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1. Introduction

In Markov decision models (MDPs), discounting is used to model the fact that the further
in the future something happens, the less important it is. Simple discounting, where
the reward is multiplied by a constant discount factor at each epoch, arises naturally
in economics when considering constant rates of interest or inflation. Such models are
relatively easy to analyze, and it is well known [5] that for this case there exists an
optimal policy which is stationary, namely independent of the time and of past states.
Because it can be intuitively understood and handily analyzed, simple discounting has
been thoroughly researched and applied to countless models—from machine learning,
computer networks to game theory and psychology.

Difficulties arise in models where the rate of discounting is not constant. The most
immediate example concerns interest rates, but it is definitely not the only one. In
models of human preferences, it makes sense to use discounting with a decreasing rate.
An intuitive reason for this is the fact that while tomorrow may be considerably less
important than today, a year and a day from now is just about the same as a year from

now. “Hyperbolic discount functions”, which are of the form: (1 + αn)
−γ/α

with α, γ > 0,
feature a decreasing discounting rate, and are reported to effectively model psychological
preferences (see [3] for presentation, and [6] for critique).

Because of the difficulty of analyzing decision processes with general discount functions,
most theoretical results are obtained with “toy functions”. A noticeable example is the
function f =

[

1, δβ, δβ2, δβ3, . . .
]

, which in a sense has a decreasing discounting rate for
0 < δ < 1, and often serves as a replacement of the hyperbolic function mentioned above
(see, for example, [4]).

In models of “learning curves”, the cost of “getting to know” the system is added to the
original criterion. The discounting in the added learning curve criterion typically has a
power-law form, though some models have geometric learning curves. The addition of an
exponentially-decreasing learning curve to a discounted Markov decision model results in
a weighted discounted criterion—that is, a criterion that is the sum of several standard
discounted criteria. A theory for finite models with weighted discounted criteria was
developed by Feinberg and Shwartz [2]. The main results are that for such criteria there
are optimal policies that are stationary from some finite time onwards, calledN -stationary
policies, and an algorithm for the computation of these policies is given.

Following the lines of the weighted discounted theory, we define the class of “exponentially
representable” functions, prove that when they are used as discount functions there exist
N -stationary optimal policies, and describe a computation algorithm. These functions
may display the decreasing discount rate of the hyperbolic discount functions. However,
we show that the hyperbolic discount functions are not exponentially representable, and
moreover—that exponentially representable discount functions cannot be used to model
power-law learning curves.

In the rest of this section we give definitions of MDPs, relevant value criteria,N -stationary
policies and exponentially representable functions. We then state our main result formally.
In section 2 we develop the algorithm for the computation of the optimal policy and
through it prove our result. In section 3 we further discuss the meaning of exponential
representability and which functions belong in that class. Finally, in section 4 we give
an example of a monotonically decreasing discount function for which there is no N -
stationary optimal policy, in order to demonstrate that the existence of the N -stationary
property is not always assured.

1.1. Markov Decision Processes. Consider a discrete time process with a finite state
space X, finite action sets A(x) with A =

⋃

x∈X
A(x). Let xn (an) denotes the state

(resp. chosen action) at time n. The transition probability are p (xn+1|xn, an). The
immediate reward at time n is r (xn, an).

We call hn = x0a0 · · ·xn−1an−1xn the history at time n. A policy is a mapping of every
history hn to a probability measure π (·|hn) on A(xn). Policies in which only one action is



possible for each given history are called deterministic, so that an = π(hn). Policies which
depend only on the current state and the time, i.e. π (·|hn) = π (·|xn, n) are called Markov
policies, and Markov policies which do not depend on the time are called stationary.

For every initial state x ∈ X, the discounted criterion assigns to each policy a value

V β (x;π) = E
π
x

∞
∑

n=0

βnr (xn, an) (1)

where E
π
x is the expectation operator corresponding to the probability measure on the

process induced by policy π, given that h0 = x, and 0 < β < 1 is called the discount
factor. Since r (x, a) is bounded, the value is always finite.

