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Abstract
We consider the discrete lot-sizing and scheduling problem with sequence-dependent changeover

costs and times and propose to solve it as a mixed-integer program using a commercial solver. Our
approach is based on the extension of an existing tight formulation for the case without changeover
times. Computational results con�rm the bene�ts of the proposed solution procedure.
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1 Introduction
A wide variety of models for production planning
and inventory management has been investigated in
operations research. Among them, capacitated lot-
sizing models aim at determining the optimal tim-
ing and level of production complying with given
capacity restrictions and such that demand for all
products is satis�ed without backlogging. Recent
overviews on the lot-sizing literature can be found
among others in [2] and [4].

In the present paper, the discrete lot-sizing and
scheduling problem (DLSP) is considered. The
DLSP relies on several basic assumptions (see e.g.
[3]) :
- Demand for products is deterministic and time-
varying.
- The production plan is established for a �nite time
horizon subdivided in several discrete periods.
- At most one item can be produced per period
("small bucket" model) and the facility processes
either one product at full capacity or is completely
idle ("all-or-nothing assumption").
- Costs to be minimized are the inventory holding
costs and the changeover costs.

Here the single level single machine variant of
this problem is studied: all items to be produced
are end items and share the same constrained re-
source. In the DLSP, it is assumed that there is
a changeover between two production runs for dif-
ferent items, resulting in a changeover cost and/or
a changeover time. Changeover costs and times
can depend either on the next item only (sequence-
independent case) or on the sequence of items
(sequence-dependent case). Signi�cant changeover

times which consume scarce production capacity
tend to further complicate the problem. We con-
sider here the most di�cult variant: the DLSP with
sequence-dependent changeover costs and times
(denoted DLSPSD in the sequel).

The DLSP has received much attention in the
literature. Complexity results for this problem can
be found in [8]. They show that the single machine
multi-product case without setup times is NP-hard
and that the problem of �nding a feasible solu-
tion in the presence of sequence-independent setup
times is NP-complete. We deal here with the ex-
tension of this problem to the case of sequence-
dependent changeover costs and times. The DL-
SPSD under study in the present paper is thus NP-
hard.

We now discuss into more detail speci�c contri-
butions on the DLSPSD. [9] reformulate the prob-
lem as a travelling salesman problem with time win-
dows and use a dynamic programming-based algo-
rithm to solve it. [5] show the equivalence between
the DLSPSD and the batch sequencing problem
(BSP) and use a speci�c branch and bound type
algorithm for solving the BSP to optimality. In
both papers, the mixed-integer programming for-
mulation proposed for the problem is weak and does
not provide lower bounds good enough to solve the
problem using a commercial solver (see results in
section 3.2). However, as pointed out by [7], there
is now a good knowledge about the "right" way to
formulate many simple production planning sub-
models as mixed-integer programs and, thanks to
it, many practical production planning problems
can be (approximately) solved using commercial
solvers. To the best of our knowledge, these results
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have not yet been exploited to solve the DLSPSD.
In the present paper, we attempt to close this gap
by proposing a new tight formulation for this spe-
ci�c variant of the problem.

The purpose of this paper is thus to intro-
duce a strengthened formulation for the DLSP with
sequence-dependent changeover costs and times.
This formulation is an extension of the formula-
tion proposed by [11] for the DLSP with sequence-
dependent changeover costs and zero changeover
times. Thanks to this strengthened formulation,
the lower bounds provided by the linear relaxation
of the problem are signi�cantly better, enabling a
branch and bound type procedure to solve the prob-
lem more e�ciently.

The paper is organized as follows. In section
2, we present the proposed tight formulation for
the DLSPSD. In section 3, we discuss the results
of some computational experiments carried out to
evaluate it.

2 A tight formulation for the
DLSPSD

We present a tight formulation for the DLSP with
sequence-dependent changeover costs and times.
This formulation is an extension of the formula-
tion proposed by [11] for the DLSP with sequence-
dependent changeover costs and zero changeover
times. In the sequel, we denote it the DSLPSD2
formulation whereas we denote DLSPSD1 the for-
mulation proposed by [9].

2.1 Basic formulation
We wish to optimize the production schedule for a
set of N items over an horizon featuring T plan-
ning periods. A period is indexed by t = 1, ..., T ,
an item by i = 0, .., N . We agree to use item i = 0
to represent idle periods.
We use the following notation:
- dit: demand (in units) for item i in period t.
- Pit: production capacity (in units per period) for
item i in period t.
- hi: holding costs per unit and period for item i.
- cij : changeover costs from item i to item j.
- Tij : changeover time from item i to item j. Tij

is assumed to be an integer number of planning
periods.
Decision variables are de�ned as follows:
- Iit: inventory level corresponding to item i at the
end of period t.
- yit: setup variables. yit equals 1 if the resource
is setup for production of item i in period t, and 0
otherwise.
-wijt: changeover cost variables. If Tij > 0, wijt

equals 1 during the �rst period of a changeover

from item i to item j, and 0 otherwise. If Tij = 0,
wijt equals 1 in the �rst period of production of j,
and 0 otherwise.
-vt: changeover time variables. vt equals 1 during
each period in which a changeover between two
items occurs, and 0 otherwise.

