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Abstract

We derive a certificate of integral infeasibility for linear systems with equations and
inequalities by generating algebraically an outer description of a lattice point free
polyhedron that contains the given integer infeasible system. The extension to the
mixed integer setting is also derived.
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1 Introduction

It is a fundamental result in the theory of in-
teger optimization that one can give a certifi-
cate for a vector not being a member of a lat-
tice. This result can be viewed as an integer
version of the Farkas Lemma.

Theorem 1.1 [3] Let A ∈ Zm×n be of full row
rank and let b ∈ Zm. The system Ax = b has
no integral solution iff the system yT A inte-
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ger, yT b fractional is solvable over the rational
numbers.

Among other applications, this result is im-
portant in developing the theory of totally
dual integral systems and for proving finite-
ness of cutting plane algorithms in the pure
integer case, see [5]. Its applicablility, how-
ever, is limited to systems of equations and un-
bounded variables. Indeed, if inequalities are
present, it is easy to design examples even in
three variables for which a certificate of this
kind cannot be given.

It is the purpose of this paper to generalize
Theorem 1.1 to a mixed system of inequalities
and equations,

A x +G z = b

C x +H z ≤ d
, x ∈ Zn, z ∈ Rq. (1)
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The paper is organized as follows. In Section 2
we deal with the pure integer version of system
(1) (i.e., q = 0) and treat the case when the
rank of C is equal to one. We generalize this
result to higher order ranks of the inequality
system in Section 3. In Section 4 we develop
an algebraic certificate for the infeasibility of
system (1) in the presence of both integer and
continuous variables. We also discuss the fol-
lowing application of our result. The certifi-
cate of infeasibility of system (1) will be used
for deriving a multiterm disjunction from a
face of a polyhedron not containing a mixed
integer point that only depends on the dimen-
sion of the face.

In this paper we use the +-operator to de-
note the Minkowski-sum of two sets in Rn.
The linear (conic) space generated by the
vectors w1, . . . , wd is denoted lin(w1, . . . , wd)
(cone(w1, . . . , wd)), while the null space of
a matrix B is denoted by ker(B). For a set
S ⊆ Rn, the symbol S⊥ denotes the orthog-
onal complement of S. The notation int(S)
denotes the relative interior of a set S.

2 The integer case: rank of C = 1

Theorem 1.1 can be interpreted geometrically.
To this end, let A be of full row rank and let
b be an integral vector. Then, Ax = b de-
fines an affine space that we can represent in
the form {v∗} + lin (W ), where v∗ ∈ Qn and
W = {w1, . . . , wd} ⊆ Zn is a set of linearly
independent vectors. Then it follows that the
set {yT A | y ∈ Qm} is a subset of lin (W )⊥.
Hence, Theorem 1.1 is equvalent to the follow-
ing result.

Theorem 2.1

(
{v∗}+ lin (W )

)
∩ Zn = ∅

iff there exists π ∈ lin (W )⊥ ∩ Zn such that
π>v∗ /∈ Z.

As a first step we generalize this result to poly-
hedra that one can represent as the Minkowski
sum of an edge plus a linear span. We obtain

Theorem 2.2 Let v∗1, v
∗
2 ∈ Qn and let E∗ =

conv(v∗1, v
∗
2) denote an edge.

(E∗ + lin (W )) ∩ Zn = ∅

iff there exists π ∈ lin (W )⊥ ∩ Zn such that

π>v /∈ Z for all v ∈ E∗.

PROOF. We begin to show that both sys-
tems cannot have a solution simultaneously.
Suppose that (E∗ + lin (W )) ∩ Zn 6= ∅. Then
it follows that there exists an x∗ ∈ Zn and
multipliers 0 ≤ λ ≤ 1, µ1, . . . , µd ∈ Q such
that x∗ = λv∗1 + (1− λ)v∗2 +

∑
µiw

i. This im-
plies that for all π ∈ lin (W )⊥ ∩ Zn we have
that

π> (λv∗1 + (1− λ)v∗2) =

π>
(
λv∗1 + (1− λ)v∗2 +

∑
µiw

i
)

=

0 + π>x∗ ∈ Z,

i.e., the system

π ∈ lin (W )⊥ ∩ Zn, π>v /∈ Z for all v ∈ E∗

is infeasible.

