.

In this paper we study the problem P2|b = ∞, rj , on-line|Cmax. According to the results of
[14], there does not exist any on-line algorithm for the problem with a competitive ratio smaller
than 1 + γ2, where γ2 ≈ 0.325 is a solution of the equation (1 + γ2)3 = γ2 + 2. We provide an
on-line algorithm for the problem that is better than the one given in [13]. In fact, our algorithm
improves the competitive ratio from 3

2 to
√

2.
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2 Main results

Before designing an algorithm, let us consider a simple instance I in which each job has a
processing time of 1. Let A be an arbitrary on-line algorithm. The first job J1 in I arrives at
time 0. If J1 is processed at or after time

√
2 − 1, no more job comes in I. Then it results in

a schedule with a makespan of at least
√

2, while the optimal makespan is 1. If A starts J1

before time γ2 ≈ 0.325, say at time t1, the second job J2 is released at time t1 + ε, where ε is
a sufficiently small positive number. Assume that A starts J2 at time t2. If 1+t2

1+t1
≥ 1 + γ2, no

more job comes in I. Then A returns a schedule with a makespan of 1 + t2 and the optimal
makespan is 1+ t1 + ε, which means that, when ε tend to 0, the competitive ratio of A is at least

1 + t2
1 + t1 + ε

→ 1 + t2
1 + t1

≥ 1 + γ2.

If 1+t2
1+t1

< 1 + γ2, the third job J3 arrives at time t2 + ε. Then A returns a schedule with a
makespan of at least 2 + t1 and the optimal makespan is 1 + t2 + ε. Thus, when ε tend to 0, the
competitive ratio of A is at least

2 + t1
1 + t2 + ε

→ 2 + t1
1 + t2

>
2 + t1

(1 + γ2)(1 + t1)
>

2 + γ2

(1 + γ2)2
= 1 + γ2,

where the last inequality holds from the fact that the function 2+t1
(1+γ2)(1+t1) is a decreasing function

and t1 < γ2, and the equation follows from the fact that (1 + γ2)3 = γ2 + 2. From this instance
we realize that, in order to get a better competitive ratio, jobs in an instance should wait for
some reasonable time before they are processed.

Let J(t) be the job with the largest processing time among the jobs that are available but
not yet scheduled at time t; if there are two or more candidates, define J(t) to be the one with
the largest release date. Denote by p(t) and r(t) the processing time and the release date of
job J(t), respectively. Let α =

√
2 − 1, which is a solution of the equation α2 + 2α = 1. Our

algorithm runs as follows.
Algorithm A2(α)
At time t, if a machine is idle and there are jobs available but not yet scheduled, and

t ≥ (1 + α)r(t) + αp(t),

then start all the available jobs as a single batch on the machine with the minimum completion
time so far; otherwise, do nothing but wait.

Note that the basic idea of Algorithm A2(α) is to apply the delay and greedy tactic, and all
the batch starting times in the schedule produced are different. Given an instance, denote by
σ the schedule produced by Algorithm A2(α) and by π the optimal schedule. For a schedule
x, let Cmax(x) denote its makespan and let sj denote the starting time of job Jj . For any two
jobs Ji and Jj in two different batches in σ, if si > sj, then, by the description of Algorithm
A2(α), all the jobs in the batch to which job Ji is assigned are released after sj , implying that
(1) si > (1 + α)sj + αpi and thus si − sj > αpi; and (2) Cmax(π) > sj + pi. Consider a batch
starting at time s. We say that the batch is regular if it starts at (1 + α)r(s) + αp(s). Clearly,
if the batch is not regular, then s > (1 + α)r(s) + αp(s), which means that both machines are
processing jobs at time (1 + α)r(s) + αp(s).
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Consider the structures of π and σ. The following three lemmas provide some useful insights
into π and σ.

Lemma 1 Without increasing the makespan of π, we can assume that the jobs in π are
scheduled in decreasing order of their processing times.