In the mixed-integer formulation proposed in ta-
ble 1, the objective (3) minimizes the sum of inven-
tory holding costs and changeover costs. Note that,
in the DLSPSD2 formulation, variables wiit are in-
troduced: wiit = 1 means that the resource is setup
for item i both in period t− 1 and in period t, i.e.
that a production run for item i takes place over
periods t− 1 and t.

Constraints (4) express the inventory balance.
Together with constraints (8), they ensure that de-
mand for each item is ful�lled without backlogging.

Equalities (5) and (6) link the setup variables
with the changeover cost variables. (5) guarantee
that item i can be produced in period t− 1 if and
only if a changeover from i to another item j (pos-
sibly j = i) takes place at the beginning of period
t. Similarly, (6) guarantee that item j can be pro-
duced in period t if and only if a changeover from
another item i (possibly i = j) to item j begins
early enough (i.e. in period t − Tij) to be �nished
at the beginning of period t.

(7) ensure that in each period, the resource ei-
ther produces a single product at full capacity, or
is idle (i.e y0t = 1), or is in transition between two
items (i.e. vt = 1).

The binary character of the setup variables is
represented by (9). (10) and (11) state the non-
negativity of the changeover variables: observe, as
pointed out by [1], that thanks to constraints (5)-
(7) and (9), there is no need to de�ne variables wijt

and vt as binary variables.

2.2 Valid inequalities
As shown in [11] for the case without changeover
times, the DLSPSD2 formulation can be further
strengthened through a family of valid inequalities
adapted from the ones developed by [10]. We in-
vestigate here an extension of this idea to the case
of positive changeover times and propose a family
of valid inequalities for the problem (3)-(11).

This can be done using the assumption of
Wagner-Whitin costs, constant capacity and no
backlogging. In this case, demands and production
capacity can be normalized without loss of gener-
ality: dit ∈ {0, 1} and Pit = 1. We �rst introduce
some additional notation:
- Di,t,τ : cumulated demand for item i in the inter-
val {t, ..., τ}. Demand on item i is binary so that
Di,t,τ is equal to the number of positive demand
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periods for i in {t, ..., τ}.
- Si,q: qth positive demand period for item i. Note
that Si,Di,1,t+q denotes the qth period with positive
demand for item i after period t.
We also introduce the start-up variables zit de�ned
as follows: zit equals 1 if the production of a new
lot of item i starts at the beginning of period t, 0
otherwise. These start-up variables are linked to
the changeover variables by the equations:

zjt =
∑

i:i 6=j

wij,t−Tij ∀j = 1...N, ∀t = 1...T (1)

Equalities (1) state that the production of a new
lot of item j begins in period t if and only if a
changeover from another item i 6= j starts "early
enough" (i.e. in period t−Tij) to be �nished at the
beginning of period t.

With this notation, we have:

Proposition 1. The following inequations (2)
are valid inequalities for the DLSP with sequence-
dependent changeover costs and times:

Iit ≥
p∑

q=1

(
1− yi,t+q −

Si,Di,1,t+q∑
τ=t+q+1

ziτ

)
(2)

∀i = 1...N, ∀t = 1...T,∀p ∈ {0...Di,t+1,T }
Proof. A sketch of proof is as follows. First note
that yi,t+q +

∑Si,Di,1,t+q

τ=t+q+1 ziτ = 0 if and only if the
resource is not setup for item i in period t+q and no
startup for i takes place between the period t+q+1
and the period where the qth demand after period
t occurs, i.e. if and only if no production of item
i is possible in the interval {t + q, ..., Si,Di,1,t+q}.
In this case, the quantity needed to satisfy the qth

demand after period t should be in stock at the
end of period t. Thus we see that constraints (2)
force an increase of the stock of item i at the end of
period t by one for each index q for which no pro-
duction occurs in the interval {t+ q, ..., Si,Di,1,t+q}.
A detailed proof of the validity of (2) can easily be
derived from the above (see also [10]).

In the computational experiments to be pre-
sented in section 3, we use a standard cutting-plane
generation method (see e.g. [6]) to strengthen the
DSLPSD2 formulation by adding violated valid in-
equalities (2). The resulting improved formulation
is denoted DLSPSD2*.

2.3 Remark
It is interesting to keep in mind that equalities (5)-
(6) can be interpreted as �ow conservation con-
straints in a network.