As a next step we assume that (E∗ + lin (W ))∩
Zn = ∅. The following two cases may be
distinguished. In the first case, the set
(v∗1 + lin (W, v∗2 − v∗1))∩Zn = ∅. Then the re-
sult follows from the Farkas Lemma using v∗1
in place of v∗. Otherwise, there exist smallest
positive rational numbers λ1, λ2 ∈ Q such
that

(v∗2 + λ2(v
∗
2 − v∗1) + lin (W )) ∩ Zn 6= ∅,

(v∗1 + λ1(v
∗
1 − v∗2) + lin (W )) ∩ Zn 6= ∅.

2



Let us denote by z1 and z2 the correspond-
ing integer points, respectively, i.e., there ex-
ist µi,1, µi,2 ∈ Q, i = 1, . . . , d such that

z1 = v∗1 + λ1(v
∗
1 − v∗2) +

∑d
i=1 µi,1w

i,

z2 = v∗2 + λ2(v
∗
2 − v∗1) +

∑d
i=1 µi,2w

i.

Noting that λ1 > 0 and λ2 > 0, it follows that
for all 0 < σ < 1 we have that(
{z1 + σ(z2 − z1)}+ lin(W )

)
∩Zn = ∅. (2)

As a next step we consider the following
system of equations in integer variables
π1, . . . , πn:

(z2 − z1)
> π = 1

w>
1 π = 0

...

w>
d π = 0

π ∈ Zn.

If this system is inconsistent, then by invok-
ing Theorem 1.1 we may conclude that the
following dual system is solvable:

There exists y ∈ Qd+1 such that

(z2 − z1)y1 +
d∑

i=1

wiyi ∈ Zn, but y1 /∈ Z.

Since z2 − z1 ∈ Zn, we can assume without
loss of generality that 0 < y1 < 1. Then set-
ting σ := y1, z1 + σ(z2 − z1) +

∑
wiyi ∈ Zn

contradicts Equation (2). Hence, the primal
integral system is feasible and determines the
desired split with normal vector π. This com-
pletes the proof. 2

This geometric statement can be directly
turned into a certificate for the infeasibility

of an integral system of equations and an
inequality system of row rank equal to one.

Corollary 2.3 The set X = {x ∈ Rn|Ax =
b, l ≤ cT x ≤ u} has no integral solution if and
only if there exist y ∈ Qm and z ∈ Q+ such
that yT A + zc ∈ Zn and the interval [yT b +
zl, yT b + zu] contains no integer point.

PROOF.

Case 1: If X is empty, then the result can be
derived from the Farkas lemma.
Case 2: Suppose that for all x such that Ax =
b, we have l ≤ cT x ≤ u. Then we can apply
Theorem 1.1 to the system Ax = b and obtain
a vector y such that yT A is integral and yT b is
fractional. Then, (y, 0) yields the desired re-
sult.
Case 3: In this case we have that rank(A) ≤
n− 1, otherwise we are in one of the two pre-
vious cases. Notice also that if c is in the sub-
space spanned by the rows of A, we are in
one of the two previous cases. We can there-
fore express the set X as X = {x ∈ Rn|x =
λx0+(1−λ)x1+

∑n−m
i=1 µiyi, λ ∈ [0, 1]}, where

x0 satisfies Ax = b, cT x = l and x1 satis-
fies Ax = b, cT x = u and (yi) are a basis of
Ax = 0, cT x = 0. We now obtain the result
from Theorem 2.1. 2

Example 1. Let X ⊆ R4 be given by

2x1+ x2+3x3− x4 = 3 (3)

6x1− x2−2x3+ x4 = 5 (4)

5 ≤ 4x2+ x3−4x4 ≤ 8. (5)

A short proof of the fact that X has no integral
solution is to compute 2

5
(3) + 1

5
(4) + 1

5
(5). It

follows that 2x1+x2+x3−x4 is (i) integral and
(ii) must be included in the interval [16

5
, 19

5
].