Proof. Consider an arbitrary pair of jobs Ji and Jj in two different batches. If pi ≤ pj

and job Ji starts before job Jj in π, then by moving job Ji to the batch to which job Jj is
assigned, we get a new schedule with a makespan not greater than Cmax(π). This procedure can
be repeated until a schedule satisfying the property stated in the lemma is obtained. 2

Lemma 1 indicates that for any two jobs Ji and Jj in π, if job Ji starts before job Jj , then
pi > pj. The lemma below will simplify the structure of σ significantly.

Lemma 2 Without decreasing the ratio of Cmax(σ)/Cmax(π), we can assume that there is
only one job in each batch of σ.

Proof. From each batch in σ, pick the job with the largest processing time; if there are
two or more candidates, pick the one with the largest release date. Let I ′ be the instance that
consists of the jobs being picked only. Apply A2(α) to I ′. Then we obtain a schedule that is
identical to σ in the sense that the processing times and the starting times of the batches in
the schedule are the same as those in σ. Thus, the makespan of the resulting schedule is not
smaller than Cmax(σ). On the other hand, it is evident that the optimal makespan of I ′ is not
greater than Cmax(π). Thus, we can assume that there is only one job in each batch of σ and
this assumption does not decrease the ratio of Cmax(σ)/Cmax(π). 2

We thus assume in the sequel that there is only one job in each batch of σ and we can refer
to a batch by only referring to the job in it. For convenience, we index the jobs in σ in the order
so that C1 ≤ C2 ≤ · · · ≤ Cn.

Lemma 3 Without decreasing the ratio of Cmax(σ)/Cmax(π), we can assume that, in σ,
except Jn there is no job starting at or after sn.

Proof. Let I ′ be the instance consisting of Jn and the jobs that start before sn in σ only.
Apply A2(α) to I ′. Then it results in a schedule with a makespan equal to Cmax(σ). Clearly,
the optimal makespan of I ′ is not greater than Cmax(π). Thus the lemma follows. 2

We will eventually show that

Cmax(σ)/Cmax(π) ≤ 1 + α, (1)

which yields the following theorem.
Theorem 4 Algorithm A2(α) has a competitive ratio of

√
2.

Clearly, if job Jn is regular, then

Cmax(σ) = sn + pn = (1 + α)(rn + pn) ≤ (1 + α)Cmax(π),

and hence inequality (1) holds. Thus, in the rest of this section, we assume that job Jn is not
regular. Consider the last three jobs, Jn−2, Jn−1 and Jn in σ. From the fact that Cn−2 ≤
Cn−1 ≤ Cn and Lemma 3, one can easily see that job Jn−2 and job Jn are on the same machine
and job Jn−1 is on the other. Since job Jn is not regular, there is no idle time between sn and
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Cn−2, i.e., sn = Cn−2. To show Theorem 4, we distinguish two cases depending on whether or
not sn−1 > sn−2. We will show that inequality (1) holds in each case. We first consider the case
where sn−1 > sn−2 and start with establishing upper bounds on Cmax(σ) − Cmax(π).

Observation 5 If sn−1 > sn−2, then Cmax(σ) − Cmax(π) < sn − sn−1 ≤ (1 − α)pn−2.

Proof. Since sn = Cn−2 ≤ Cn−1 = sn−1 + pn−1, we have sn − sn−1 ≤ pn−1. Furthermore,
since Cmax(π) > sn−1 + pn and Cmax(σ) = sn + pn, we have

Cmax(σ) − Cmax(π) < sn − sn−1 ≤ pn−1. (2)

If pn−1 ≤ (1−α)pn−2, then the result follows. If pn−1 > (1−α)pn−2, then by inequality (2) and
the property of Algorithm A2(α), we have

Cmax(σ) − Cmax(π) < sn − sn−1

= sn−2 + pn−2 − sn−1

< sn−2 + pn−2 − [(1 + α)sn−2 + αpn−1]

= pn−2 − αsn−2 − αpn−1

≤ pn−2 − α · αpn−2 − αpn−1

< (1 − α)pn−2,

as required. 2

Lemma 6 If sn−1 > sn−2, then Cmax(σ)/Cmax(π) ≤ 1 + α.
Proof. Consider the optimal schedule π. If job Jn−1 and job Jn are in the same batch, then

