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Abstract

Borozan and Cornuéjols introduced a semi-infinite relaxation for mixed-integer
linear programs, derived from the simplex tableau relative to a fractional vertex f
of the linear relaxation. They showed that any minimal valid inequality for such
relaxation is determined by a maximal lattice-free convex set containing f . In this
note we show that, for the purpose of generating cuts for the original MIP, one
needs to consider only maximal lattice-free convex bodies with f in the interior.

Most cutting plane algorithms use cuts, such as Gomory’s Mixed Integer Cuts, de-
duced by one single tableau inequality by arguments on the integrality and nonnegativity
of some of the variables involved. The idea of studying inequalities that can be inferred
by multiple rows of the simplex tableau has recently gained interest through the work
of Dey and Richard [4], Dey et Al. [5], Andersen et Al. [1], Borozan and Cornuéjols [2],
Cornuéjols and Margot [3], Dey and Wolsey [6], while Espinoza [7] reports promising
computational results.

The following model, obtained from the simplex tableau by dropping the nonnega-
tivity constraints on the basic variables and the integrality constraints on the non-basic
ones, has been studied by Andersen et Al. [1] in the case of two tableau rows, and their
results have been generalized by Borozan and Cornuéjols [2] to the case of multiple rows;

x = f +
∑k

j=1 rjsj,

x ∈ Zq,
s ∈ Rk

+.

(1)

Here f, r1, . . . , rk ∈ Qq and f /∈ Zq. Let Rf (r
1, . . . , rk) be the convex hull of vectors s ∈

Rk for which there exists x ∈ Rq such that (x, s) satisfies (1). Since all data are rational,
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Rf (r
1, . . . , rk) is a rational polyhedron. Since the recession cone of Rf (r

1, . . . , rk) is
Rk

+, then any irredundant valid inequality for Rf (r
1, . . . , rk) can be written in the form

α>x ≥ 1 where α ∈ Qk
+. Such inequality is said minimal if there is no valid inequality

(α′)>x ≥ 1 such that α′ ≤ α and α 6= α′. Clearly irredundant inequalities are also
minimal.

Borozan and Cornuéjols [2] proposed to study the following semi-infinite relaxation,
related to Gomory and Johnson’s infinite group problem [8],

x = f +
∑

r∈Qq rsr,
x ∈ Zq,
s ≥ 0 with finite support,

(2)

where s = (sr)r∈Qq is said to have finite support if it has a finite number of non-zero
components. Let Rf be the convex hull of all s ∈ RQq

+ for which there exists x ∈ Rq such
that (x, s) satisfies (2). Any valid inequality for Rf is of the form

∑

r∈Qq

ψ(r)sr ≥ 1

where ψ : Qq → Q ∪ {+∞}. We say that such ψ is a valid function; ψ is said a
minimal valid function if there is no valid function ψ′ such that ψ′(r) ≤ ψ(r) for all
r ∈ Qq and ψ′(r) < ψ(r) for at least one r ∈ Qq. Clearly we are only interested in
minimal valid functions. Notice that any inequality valid for Rf (r

1, . . . , rk) is of the

form
∑k

j=1 ψ(rj)sj ≥ 1 for some valid function ψ.
Borozan and Cornuéjols [2] show that, if ψ is a minimal valid function, then ψ is

nonnegative, positively homogeneous (i.e. ψ(λr) = λψ(r) for all λ ≥ 0), piece-wise linear,
and convex. Since ψ is a convex function defined in Qq, which is dense in Rq, then there
exists a unique convex function ψ̄ defined on Rq that coincides with ψ on Qq, so here for
simplicity we just consider ψ itself to be defined on Rq. Borozan and Cornuéjols further
show that, if ψ is a minimal valid function, then the set

Bψ = {x ∈ Rq |ψ(x− f) ≤ 1}

is a maximal lattice-free convex set, i.e. a maximal convex set with no point of Zq in the
interior. Clearly f ∈ Bψ, because by positive homogeneity ψ(f − f) = 0.

If ψ is finite everywhere, then ψ is continuous in Rq, because every convex function is
continuous in the interior of its domain. Thus, in this case, Bψ is closed and its boundary
is {x ∈ Qq |ψ(x − f) = 1}, hence f is in the interior of Bψ. Conversely, if f is in the
interior of Bψ, then by positive homogeneity ψ must be finite everywhere. We say that ψ
is degenerate if f is on the boundary of Bψ (or equivalently if ψ is not finite everywhere),
while ψ is nondegenerate if f is in the interior of Bψ. While a maximal lattice-free convex
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set B with f in the interior uniquely defines a valid function ψ such that Bψ = B by
positive homogeneity, in the case where f is on the boundary such a ψ is not uniquely
determined by B, and in fact in order to define a degenerate valid function, one needs
to define one maximal-lattice free convex set on each of the faces of B containing f [2].
Furthermore, if ψ is non-degenerate, then ψ has at most 2q linear pieces [2], whereas if
ψ is degenerate the bound on the number of pieces is exponentially larger.