Since this is not possible, X ∩ Z4 = ∅.
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3 From edges to higher dimensional
polyhedra

This section deals with an extension of Corol-
lary 2.3 to general systems X ∩ Zn, where

X = {x ∈ Rn|Ax = b, Cx ≤ d}. (6)

There is a way to prove that X ∩Zn is empty
by establishing a system with rank(C) vari-
ables which has no integral solution. First we
outline this construction. Assuming that A
has full row rank equal to m, the subsystem
Ax = b, x ∈ Zn can be rewritten as x =
x0+Lλ, λ ∈ Zn−m where L ∈ Zn×(n−m). With
this transformation (6) becomes

C L λ ≤ d− Cx0, λ ∈ Zn−m. (7)

From the equivalence of the two systems it
follows that (6) is infeasible if and only if (7)
is infeasible. From a theorem of Doignon [2] it
follows that if (6) is infeasible, then at most
2n−m inequalities of CL suffice to determine
an infeasible integral system. This certificate
is however large if m is small.

As a next step one applies the techniques out-
lined in the proof of Corollary 18.7c in [5] with
the goal to reduce the number of variables.

Let l denote the rank of C. Then one may
observe that Ĉ = CL has row rank at most
equal to l. Let

Ĉ =

 Ĉ1

Ĉ2

 ,

where Ĉ1 contains the l linearly independent
rows of Ĉ. Hence, by applying a Hermite nor-
mal form computation (multiplication by a
unimodular matrix U) to Ĉ1, we arrive at sys-

tem

C L U µ ≤ d− Cx0, µ ∈ Zn−m,

such that CLU has zero-entries in all columns
with indices larger than l. It then follows from
the theorem of Doignon that if (6) is infeasible,
then at most 2l inequalities of CLU suffice to
determine an infeasible integral system.

It is, however, geometrically not so clear what
this certificate means in terms of the given
constraints encoded in A and C. This fact mo-
tivated us to derive an infeasibility statement
that directly involves A and C. In other words,
we search for a small number of multipliers
y ∈ Y for the rows of A and C in order to
obtain a certificate of infeasibility of the form

yT

 A

C

 x ≤ yT

 b

d

 for all y ∈ Y.

If rank(C) ≤ 1, then Y is a singleton and de-
livers a “split vector” π = yT [AT CT ]T . In fact,
for rank(C) ≤ 1, the product yT A determines
the normal vector of the outer description of a
lattice point free split that contains the given
infeasible system. As a next step we will gen-
eralize this construction to general systems X.
For higher rank of C, however, we certainly
need to account for more complicated lattice
point free bodies that contain our infeasible
system, i.e., more and more constraints come
into play and are needed to give the outer de-
scription of the lattice point free body that
constitutes the infeasibility certificate. This is
precisely the role of the multipliers yi in our
next result.

Theorem 3.1 Let A ∈ Zm×n, C ∈ Zp×n and
let l = rank (C). For integer vectors b and d,
either (6) contains an integer point or there
exist at most l linearly independent vectors
v1, . . . , vl ∈ Zn, t ≤ 2l vectors y1, . . . , yt ∈
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Qm×Qp
+ and integer coefficients λk

i satisfying[
AT CT

]
yk =

∑l
i=1 λk

i v
i, and such that

l∑
j=1

λk
j zj ≤ yT

k

 b

d

 , k = 1, . . . , t, (8)

has no solution in integer variables z.

PROOF. Let X be as in (6). If x ∈ X ∩
Zn 6= ∅, then for all l linearly independent
vectors v1, . . . , vl ∈ Zn and t ≤ 2l vectors
y1, . . . , yt ∈ Qm × Qp

+ and coefficients λ sat-

isfying
[
AT CT

]
yk =

∑l
i=1 λk

i v
i, λk

i ∈ Z ∀i, k
we may define zi := (vi)T x ∈ Z for all i ∈
{1, . . . , l} so as to construct an integer solu-
tion to (8).

It remains to show that if X ∩ Zn = ∅,
then there exist l linearly independent
vectors v1, . . . , vl ∈ Zn, t ≤ 2l vectors
y1, . . . , yt ∈ Qm × Qp

+ and coefficients λ sat-

isfying
[
AT CT

]
yk =

∑l
i=1 λk

i v
i, λk

i ∈ Z ∀i, k
so that system (8) has no integral solution.
Since X is lattice point free, there exists a
maximal lattice point free body L strictly
containing X. From [4] it then follows that

X ⊂ L = L∗ + lin (W ),

where L∗ is a polytope of dimension l′ ≤ l and
W = {w1 . . . wn−l′} ⊆ Zn consists of linearly
independent vectors. W.l.o.g. we may assume
that l′ = l. Next, we complete w1, . . . wn−l

to a basis of Rn by adding some vectors
v1, . . . , vl ∈ Zn such that (1) the Smith nor-
mal form (SNF) of the matrix V = (v1 · · · vl)

is SNF (V ) =

 I

0

 and (2) (wj)T vk = 0 for

all j ∈ {1, . . . , n− l} and k ∈ {1, . . . , l}. It is
an exercise to prove that such vectors vi exist.