Cmax(π) ≥ rn + pn−1 > sn−1 + pn−1 ≥ Cn−2; if job Jn−2 and job Jn are in the same batch, then
Cmax(π) ≥ rn + pn−2 > sn−2 + pn−2 = Cn−2; if job Jn−2 and job Jn−1 are in the same batch,
then Cmax(π) ≥ rn−1 + pn−2 > sn−2 + pn−2 = Cn−2. Together with Observation 5 and the fact
that Cn−2 ≥ (1 + α)pn−2, this implies that in all the cases

Cmax(σ)
Cmax(π)

< 1 +
(1 − α)pn−2

(1 + α)pn−2
= 1 + α.

We thus assume that in π each of the jobs Jn−2, Jn−1 and Jn is in a different batch. We
can further assume that, in π, jobs Jn−2, Jn−1 and Jn are processed in the order so that
sn−2(π) < sn−1(π) < sn(π), where sj(π) is the starting time of Jj in π. This is because if the
order is violated, then from the fact that rn−1 > sn−2, rn > sn−1 and Cn−1 ≥ Cn−2, one can
deduce that Cmax(π) ≥ Cn−2 ≥ (1 + α)pn−2 and thus Cmax(σ)/Cmax(π) ≤ 1 + α. By Lemma
1, a consequence of this assumption is pn−2 > pn−1 > pn. Clearly, there is one machine that
processes at least two of the jobs Jn−2, Jn−1 and Jn. We distinguish two cases in the following
analysis.

Case 1. In π, either jobs Jn−2 and Jn−1, or jobs Jn−2 and Jn are processed on the same
machine. Then

Cmax(π) ≥ max{rn−2 + pn−2 + pn, sn−2 + pn−1},

where the second term of the inequality is from the fact that rn−1 > sn−2. Consider σ, the
schedule produced by A2(α). If job Jn−2 is regular in σ, then sn−2 = (1 + α)rn−2 + αpn−2 and
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thus
Cmax(σ) = sn−2 + pn−2 + pn

= (1 + α)rn−2 + αpn−2 + pn−2 + pn

≤ (1 + α)(rn−2 + pn−2 + pn)

≤ (1 + α)Cmax(π).

Otherwise, on each machine there is one job being processed exactly before sn−2. For conve-
nience, we denote the two jobs by Jb and Jb′ , respectively, where job Jb is the one on the machine
to which job Jn−2 is assigned and job Jb′ is the other.

• If sb′ < sb, then

sb > (1 + α)sb′ + αpb

≥ (1 + α) · αpb′ + αpb

> (1 + α) · α(sn−2 − sb) + α(sn−2 − sb)

= α(2 + α)(sn−2 − sb)

≥ α2(2 + α)pn−2

= αpn−2,

where the third inequality holds from the fact that pb = sn−2−sb and pb′ ≥ sn−2−sb′ > sn−2−sb

in this case. Furthermore, noting that rn−2 > sb, we have the following:

Cmax(π) > sb + pn−2 + pn > (1 + α)pn−2.

Thus,
Cmax(σ)
Cmax(π)

< 1 +
(1 − α)pn−2

(1 + α)pn−2
= 1 + α.

• Consider the subcase with sb′ > sb. If pb ≤ α(pn−2+pn)
1−α2 , then

Cmax(σ)
Cmax(π)

<
sb + pb + pn−2 + pn

sb + pn−2 + pn
= 1 +

pb

sb + pn−2 + pn
≤ 1 +

pb

αpb + pn−2 + pn
≤ 1 + α.

If pb > α(pn−2+pn)
1−α2 , then

sn−2 = sb + pb ≥ (1 + α)pb > (1 + α)
α(pn−2 + pn)

1 − α2
=

α

1 − α
(pn−2 + pn) ≥ α

1 − α
pn−2.

