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Markov chain methods for Boltzmann sampling work in phases with decreasing temperatures. The number
of transitions in each phase crucially affects terminal state distribution. We employ dynamic programming to
allocate iterations to phases to improve guarantees on sample quality. Numerical experiments on the Ising model
are presented.

1. Introduction

Several algorithms in optimization, computer
science and statistical mechanics are closely re-
lated to the problem of sampling from a Boltz-
mann distribution parameterized by the so-called
temperature over a finite set. These include (i)
Simulated Annealing (SA) [6], (ii) calculating the
permanent of a nonnegative matrix [1], (iii) es-
timating the volume of a convex body [7], and
(iv) computing partition functions of interacting
particle systems such as the Ising model [8].

The finite set involved is typically exceedingly
large rendering exact Boltzmann-sampling im-
practical. Hence one approach is to simulate “sev-
eral” transitions of an ergodic Markov chain with
the appropriate Boltzmann as its limiting distri-
bution so that the final state-distribution well-
approximates this Boltzmann. More precisely, to
sample from a Boltzmann distribution at temper-
ature T∗ > 0, it is common to simulate a sequence
of ergodic Markov chains whose limiting distribu-
tions are also Boltzmann at temperatures given
by a “cooling schedule”—a strictly decreasing fi-
nite sequence of temperatures starting at a very
high value, commonly ∞, and ending at T∗.

Initial motivation for implementing the sam-
pling procedure in phases defined by a cool-
ing schedule came from annealing processes in

physics where a glass or metal is toughened by
cooling it slowly, starting at a high temperature,
to a low temperature equilibrium. The math-
ematical intuition behind gradual cooling is to
implement phases such that the distribution of
the state at the end of one phase is not very dif-
ferent from the limiting distribution of the next
phase with the hope that this will reduce the total
number of iterations required to well-approximate
the target Boltzmann. This concept is termed
a “warm start” and has been featured in recent
work in this area [5].

A search for an “optimal” cooling strategy
must consider several key questions including how
to select the number of Markov transitions in each
phase. Specifically, given a fixed number of total
iterations (this may typically arise from knowl-
edge of available computational power, and com-
putation time), running too many iterations in
early phases may be wasteful, whereas too few
may leave us “far away” from the limiting distri-
butions of subsequent phases (“cold start”).

1.1. Contribution of this paper
A key contribution of this paper is that we

model the above tradeoff as a resource allocation
problem where the total number of iterations (re-
source) is to be allocated to a fixed number of
phases (activities). In order to design an appro-
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priate objective function for this resource alloca-
tion problem, we first note that a crucial perfor-
mance measure for Markov chain based sampling
algorithms is the probability that the final state
is distributed exactly according to the limiting
distribution. A well-known relation between this
probability and the variation distance [9] between
the Markov chain state-distribution and its lim-
iting distribution is paramount in our context.

In particular, the Coupling Lemma (see [9]
page 275) states that if we observe the state of the
Markov chain when the variation distance is ε, the
probability that the state is distributed exactly
according to the limiting distribution is (1 − ε).
Consequently, the smaller the variation distance,
the higher the probability of exact sampling. In
our resource allocation formulation, we choose the
number of Markov transitions in each phase so as
to minimize an upper bound on the variation dis-
tance hence maximizing the corresponding lower
bound on the probability of exact sampling from
the target Boltzmann distribution.

More specifically, we note that the so-called χ2

[4] distance provides an upper bound on the vari-
ation distance and derive an upper bound on this
χ2 distance as a function of the number of tran-
sitions in each phase. A benefit of this bound is
that it leads to a convex formulation of the two-
phase resource allocation problem, which can be
solved analytically. This also helps the backward
recursion in our dynamic programming procedure
for the multi-phase case.

2. Mathematical background and notation

Let X be a finite set with cardinality |X| = N .
Let f : X → R be a real valued function on X. A
Boltzmann (T ) distribution πT over X at temper-

ature T is given by πT (x) = exp(
−f(x)

T )

Z ∀x ∈ X,
where Z =

∑
y∈X

exp(−f(y)
T ) is the normalization

constant. Let MC be an irreducible, aperiodic
and symmetric Markov chain on X. Then the
limiting distribution of MC is uniform over X,
denoted UX .