The theorem we prove in this note implies that, from the practical point of view
of generating cutting planes for the finite dimensional set Rf (r

1, . . . , rk), one needs not
be concerned with these complications arising from degenerate inequalities, because the
only minimal inequalities arise from valid nondegenerate functions. This was shown by
Cornuéjols and Margot [3] for the case that q = 2 with an ad-hoc proof.

Theorem 1 Given a minimal valid inequality α>s ≥ 1 for Rf (r
1, . . . , rk), there exists a

nondegenerate minimal valid function ψ such that ψ(rj) = αj for all j = 1, . . . , k.

Proof. We only need to show the existence of a finite valid function ψ such that ψ(rj) = αj

for j = 1, . . . , k. Define, for each r ∈ Rq, ψ̃(r) = min{α>s | ∑k
j=1 rjsj = r, s ≥ 0}, where

ψ̃(r) = +∞ if r cannot be written as a conic combination of r1, . . . , rk. Then ψ̃ is valid
for Rf , albeit in general neither minimal nor finite, and ψ̃(rj) = αj for j = 1, . . . , k
because of the minimality of α>x ≥ 1. Clearly ψ̃ is homogeneous and convex, and
Bψ̃ = {x ∈ Rq : ∃s ≥ 0 s.t. x = f +

∑k
j=1 rjsj , α>s ≤ 1}. Notice that Bψ̃ is a rational

polyhedron, since it is the projection onto the space sj = 0, j = 1, . . . , k, of a rational
polyhedron in Rq+k.

We observe that any face of Bψ̃ containing f does not contain an integral point in
its relative interior. Suppose not, and let F be a face of Bψ̃ such that f ∈ F , and x̄
be an integral point in the relative interior of F . Thus there exists λ > 1 such that
f + λ(x̄− f) ∈ F . Since ψ̃ is positively homogeneous, ψ̃(f − f) = 0, and ψ̃(x̄− f) ≥ 1,
then ψ̃(λ(x̄− f)) = λψ̃(x̄− f) > 1, contradicting the fact that f + λ(x̄− f) ∈ Bψ̃.

Since Bψ̃ is a polyhedron, Bψ̃ = {x |Ax ≤ b} for some m × q matrix A with rows
a1, . . . , am, and vector b ∈ Rm. Because Bψ̃ is rational, we may assume that (A, b) is

integral. If aif < bi for all i = 1, . . . , m, then f is in the interior of Bψ̃ and we are
done. So assume that f satisfies at equality the first h constraints of Ax ≤ b, and none
of the other constraints. Let b′ be the vector defined by b′i = bi + 1, i = 1, . . . , h, b′i = bi,
i = h + 1, . . . ,m. Let B = {x ∈ Qq |Ax ≤ b′}. Clearly B ⊃ Bψ̃, and f is in the interior
of B because Af < b′.

We show that B does not contain any integral point in its interior. Suppose not, and
let x̄ be an integral point satisfying Ax̄ < b′. Since x̄ and (A, b) are integral, and by
definition of b′, x̄ satisfies aix̄ ≤ bi, i = 1, . . . , h, aix̄ < bi, i = h + 1, . . . , m. Let J be the
set of indices i such that aix̄ = bi (possibly J = ∅). Then aix = bi, i ∈ J , define a face
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F of Bψ̃ (possibly F = Bψ̃) that contains f and such that x̄ is in the relative interior of
F , a contradiction.

For every r ∈ Qq, let λr = max{λ | f + λr ∈ B}. Notice that λr > 0 for every r ∈ Qq

because f is in the interior of B, and λr ∈ Q because B is rational. Let the function
ψ : Qq → Q be defined by ψ(r) = λ−1

r for all r ∈ Qq. Then Bψ = B and, since B
does not contain any integral point in its interior, ψ is valid for Rf . Because B ⊃ Bψ̃,

ψ(rj) ≤ ψ̃(rj) = αj for j = 1, . . . , k. By the minimality of α>x ≥ 1, ψ(rj) = αj for
j = 1, . . . , k, thus ψ satisfies the statement. ¤
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