Together with inequalities (2), this implies that

Cmax(σ) − Cmax(π) < sn − sn−1

< (sn−2 + pn−2) − [(1 + α)sn−2 + αpn−1]

= pn−2 − αsn−2 − αpn−1

< pn−2 − α · α
1−αpn−2 − αpn−1

= α
1−αpn−2 − αpn−1,

(3)
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and
Cmax(π) > sn−1 + pn

> (1 + α)sn−2 + αpn−1 + pn

> (1 + α) · α
1−αpn−2 + αpn−1 + pn,

≥ pn−2 + αpn−1.

(4)

If pn−1 ≥ pn−2

2 then, by (3) and (4),

Cmax(σ)
Cmax(π)

< 1 +
α

1−αpn−2 − αpn−1

pn−2 + αpn−1
≤ 1 +

α
1−αpn−2 − α · pn−2

2

pn−2 + α · pn−2

2

= 1 + α.

Recall that Cmax(σ) − Cmax(π) < sn − sn−1 ≤ pn−1. If pn−1 < pn−2

2 , then

Cmax(σ)
Cmax(π)

< 1 +
pn−1

pn−2 + αpn−1
≤ 1 +

pn−2

2

pn−2 + α · pn−2

2

= 1 + α.

Case 2. In π, jobs Jn−1 and Jn are processed on the same machine. Then, Cmax(π) ≥ rn−1+
pn−1+pn > sn−2+pn−1+pn. Thus, Cmax(σ)−Cmax(π) < (sn−2+pn−2+pn)−(sn−2+pn−1+pn) =
pn−2 − pn−1. If pn−1 ≥ (1 − α)pn−2, then Cmax(σ) −Cmax(π) < pn−2 − pn−1 ≤ αpn−2, and thus
Cmax(σ)
Cmax(π) < 1 + αpn−2

pn−2
= 1 + α. In the following, we discuss the case where pn−1 < (1 − α)pn−2.

Note that if job Jn−1 is regular in σ, then the result can be easily observed. We assume that job
Jn−1 is not regular in σ, and, therefore, there is one job, denoted by Jb, being processed exactly
before job Jn−1.

• If sb > sn−2, then Cmax(π) > sb+pn−1+pn and Cmax(σ) ≤ Cn−1 +pn = sb +pb+pn−1+pn.
If pb ≤ α

1−α2 [(1 + α)sn−2 + pn−1 + pn], then

Cmax(σ)
Cmax(π)

<
sb + pb + pn−1 + pn

sb + pn−1 + pn
= 1+

pb

sb + pn−1 + pn
< 1+

pb

(1 + α)sn−2 + αpb + pn−1 + pn
≤ 1+α.

Otherwise, by (2) and the fact that pn−1 < (1 − α)pn−2, we have

Cmax(π) > sb + pn−1 + pn

> (1 + α)sn−2 + αpb + pn−1 + pn

> (1 + α)sn−2 + α · α
1−α2 [(1 + α)sn−2 + pn−1 + pn] + pn−1 + pn

= 1
1−αsn−2 + 1

1−α2 (pn−1 + pn)

≥ 1
1−α · αpn−2 + 1

1−α2 (pn−1 + pn)

> 1
1−α · α · 1

1−αpn−1 + 1
1−α2 pn−1

= (2 + α)pn−1,

implying that Cmax(σ)
Cmax(π) < 1 + pn−1

(2+α)pn−1
= 1 + α.
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• Consider the subcase with sb < sn−2. We claim that pb > 1
αpn−1 − 1

1+αpn−2. Otherwise,

sn−2 − sb = (sn−2 + pn−2) − (sb + pn−2)

≤ Cn−1 − (sb + pn−2)

= (sb + pb + pn−1) − (sb + pn−2)

= pb + pn−1 − pn−2

≤ 1
αpn−1 − 1

1+αpn−2 + pn−1 − pn−2

< 1
α (1 − α)pn−2 − 1

1+αpn−2 + (1 − α)pn−2 − pn−2

= α
1+αpn−2

< αpn−2,

contradicting the fact that sn−2 − sb > αpn−2. Thus, the claim holds and we can deduce that

Cmax(π) > sn−2 + pn−1

> (1 + α)sb + αpn−2 + pn−1

≥ (1 + α) · αpb + αpn−2 + pn−1

> (1 + α)α[ 1
αpn−1 − 1

1+αpn−2] + αpn−2 + pn−1

= (2 + α)pn−1.