A common way of designing a Markov chain
that converges to πT over X is to filter states
generated by MC with the Metropolis acceptance

criterion as follows. Start with an arbitrary initial
state x0 ∈ X and let xk ∈ X be the state at the
beginning of iteration k. Generate candidate y ∈
X by a one-step transition of MC from xk. The
next iterate xk+1 is set equal to y if f(y) ≤ f(xk).
However, if f(y) > f(xk), the next iterate xk+1

is determined probabilistically as follows:

xk+1 = y w.p. exp
(
−(f(y)− f(xk))

T

)
and

xk+1 = xk w.p. 1− exp
(
−(f(y)− f(xk))

T

)
.

The sequence of iterates (x0, x1, . . . , xk . . .) then
forms an irreducible, aperiodic Markov chain
MCT that is reversible with respect to πT . Thus
πT is the limiting distribution of MCT . The
Markov chain MC is called the candidate gener-
ator for the Markov chain MCT . Observe that
MC can also be viewed as MC∞ since every
candidate proposed by MC is accepted by the
Metropolis filter when T = ∞.

Now consider the case when we employ a cool-
ing schedule ∞ = T0, . . . , Tm = T∗ > 0 with
Ti > Ti+1 and m ≥ 1 to sample approximately
from πT∗ . Specifically, starting with an arbi-
trary initial state in X, and initial temperature
T0 = ∞, one simulates chain MCTi

for Ki ≥ 0
steps in phase i. These chains are simulated se-
quentially, that is, the state delivered after Ki

steps in phase i becomes the initial state in phase
i + 1. The limiting distribution of MCTi

is πTi
,

and in particular, the state delivered at the end
of phase m approximates πT∗ as desired.

It is well-known that the rate of convergence
of a finite-state, irreducible, aperiodic, reversible
Markov chain to its limiting distribution say ψ
is governed by the Second Largest Eigenvalue
Modulus (SLEM) λ∗ of its transition matrix
[11]. Let Qk denote the state-distribution of
a Markov chain after k ≥ 0 steps, where Q0

stands for the initial distribution. The varia-
tion distance between Qk and ψ is defined as
∆(k) = 1

2

∑
y∈X

|Qk(y) − ψ(y)|. The variation dis-

tance is non-increasing in k (see [9] Theorem
11.4, page 280). The χ2 distance [4] is given by
χ2(Qk, ψ) =

∑
y∈X

(Qk(y)−ψ(y))2

ψ(y) (the word dis-
tance is technically a misnomer here since χ2 is
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not symmetric). The following theorem will prove
useful for us as in related work [10] on finite time
performance bounds on Simulated Annealing.

Theorem 2.1. [4] The variation and the χ2 dis-
tances for a finite-state, irreducible, aperiodic, re-
versible Markov chain with limiting distribution ψ
and SLEM λ∗ satisfy

2∆(k) ≤
√
χ2(Qk, ψ) ≤ (λ∗)k

√
χ2(Q0, ψ). (1)

We will repeatedly apply this result to Markov
chains MCTi

using λTi
, and QTi

to denote their
SLEM and state distributions respectively for
i = 0, . . . ,m (with the exception that we use ∞
instead of T0 in the subscript). We denote the χ2

distance between QkTi
and πTi

by χ2
k(i) for inte-

gers k ≥ 0 and i = 0, . . . ,m for brevity.

3. Problem formulation and solution

All through the sequel we use K to denote a
fixed given number of iterations that we will al-
locate to different phases of sampling. We first
consider a two-phase problem where m = 1,
∞ = T0, T1 = T∗. Thus, the question now is
how to split K iterations between Markov chains
MC∞ and MCT∗ .

3.1. A convex two-phase formulation
Phase Zero
In this phase, we run Markov chain MC∞ for K0

steps starting at x0 ∈ X. Let δx0(x) be the Dirac-
delta function on X that takes value 1 if x = x0

and value 0 otherwise. Observe that χ2
0(0) equals

(δx0(x0)− UX(x0))2

UX(x0)
+

∑
y∈X\x0

(δx0(y)− UX(y))2

UX(y)

=
∑

y∈X\x0

1
N

+
(1− 1

N )2
1
N

= (N − 1) ≤ N.