L can be described by linear inequalities,

L =
{
x ∈ Rn | πT

1 x ≤ π0
1, . . . , π

T
t x ≤ π0

t

}
with integral normal vectors π1, . . . , πt and
integral right-hand-side vector π0. In fact,
since L = L∗ + lin (W ), we can conclude that
πT

k wj = 0 for all k and j ≤ n− l, i.e.,

πk =
l∑

i=1

λk
i v

i, λk
i ∈ Z for all k.

On the other hand, since X is fully contained
in the interior of L, we have that max {πT

k x |
x ∈ X } < π0

k for all k = 1, . . . , t. Therefore,
this maximum value exists. From linear pro-
gramming duality we obtain that

max πT
k x = min[bT , dT ] yk

s.t. Ax = b, s.t. [AT , CT ]yk = πk

Cx ≤ d yk,m+1, . . . , yk,m+l ≥ 0

Hence, the minimum-value in the LP-duality
relation satisfies [bT , dT ] yk < π0

k. We next
claim that

l∑
i=1

λk
i (v

i)T x ≤ [bT dT ]yk (9)

has no integer solution in variables x if and
only if the system

l∑
i=1

λk
i zi ≤ [bT dT ]yk (10)

has no integer solution in variables z. In or-
der to verify this claim, let U,W be unimod-

ular matrices so that UT V W T =

 Il

0

 . We

decompose U = (U1 U2) such that WV T U1 =
Il. Then for every z ∈ Zl, there exists x ∈
Zn such that z = V T x, since w := Wz ∈
Zl, U1w ∈ Zl and WV T (U1w) = w ⇐⇒
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V T (U1w) = W−1w ⇐⇒ V T x = z. Hence,
it has been established that system (10) is in-
teger infeasible. From the theorem of Doignon
[2] it follows that if system (10) in rank(C)
variables has no integral solution, then at most
2rank(C) of its inequalities suffice to determine
an infeasible integral system. This shows that
t ≤ 2l. 2

Let us return to the geometric picture under-
lying Theorem 3.1. In the course of the proof
we construct the maximal lattice point free
body L∗ such that X ⊂ L = L∗ + lin (W ). In
fact, the system (10) gives precisely the outer
description of L∗ – and L∗ is living in a sub-
space of the original space – whereas system
(9) is an outer description of a lattice point
free body in the original space that contains
our integer infeasible set X. We next illustrate
Theorem 3.1 on an example.

Example 2. Consider the set X of solutions
to

x1 +2x2+3x3 = 0 (11)

−3x1+4x2 ≤ 0 (12)

−x1 −2x2 ≤ −3 (13)

2x1−x2 ≤ 5. (14)

Notice that one can represent X in the form
X = {x ∈ Rn|Ax = b, Cx ≤ d} with
rank(C) = l = 2. It is readily checked that
although both Ax = b and Cx ≤ d have in-
tegral solutions, their intersection X ∩ Z3 is
empty. We next establish a certificate in the
spirit of Theorem 3.1.

To this end, define v1 = (1, 0, 0), v2 = (0, 1, 1)
which are linearly independent integral vec-
tors. Next define multipliers y1, y2, y3 ∈ Q1 ×
Q3

+ as follows:

y1 =(−2, 0, 1, 0)

y2 =(−1, 0, 0, 1)

y3 =(4, 1, 0, 0).

Then we obtain for
[
AT CT

]
yk the following

relations:[
AT CT

]
y1 =− 3v1 − 6v2[

AT CT
]
y2 =v1 − 3v2[

AT CT
]
y3 =v1 − 12v2,

and hence, all coefficients λk
i are integral.

Then, system (8) becomes

−2(11) + (13) :−3z1 − 6z2 ≤ −3

−(11) + (14) : z1 − 3z2 ≤ 5

4(11) + (12) : z1 + 12z2 ≤ 0.