Thus Cmax(σ)
Cmax(π) ≤ 1 + pn−1

(2+α)pn−1
= 1 + α. This completes the proof the lemma. 2

We now consider the case with sn−1 < sn−2. As before, we first establish some upper bounds
on Cmax(σ) − Cmax(π).

Observation 7 If sn−1 < sn−2, then Cmax(σ) − Cmax(π) < pn−2 < (1 − α)pn−1.
Proof. Since rn > sn−2 and sn = Cn−2 = sn−2 + pn−2, we have

Cmax(σ) − Cmax(π) < pn−2. (5)

We claim that pn−2 < (1 − α)pn−1. In fact, (1 + α)sn−1 + αpn−2 + pn−2 < sn−2 + pn−2 ≤
sn−1 +pn−1. Therefore, (1+α)pn−2 < pn−1−αsn−1 ≤ pn−1−α ·αpn−1 = (1−α2)pn−1, implying
that pn−2 < (1 − α)pn−1. This implies the claim and hence the observation holds. 2

A consequence of the fact that pn−2 < (1 − α)pn−1 is the following lower bound on sn−2.

sn−2 > (1 + α)sn−1 + αpn−2

≥ (1 + α) · αpn−1 + αpn−2

> (1 + α)αpn−2

1−α + αpn−2

= (1 + α)pn−2.

(6)

Lemma 8 If sn−1 < sn−2, then Cmax(σ)/Cmax(π) ≤ 1 + α.
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Proof. Note that rn > sn−2 > sn−1, rn−2 > sn−1 and Cn−1 ≥ Cn−2. We can deduce
that if two of the jobs Jn−2, Jn−1 and Jn are in the same batch in π, then Cmax(π) ≥ Cn−2 =
sn−2 + pn−2 > (2 + α)pn−2, where the last inequality holds from (6). This indicates that
Cmax(σ)
Cmax(π) < 1+ pn−2

(2+α)pn−2
= 1+α. We thus assume in the sequel that, in π, each of the jobs Jn−2,

Jn−1 and Jn is in a different batch. It is evident that at least two of the jobs are on the same
machine. Recall that pn−2 < (1−α)pn−1. If jobs Jn−2 and Jn−1 are on the same machine, then
Cmax(π) ≥ pn−1 + pn−2 > 2−α

1−αpn−2 and thus

Cmax(σ)
Cmax(π)

< 1 +
pn−2

2−α
1−αpn−2

< 1 + α.

Case 1. Jobs Jn−2 and Jn are on the same machine in π. It is easy to see that if job Jn−2 is
regular in σ, then Cmax(σ)

Cmax(π) ≤ 1+α. Thus, we assume that there is one job being processed exactly
before Jn−2. As before, we denote the job by Jb. Then, rn−2 > sb and Cmax(σ)−Cmax(π) < pb.

• If sb > sn−1, then

Cmax(π) > sb + pn−2 + pn

> (1 + α)sn−1 + αpb + pn−2 + pn

≥ (1 + α) · αpn−1 + αpb + pn−2 + pn

> (1 + α)αpn−2

1−α + αpb + pn−2 + pn

= 2pn−2 + αpb + pn.

(7)

If pb ≤ α
1−α2 (2pn−2 + pn), then Cmax(σ)

Cmax(π) < 1 + pb
2pn−2+αpb+pn

≤ 1 + α. Otherwise, by (7), Cmax(π)

is bounded below by 2pn−2 + α · α
1−α2 (2pn−2 + pn) + pn ≥ 2

1−α2 pn−2, and thus Cmax(σ)
Cmax(π) <

1 + pn−2
2

1−α2 pn−2
= 1 + α.