Then by the second inequality in Equation (1) in
Theorem 2.1√

χ2
K0

(0) ≤ λK0
∞

√
χ2

0(0) ≤ λK0
∞
√
N. (2)

Phase one
In this phase, we run Markov chain MCT1 (re-
call T1 = T∗) for K1 steps. Let |.|2 denote the

Euclidean norm in RN . We employ a standard
algebraic manipulation to bound the χ2 distance
using a scaled triangle inequality that involves the
Euclidean norm [4,10]. Specifically,

√
χ2

0(1) can
be written as

=

√√√√∑
y∈X

(QK0∞ (y)− πT1(y))2

πT1(y)

=

∣∣∣∣∣
(

(QK0
∞ (·)− UX(·) + UX(·)− πT1(·))√

πT1(·)

)∣∣∣∣∣
2

,

and the right hand side is bounded above as

≤

∣∣∣∣∣
(

(QK0
∞ (·)− UX(·))√

UX(·)

√
UX(·)√
πT1(·)

)∣∣∣∣∣
2

+

√√√√∑
y∈X

(UX(y)− πT1(y))2

πT1(y)

≤
∣∣∣∣( (QK0

∞ − UX)√
UX

)∣∣∣∣
2

max
y∈X

(√
UX(y)
πT1(y)

)

+ max
y∈X

(
UX(y)
πT1(y)

− 1
)
.

Let D ≡ D(N) ≥
(

max
i∈X

f(i)−min
j∈X

f(j)
)

, an up-

per bound on the depth of f on X. Note that
such an upper bound is typically available from
the physics of the problem as for example in the
Ising model in Section 4. We focus on the ratio
UX(y)
πT1(y)

for any fixed y ∈ X. We have

UX(y)
πT1(y)

=
1/N

exp(
−f(y)

T1
)P

z∈X exp(
−f(z)

T1
)

=
1
N

∑
z∈X

exp(
f(y)− f(z)

T1
) ≤ exp(D/T1).

Using this in the above equation,
√
χ2

0(1) can be
bounded as follows:√
χ2

0(1) ≤ λK0
∞
√
N
√

exp(D/T1) + (exp (D/T1)) .

Then by the second inequality in Equation (1) in

Theorem 2.1,
√
χ2
K1

(1) is at most

λK1
T1

(
λK0
∞
√
N
√

exp(D/T1) + (exp (D/T1))
)
. (3)
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Using Ψ(K0,K1) to denote expression (3), and
recalling that we wish to minimize this upper
bound, we formulate the two-phase problem as

min
K0,K1

Ψ(K0,K1) (4)

such that K0 +K1 ≤ K

K0 ≥ 0, K1 ≥ 0
K0,K1 integers.

Since expression (3) is decreasing in both K0 and
K1, the inequality constraint K0 + K1 ≤ K will
be binding in an optimal solution. Therefore, we
can eliminate K1 as K1 = K − K0 and rewrite
(4) as

min
K≥K0≥0

Φ(K0), K0 integer

where Φ(K0) ≡ Ψ(K0,K −K0).

Lemma 3.1. The continuous relaxation of the
above two-phase optimization problem is convex.

Proof. d2Φ(K0)
dK2

0
is equal to

λK−K0
T1

√
exp

(
D

T1

)[
λK0
∞ log2

(
λ∞
λT1

)√
N

+

√
exp

(
D

T1

)
log2 λT1

]
,

which is clearly strictly positive. Thus, the ob-
jective function is convex. The feasible region
K ≥ K0 ≥ 0 is also convex. Hence the continuous
relaxation is a convex optimization problem.

The derivative of Φ(K0) is zero at

K̄0 =
1

log λ∞
log

√exp(D/T1) log λT1√
N log

(
λ∞
λT1

)
 .

Let K̃0 = dK̄0e and K̂0 = bK̄0c, where dxe is the
smallest integer no smaller than a real number x
and bxc is the biggest integer no larger than a
real number x. Clearly, dxe = bxc = x when x is
an integer. Then, the optimal solution K∗

0 is

K∗
0 = argmin{Φ(K̃0),Φ(K̂0)} if 0 ≤ K̄0 ≤ K

K∗
0 = 0 if K̄0 < 0

K∗
0 = K if K < K̄0.