The corresponding feasible region is a two-
dimensional triangle that contains no integer
points. Hence the initial feasible region X does
not contain any integral point.

4 A certificate for mixed integer sets

This section is devoted to the extension of
Theorem 3.1 from the pure integer setting to
the mixed integer scenario. We have

Theorem 4.1 Let A ∈ Zm×n, G ∈ Zm×q, C ∈
Zp×n, H ∈ Zp×q and let 1 ≤ l = rank ([C, H]).
For integer vectors b and d, either System (1)
is feasible or there exist at most l linearly inde-
pendent vectors v1, . . . , vl ∈ Zn, t ≤ 2l vectors
y1, . . . , yt ∈ Qm ×Qp

+ and integer coefficients
λk

i satisfying

(yk)
T

 G

H

 = 0, (yk)
T

 A

C

 =
l∑

i=1

λk
i (v

i)T ,

and such that system (15) in variables zj, j ∈
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{1, . . . , l} has no integral solution:

∑l
j=1 λk

j zj ≤ yT
k

 b

d

 ∀k. (15)

We will prove Theorem 4.1 by projecting the
mixed integer set first to the space of discrete
variables. Then one may apply Theorem 3.1
to the projected set from which the result fol-
lows. The key observation why this approach
works is that the projection operation does
not increase the rank of the inequality subsys-
tem. Indeed, we have

Lemma 4.2 Let A ∈ Qm×n, Q ∈ Qp×n and
g ∈ {0, 1}m, h ∈ {0,±1}p with 1 ≤ l =
rank ([C, h]). The projection of the set

A x +g z = b

C x +h z ≤ d
, x ∈ Rn, y ∈ R. (16)

to the space of x-variables is a system of equa-
tions and inequalities where the rank of the in-
equality subsystem is at most l.

PROOF. Letting M = {1, . . . ,m} and P =
{1, . . . , p}, we define

Mk = {i ∈ M | gi = k}; for k = 0, 1;

Pk = {j ∈ P | hj = k}; for k = −1, 0, 1.

W.l.o.g., we assume that g1 = 1, i.e., 1 ∈ M1.
In order to compute an outer description for
the projection of system (16) to the space of
x-variables, we first determine the generators
of the polyhedral cone C =

{
(u, v) ∈ Rm+p |∑

i∈M1
ui +

∑
j∈P−1∪P1

hjvj = 0, ui ∈ R, vj ≥
0
}
. We denote the first m unit vectors in Rm+p

by ei : i = 1, . . . ,m. The remaining p unit
vectors are denoted by em+j, j = 1, . . . , p. The
cone C is the sum of a pointed cone C0 and a

linear space,

lin(ei : i ∈ M0) + lin(e1−ei : i ∈ M1 \{1}).

The extreme rays of C0 can be grouped into:

Type (A) ej, for all j ∈ P0;

Type (B) −hje
1 + ej, for all j ∈ P1 ∪ P−1;

Type (C) ek + ej, for all k ∈ P1 and j ∈ P−1.

From this representation of the extreme rays
of C0 and the basis of the linear space we ob-
tain a description of the projected set.

AT
i,·x = bi, i ∈ M0;

(A1,· − Ai,·)
T x = b1 − bi, i ∈ M1 \ {1};

CT
j,·x ≤ dj, j ∈ P0;

(−A1,· + Cj,·)
T x ≤ −b1 + dj, j ∈ P1;

(A1,· + Cj,·)
T x ≤ b1 + dj, j ∈ P−1;

(Ck,· + Cj,·)
T x ≤ dk + dj, k ∈ P1, j ∈ P−1.

We next observe that every row vector (Ck,·+
Cj,·) for k ∈ P1, j ∈ P−1 is the sum of the
two row vectors (−A1,· + Ck,·) and (A1,· +
Cj,·). Indeed, it is now a minor exercise to show
that the rank of the row vectors Cj,·, j ∈ P0

together with the row vectors (−hjA1,·+ Cj,·),
j ∈ P1 ∪ P−1 is equal to the rank of the row
vectors of [C, h]. 2

We are now prepared to finalize the proof of
Theorem 4.1.