More precisely, we consider a graph G = (V,A).
A node v ∈ V corresponds to a item-period pair
(i, t). There is an oriented arc a ∈ A from node

v1 to node v2 if and only if v1 = (i, t) and v2 =
(j, t+Tij +1). The setup variable yit corresponds to
the �ow through node (i, t) and the changeover vari-
able wij,t+1 corresponds to the �ow between node
(i, t) and node (j, t + Tij + 1). With this inter-
pretation, a production sequence on the resource
corresponds to a �ow of a single unit through the
network, starting from a node (i, 0) and arriving in
a node (j, T ). Thus equalities (5) and (6) can be
seen as �ow conservation constraints, stating that
the �ow through a node is equal to the sum of the
�ows on the arcs directed away from it or to the
sum of the �ows on the arcs directed toward it.

Due to the presence of positive changeover
times, the structure of the graph G used here is seen
to be di�erent from the one used in [1]. Namely,
when there are no changeover times, all arcs in
graph G link pairs of nodes related to successive
planning periods, which is not the case anymore
with positive changeover times.

3 Computational results
In this section, we discuss the results of some com-
putational experiments carried out to evaluate the
DLSPSD2* formulation proposed in section 2.

3.1 Problem instance generation
We created several sets of randomly generated in-
stances following the procedure described in [9] and
[5]. The reader is referred to these references for
more details. The generated instances di�er with
respect to the following characteristics:
- Problem dimension: The problem dimension is
represented by the number of products N and the
number of periods T. We use 7 di�erent item-period
combinations, namely (N,T ) = {(5,20), (10,40),
(5,60), (10,60), (15,60), (10,90), (15,90)}, leading
to 7 instance sets denoted sets A to G.
- Production capacity utilization: Production ca-
pacity utilization ρ is de�ned as the ratio between
the total cumulated demand and the total cumu-
lated available capacity. Because changeover times
are nonzero, we experimented di�erent medium val-
ues for ρ: ρ was varied between 0.5 and 0.75, in
steps of 0.05.
For each possible combination of problem dimen-
sion and production capacity utilization, 5 prob-
lems were generated, resulting in 7 × 6 × 5 = 210
instances. All tests were run on a Pentium 4
(2.8 Ghz) with 505 Mb of RAM, running under
Windows XP. We used a standard MIP software
(CPLEX 8.1.0) with the solver default settings to
solve the problem, using either the DLSPSD1 for-
mulation presented in [9] or the DSLPSD2 and DL-
SPSD2* formulations presented in section 2.
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3.2 Comparison of DSLPSD1, DL-
SPSD2 and DLSPSD2* formula-
tions

We �rst carried out some computational experi-
ments in order to evaluate the reformulation pro-
posed in section 2.1 and the family of valid in-
equalities derived in section 2.2. The comparison
has been limited to the smallest instances (sets A
and B) since computation time limits are exceeded
for set B instances with the DLSPSD1 formulation.

Table 2 shows the results obtained with the
DSLPSD1, DLSPSD2 and DLSPSD2* formula-
tions for the sets A and B instances. For each
formulation, we provide:
- Variables and Constraints: the average number
of variables and constraints.
- #VI : for the DLSPSD2* formulation, the average
number of valid inequalities of type (2) added by
the cutting-plane generation procedure.
- #Opt : the number of instances out of the cor-
responding 30 instances that could be solved to
optimality within 20 minutes of computation.
- Gap0: the integrality gap, i.e. the relative dif-
ference between the lower bound provided by the
linear relaxation of the problem and the value of an
optimal solution. For the DLSPSD2* formulation,
we consider the lower bound obtained after the
cutting-plane generation procedure has stopped.
- #Nodes: the number of nodes of the search tree
explored before a guaranteed optimal solution is
found or the computation time limit of 20 minutes
is reached.
- CPUIP : the computation time in seconds re-
quired to �nd a guaranteed optimal solution. If
one could not be found, we use the computation
time limit of 1200 seconds.
- Gap: the gap obtained after 20 minutes of com-
putation between the best integer solution and the
best lower bound found.
For performance measures Gap0, Nodes, CPUIP

and Gap, we provide the average value (on the �rst
line) and the minimum and maximum values (in
brackets on the second line) for the considered set
of randomly generated instances.

Table 2 shows that the results obtained with
the DLSPSD2* formulation are much better than
the ones obtained with the DLSPSD1 formulation.
Namely, computation times are signi�cantly re-
duced and more instances can be solved to optimal-
ity within the time limit while using the DLSPSD2*
formulation.