• If sb < sn−1, then

sb ≥ αpb

= α(sn−2 − sb)

= α[(sn−2 − sn−1) + (sn−1 − sb)]

> α{[(1 + α)sn−1 + αpn−2 − sn−1] + [(1 + α)sb + αpn−1 − sb]}

≥ α2(sn−1 + pn−2 + pn−1)

≥ α2[(1 + α)pn−1 + pn−2],

where the last inequality follows from the fact that sn−1 ≥ αpn−1. Thus,

Cmax(π) > sn−1 + pn−2 + pn

> (1 + α)sb + αpn−1 + pn−2 + pn

> (1 + α) · α2[(1 + α)pn−1 + pn−2] + αpn−1 + pn−2 + pn

> (1 + α) · α2[(1 + α)pn−2

1−α + pn−2] + αpn−2

1−α + pn−2 + pn

> 1+α
1−αpn−2,
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and hence Cmax(σ)
Cmax(π) < 1 + pn−2

1+α
1−α

pn−2
= 1 + α.

Case 2. Jobs Jn−1 and Jn are on the same machine in π. Similarly, if job Jn−1 is regular in
σ, then Cmax(σ)

Cmax(π) ≤ 1 + α. Thus, we assume that on each machine there is exactly one job being
processed before sn−1. We denote the two jobs by Jb and Jb′ , respectively, where job Jb is the
one on the machine to which job Jn−2 is assigned and job Jb′ is the other. Clearly, Cmax(π) >
max{sb, sb′} + pn−1 + pn and Cmax(σ) − Cmax(π) < min{pn−2, pb′}. If pb′ ≤ α

1−α2 (pn−1 + pn),
then

Cmax(σ)
Cmax(π)

< 1 +
pb

sb′ + pn−1 + pn
≤ 1 +

pb′

αpb′ + pn−1 + pn
≤ 1 + α.

Otherwise, pb′ > α
1−α2 (pn−1 + pn) and we consider the following two cases.

• If sb′ < sb, then

sb > (1 + α)sb′ + αpb ≥ (1 + α) · αpb′ > (1 + α)α · α

1 − α2
(pn−1 + pn) ≥ α2

1 − α
pn−1,

and hence
Cmax(π) > sn−1 + pn−2

> (1 + α)sb + αpn−1 + pn−2

> (1 + α) · α2

1−αpn−1 + αpn−1 + pn−2

= 2αpn−1 + pn−2

> 1+α
1−αpn−2,

implying that Cmax(σ)
Cmax(π) < 1 + pn−2

1+α
1−α

pn−2
= 1 + α.

• If sb′ > sb, then pb ≥ sn−1 − sb > sn−1 − sb′ = pb′ . Recall that pb′ > α
1−α2 (pn−1 + pn). We

have

sn−1 = Cb′

= sb′ + pb′

> (1 + α)sb + αpb′ + pb′

≥ (1 + α) · αpb + (1 + α)pb′

> (1 + α) · αpb′ + (1 + α)pb′

> (1 + α)2 · α
1−α2 (pn−1 + pn)

≥ pn−1.

Thus, Cmax(σ)
Cmax(π) < 1 + pn−2

sn−1+pn−2
< 1 + pn−2

pn−1+pn−2
< 1 + pn−2

1
1−α

pn−2+pn−2
< 1 + α, and we complete

the proof of the lemma. 2

Combining Lemma 6 and Lemma 8, we can obtain inequality (1), and Theorem 4 follows.
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3 Concluding Remarks

In this paper we designed a
√

2-competitive algorithm for the problem P2|b = ∞, rj, on-line|Cmax.
The algorithm performs better than the one given in [13], which has a competitive ratio of 3

2 .
It would be interesting to find out whether for the problem under study there is an on-line
algorithm with a competitive ratio matching the lower bound 1 + γ2 ≈ 1.325 provided in [14],
or whether the lower bound can be improved. It will be interesting to extend the problem to
a general set of m machines and to the variant where the capacity on each batch is restrictive.
Further research is required, and it seems that improvement is possible.
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