3.2. Multi-phase dynamic programming
formulation

We now provide a dynamic programming for-
mulation for the multi-phase problem. Toward
that end, for i = 0, 1, . . . ,m, we defined the state
of the dynamic program as (εi, n), which indicates
that the

√
χ2 value for the state distribution of

MCTi
and πTi

is at most εi at the beginning of
phase i and we have n out of the total K tran-
sitions remaining. Note that Ki is the decision
variable in phase i. We first define the dynamic
programming state transitions by noting that√

χ2
0(i+ 1) =

√√√√∑
y∈X

(Q0
Ti+1

(y)− πTi+1(y))2

πTi+1(y)

=

√√√√∑
y∈X

(QKi

Ti
(y)− πTi+1(y))2

πTi+1(y)

Then using algebraic manipulation similar to
phase one, the above right hand side is bounded
as

≤

∣∣∣∣∣
(

(QKi

Ti
(·)− πTi(·))√
πTi

(·)

√
πTi

(·)√
πTi+1(·)

)∣∣∣∣∣
2

+

√√√√∑
y∈X

(πTi(y)− πTi+1(y))2

πTi+1(y)
.

Thus letting Gi =
(
exp

(
D
(
Ti−Ti+1
TiTi+1

)))
for

brevity,
√
χ2

0(i+ 1) is bounded above by√
χ2
Ki

(i)
√
Gi + Gi. Our definition of the dy-

namic programming state and the second inequal-
ity in Equation (1) imply that

√
χ2
Ki

(i) ≤ λKi

Ti
εi.

Hence
√
χ2

0(i+ 1) ≤ λKi

Ti
εi
√
Gi + Gi. There-

fore, εi+1 = λKi

Ti
εi
√
Gi + Gi. Also notice that

if we have n out of K transitions remaining at
the beginning of phase i and we choose to make
Ki transitions in that phase, then only n − Ki

transitions remain. As a result, the dynamic pro-
gramming state at the beginning of phase i + 1
is (λKi

Ti
εi
√
Gi + Gi, n −Ki). The Optimal Value

Function Vi(εi, n) is defined as the minimum value

of an upper bound on
√
χ2
Km

(m) obtained by the
above approach, given that the dynamic program-
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ming state at the beginning of phase i is (εi, n).
Our aim is to find V0(

√
N,K) where Vi(εi, n) is

= min{Vi+1(λKi

Ti
εi
√
Gi +Gi, n−Ki)}, (5)

for i = 0, 1, . . . ,m − 1, all feasible εi and non-
negative integers n that are at most K, where
the minimum is taken over all integers Ki such
that 0 ≤ Ki ≤ n. The boundary condition is

Vm(ε, n) = λnT∗ε, ∀ ε ∈ R+, 0 ≤ n ≤ K. (6)

Let 0 ≤ n ≤ K and εm−1 be feasible. Then
Vm−1(εm−1, n) is the minimum value of

Vm(λKm−1
Tm−1

εm−1

√
Gm−1 +Gm−1, n−Km−1) (7)

such that 0 ≤ Km−1 ≤ n, Km−1 integer.

Observe that substituting boundary condition (6)
the above objective function changes to

λ
n−Km−1
T∗

(
λ
Km−1
Tm−1

εm−1

√
Gm−1 +Gm−1

)
.

Thus, problem (7) is similar to the two-phase
problem that can be analytically solved as in Sec-
tion 3.1 to start the backward recursion. The
computational overhead mainly depends on the
number of phases and is not directly affected by
the problem size or complexity of function evalu-
ations.

In practice only upper bounds on SLEM λ∞
and λTi are typically known and have to be used
in place of the actual SLEM values in all the for-
mulations above. For example, canonical path
and multi-commodity flow techniques from [11]
can be used to bound λ∞. Moreover, the follow-
ing inequality, which is a straightforward conse-
quence of a well-known result from [2] (Proposi-
tion 21.3 page 210) is often useful to bound SLEM
λTi

: λTi
≤ 1−

(
exp(−2D/Ti)

2

)
(1− λ∞).