PROOF of Theorem 4.1. (1) is mixed inte-
ger infeasible if and only if its projection on
the space of integer variables is lattice point
free. The projection Sx of the System (1) to
the space of x-variables can be accomplished
by iteratively removing one continuous vari-
able. By scaling each row of the matrix we
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can transform it in a way that the column of
the variable that is to be eliminated next is of
the type as stated in Lemma 4.2. It then fol-
lows that the operation of projection does not
change the rank of [C, H]. Indeed, by induc-
tively applying Lemma 4.2, we end up with a
description for the projected system Sx of the
form,

Sx =


UA x = Ub

V

 A

C

 x ≤ V

 b

d




where U and V are rational matrices of ap-
propriate dimension and where the rank of

V

 A

C

 is bounded by the rank of the subma-

trix [C, H]. As a next step we apply Theorem
3.1 to the description of Sx. The certificate is
given by multipliers y1, . . . , yt which, in turn,
yield multipliers for the original mixed integer
system, if [UT , V T ]yi is put in place of yi, for
i = 1, . . . , t. 2

Let us finally discuss an application of this re-
sult to derive multiterm disjunctions. A mul-
titerm disjunction D is a polyhedron D =
{(x, z) | C(x, z) ≤ Γ} ⊆ Rn+q not containing
mixed integer points in its relative interior.
I.e., letting M = {(x, z) ∈ Rn+q | x ∈ Zn}, we
have that int(D) ∩M = ∅. This is equivalent
to saying that every (x, z) ∈ M satisfies at
least one of the inequalities CT

i (x, z) ≥ γi. Of
interest are disjunctions that cannot be fur-
ther enlarged. From [4] it then follows that
D = conv(V ) + lin(W ). Theorem 4.1 can be
used so as to derive a multiterm disjunction
from a face of a polyhedron not containing a
mixed integer point that only depends on the
dimension of the face. The key statement here
is not the fact that such a disjunction always
exists. Rather, the “complexity” of the multi-

term disjunction is nicely controllable. In fact,
since D = conv(V ) + lin(W ), we can mea-
sure the “complexity” of the disjunction by
means of the dimension of conv(V ). In light of
this Theorem 4.1 ensures that there exists a
multiterm disjunction of complexity no more
than the dimension of the face to certify that
the face is mixed integer free. This is a higher
dimensional mixed integer version of the fact
that a vertex of a polyhedron is either inte-
gral or there exists a split fully containing the
vertex.

Theorem 4.3 Let F be a face of a polyhedron
P = {(x, z) ∈ Rn+q | Ax +Bz ≤ b}. Either F
contains a mixed integer point or there exists a
multiterm disjunction D = {(x, z) | G(x, z) ≤
g} = conv(V ) + lin(W ), with G ∈ Zt×(n+q),
g ∈ Zt, V ⊆ Qn+q, W ⊆ Qn+q such that

• F ⊂ int(D),
• t ≤ 2dim(F ) and
• dim(conv(V )) ≤ max{1, dim(F )}.

PROOF. Let F be a face of P . It follows
that there exists subsystems Cx + Hz ≤ γ of
Ax + Bz ≤ b} and AIx + BIz ≤ bI that lead
to a minimal description of F in the form F =
{(x, z) ∈ Rn+q | AIx + BIz = bI , Cx + Hz ≤
γ} such that the rank of the matrix [C H] is
less or equal to l := dim(F ), see (1) in page
103 of [5], for example. By m and p we de-
note the number of equalities and inequalities
of this minimal description of F . From The-
orem 4.1 it follows that F contains no mixed
integer point iff there exist at most l linearly
independent vectors v1, . . . , vl ∈ Zn, t ≤ 2l

vectors y1, . . . , yt ∈ Qm ×Qp
+ and integer co-

efficients λk
i satisfying

(yk)
T

 B

H

 = 0, (yk)
T

 A

C

 =
l∑

i=1

λk
i (v

i)T ,
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and such that system (15) in variables zj, j ∈
{1, . . . , l} has no integral solution. This im-
plies that also the set

D = {(x, z) |∀k = 1, . . . , t

(yk)
T

 A

C

 (x, z) ≤ (yk)
T

 b

d

}
contains no integer point. Hence, D =
conv(V )+lin(W ) defines precisely the desired
multiterm disjunction. 2
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closures for mixed integer programming,
Mathematical Programming 47, 155 – 174,
(1990).

[2] J. P. Doignon, Convexity in crystallographic
lattices, Journal of Geometry 3, 71 – 85,
(1973).
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