This can be explained by the combination of two
advantages:
1. The lower bounds provided by the linear re-
laxation of the DLSPSD2* formulation are much

better than the ones obtained with the DLSPSD1
formulation. This formulation improvement is
achieved to a large extent thanks to the use of a
small number of valid inequalities (2). This can be
seen e.g. for set A instances for which the integral-
ity gap is reduced in average from 84% with the
DLSPSD1 formulation to 59% with the basic DL-
SPSD2 formulation and 4% with the strengthened
DLSPSD2* formulation.
2. The MIP size (number of variables and con-
straints) is signi�cantly reduced with the DL-
SPSD2* formulation. As a consequence, the time
spent at each node of the branch and bound tree to
solve the linear relaxation is shorter. This size re-
duction is explained by the fact that using the DL-
SPSD2* formulation, there is no need to introduce
explicit changeover time variables vijt for each pos-
sible transition between pairs of items (i, j). More-
over, the set of equalities (5)-(6) are su�cient to
ensure that positive changeover times between pro-
duction runs for di�erent items are respected. As
a consequence, the numerous inequalities needed in
the DLSPSD1 formulation to link changeover time
variables to setup and changeover cost variables can
be eliminated from the formulation.

Thus, thanks to tighter lower bounds and a re-
duced MIP size, the e�ciency of the branch and
bound procedure embedded in CPLEX solver is sig-
ni�cantly improved while using the DLSPSD2* for-
mulation.

3.3 Results with the MIP formula-
tion DLSPSD2*

In order to further validate our approach, we
carried out additional computational experiments.
More precisely, we considered instances similar to
the ones studied in [5] and [9], i.e. instances for
which (N, T ) = {(5, 60), (10, 60)} (sets C-D). We
also used 3 additional sets of larger instances for
which (N,T ) = {(15, 60), (10, 90), (15, 90)} (sets E-
G).

Table 3 displays the detailed results obtained
with the DLSPSD2* formulation. We observe that:
- For medium size instances (sets C-D), 98% of the
generated instances could be solved to optimality
within 20 minutes of computation.
- For large size instances (sets E-G), 42% of the
generated instances could be solved to optimality
within the computation time limits. Moreover the
average remaining gap obtained after 20 minutes
of computation between the best integer solution
and the best lower bound found is small (3.6% on
average).

Thus, even if the proposed approach was imple-
mented on a computer with more computing power,
these results suggest the potential of the MIP mod-
elling approach to solve instances larger than the
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ones considered in [5] and [9].
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min

N∑

i=1

T∑
t=1

hiIit +
N∑

i=0

N∑

j=0

T∑
t=1

cijwijt (3)

Iit = Ii,t−1 + Pityit − dit ∀i = 1...N, ∀t = 1...T (4)

yi,t−1 =
N∑

j=0

wijt ∀i = 0...N, ∀t = 1...T (5)

yjt =
∑

i=0...N st t−Tij>0

wij,t−Tij ∀j = 0...N, ∀t = 1...T (6)

N∑

i=0

yit + vt = 1 ∀t = 0...T (7)

Iit ≥ 0 ∀i = 1...N, ∀t = 1...T (8)
yit ∈ {0, 1} ∀i = 0...N, ∀t = 0...T (9)
wijt ∈ [0, 1] ∀i = 0...N, ∀j = 0...N, ∀t = 1...T (10)
vt ∈ [0, 1] ∀t = 0...T (11)

Table 1: Mixed integer formulation DLSPSD2
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set A set B
MIP formulation DLSPSD1 DLSPSD2 DLSPSD2* DLSPSD1 DLSPSD2 DLSPSD2*
Variables 1167 960 960 7880 5720 5720
Constraints 2392 361 361 19946 1321 1321
#VI _ _ 124 _ _ 479
#Opt 27 30 30 0 0 30
Gap0(%) 84 59 4 92 68 5

[65;95] [47;69] [0;12] [80;96] [57;73] [0;13]
#Nodes 49362 738 3 2497 35497 100

[16;191523] [11;2780] [0;19] [391;4969] [24705;52968] [2;319]
CPUIP(s) 343 3 1 1200 1200 30

[3;1200] [0;8] [0;3] [1200;1200] [1200;1200] [3;100]
Gap (%) 2 0 0 81 33 0

[0;29] [0;0] [0;0] [60;91] [11;44] [0;0]

Table 2: Results for set A and B instances
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set C set D set E set F set G
Variables 2880 8580 17280 12870 25830
Constraints 1080 1981 2881 2971 4321
#VI 1084 1131 1093 2534 2517
#Opt 30 29 27 8 3
Gap0(%) 5 5 4 5 6

[1;13] [1;11] [2;6] [3;10] [2;17]
#Nodes 150 382 440 604 299

[0;832] [74;1385] [13;1217] [48;1085] [30;707]
CPUIP (s) 46 248 440 1089 1150

[9;168] [60;1200] [53;1200] [82;1200] [144;1200]
Gap(%) 0 0.01 2 3 5

[0;0] [0;0.13] [0;2] [0;7] [0;15]

Table 3: Results for set C-G instances obtained with the DLSPSD2* formulation
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