4. Application to the Ising Model

The Ising model is a canonical model of in-
teracting particle systems in statistical mechan-
ics. We consider the one-dimensional Ising model
with periodic boundary conditions here. In par-
ticular, we have η “particles” arranged on a circle
in the order 1, 2 . . . , η so that each particle has

two neighbors. The set of neighbors of particle
i is denoted N(i). The “spin” of particle i is
denoted si, where si ∈ {+1,−1}. As a result,
this system has N = 2η possible configurations.
The “energy” f(x) of configuration x is given by

− 1
2

η∑
i=1

∑
j∈N(i)

si(x)sj(x), where si(x) ∈ {+1,−1}

is the spin of particle i in configuration x and the
factor 1/2 is included to compensate for double
counting. The depth D of this energy function is
at most 2η.

In order to sample from the Boltzmann dis-
tribution over the set of N configurations of the
above Ising model, we first define a candidate gen-
erator Markov chain MC∞. The common natu-
ral choice in this case is the “single-site update”
chain, which chooses one of the n particles ran-
domly and flips its spin value. In order to make
this Markov chain aperiodic, we use a holding
probability of 1/2 at each configuration. That is,
with probability 1/2, we do not change the con-
figuration and with probability 1/2 we change the
configuration using the single-site update. Note
that this chain is equivalent to the “lazy” nearest
neighbor random walk on the η-dimensional bi-
nary cube {0, 1}η, whose SLEM λ∞ is (1 − 1/η)
[3]. The candidates proposed by this Markov
chain can then be filtered using the Metropolis
criterion at temperature T described in Section
1 to design Markov chain MCT whose limiting
distribution is Boltzmann (T ).

Table 1 shows results of two-phase resource al-
location problems for the Ising model. We only
list K∗

0 since K∗
1 = K − K∗

0 . As another exam-
ple, we consider geometric cooling schedules of
the form ∞ = T0, T1 = 5η2, T2 = T∗ = 5η and
use the dynamic programming formulation pre-
sented in Section 3.2 to find the optimal number
of steps K∗

0 ,K
∗
1 ,K

∗
2 when the total number of

steps is K = 2η2. Such geometric cooling sched-
ules are often used in finite time investigations
of Simulated Annealing [5]. Numerical results for
different values of η are presented in Table 2.

Observe that our approach consistently
achieved high performance guarantees whereas
there was significant variability when all itera-
tions were allotted to the last phase. Thus the
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Table 1
Results for the two-phase Ising problem. The
fifth column lists a lower bound on the probability
of sampling exactly guaranteed by the allocation
K∗

0 , K∗
1 . The sixth column lists this lower bound

when all K iterations are allocated to the last
phase. The seventh column lists the approximate
percentage improvement, i.e., 100(p∗−p)

p .

η T∗ K K∗
0 p∗ p %

10 75 150 40 0.9651 0.7823 23
50 200 43 0.973 0.7844 24

15 100 300 88 0.9817 0.5851 67
50 500 97 0.9818 0.2093 369

20 200 400 147 0.9873 0.3433 187
150 500 150 0.9948 0.6374 56

25 150 800 235 0.9973 0.1123 788
75 2000 251 0.9999 0.8964 11

30 60 5000 370 0.9999 0.6588 51
50 7000 380 0.9999 0.2419 313

Table 2
Results for the multi-phase Ising problem for∞ =
T0, T1 = 5η2, T2 = T∗ = 5η and K = 2η2. The
last three columns are defined in Table 1.
η K∗

0 K∗
1 K∗

2 p∗ p %
10 35 11 154 0.9584 0.7844 22
15 77 18 355 0.9935 0.8741 14
20 137 25 638 0.9989 0.9255 8
25 214 32 1004 0.9998 0.9555 5
30 309 39 1452 0.9999 0.9733 3

benefit of resource allocation was most significant
when the naive procedure performed poorly. The
small performance benefits toward the end of
Table 2 are not because resource allocation per-
formed poorly improving a bad solution slightly
but rather because the naive approach worked
well in these cases. As a final note to indicate
the relatively minor overhead in solving our re-
source allocation problems, the dynamic program
arising from the last row of Table 1 was solved
using GNU C++ in 0.019 seconds on a MacBook
laptop running Mac OS X 10.4.11 with a 1.83
GHz Intel Core Duo processor and 1GB memory.
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