In this work we discuss a more general discounted criterion, in which βn is replaced with
a discount function f(n):

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an) . (2)

A sufficient condition for the above summation to be well defined is |f(n)| ≤ Kβn for
some 0 < β < 1 or, equivalently, f(n) = βng(n) for 0 < β < 1 and some bounded function
g(n). We call a function that satisfies this condition exponentially bounded.

A third relevant criterion is the weighted discounted criterion, which is a sum of a finite
number of standard discounted criteria, each with a possibly different immediate reward
function:

V wd (x;π) = E
π
x

∞
∑

n=0

K
∑

k=1

βnk rk (xn, an) with β1 > β2 > · · · > βK . (3)

Let us define the maximal and minimal values of an MDP, respectively:

V (x) ≡ sup
π
V (x;π) V −(x) ≡ inf

π
V (x;π) . (4)

An optimal policy is a policy for which V (x;π) = V (x), for all x ∈ X.

1.2. Two further definitions. Before stating our main result, two more concepts need
to be defined.

Definition 1.1. A Markov policy π is called N-stationary if

π(x, n) = π(x,N) ∀x ∈ X, n ≥ N . (5)

Definition 1.2. A function f : {0, 1, . . .} → R is called exponentially representable if
there exist sequences {ck}

∞
k=1 and {βk}

∞
k=1 such that:

• {βk}
∞
k=1 is positive, strictly decreasing and β1 < 1.

• f(n) =
∑∞

k=1 ckβ
n
k , and the sum converges absolutely, starting from some time

N <∞.



Example 1.3. The function

f(n) =
1

e− 1

∞
∑

k=1

1

k!

(

βk0
)n

=
eβ

n
0 − 1

e− 1
(6)

is exponentially representable for 0 < β0 < 1. It is logarithmically convex ((log f (x))
′′

>
0), which is equivalent to a decreasing rate of discounting, since the rate is inversely
proportional to f (n+ 1) /f (n). This is the required property in the human preferences
models mentioned in the introduction.

1.3. The main result. Our starting point will be the following result on the structure
of optimal policies under criteria (3) and (2).

Theorem 1.4. In a weighted discounted MDP (3), there exists an optimal policy which
is Markov and deterministic. This holds also in MDPs with general discounting (2) when
the discount function is exponentially bounded.

For the case of a weighted discounted MDP, a full proof (under more general conditions)
is given in [2], Theorem 2.2. The idea of the proof is to embed the process in an ordinary
discounted MDP with a countable state space, where the time is added to the state, and
use the standard result that discounted criteria have deterministic and stationary optimal
policies. The same embedding can be carried out in the case of a single general discount
function which is exponentially bounded. This theorem also extends straightforwardly
to a criterion that is a sum of several criteria with general discount functions, as long as
those functions are exponentially bounded.

From now on our discussion will focus on exponentially representable discount functions.
Since those functions are exponentially bounded, in light of Theorem 1.4 we can and
shall restrict our policies to be Markov and deterministic unless specifically mentioned
otherwise. We can now state our main result.

Theorem 1.5. Consider a finite Markov Decision Process with an exponentially repre-
sentable discount function. There exists an N -stationary optimal policy for this problem,
with N <∞. This policy can be found using Algorithm 2.6.

In what follows, we prove our result by construction.

2. Optimal policies for exponentially representable discount functions

The generalized discounted criterion in (2), with f (n) exponentially representable, is
an infinite version of the weighted discounted criterion. To see this, find {ck}

∞
k=1 and

decreasing {βk}
∞
k=1 such that f(n) =

∑∞
k=1 ckβ

n
k , and rewrite the criterion as

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an) = E
π
x

∞
∑

n=0

∞
∑

k=1

βnk ckr (xn, an) (7)

which is an infinite weighted discounted criterion with rk (xn, an) = ckr (xn, an).

In the rest of this section we adapt the algorithm described in part 3 of [2] to the case of
infinite weighted discounted criteria induced by an exponentially representable discount
function. To this end, we will review the construction of the algorithm, and add to the
proofs as necessary. We will also prove that this algorithm halts after a finite number of
iterations, and provide a bound on that number. Let

Vk (x;π) = E
π
x

∞
∑

n=0

βnk ckr (xn, an) (8)



denote the value of the kth summand in (7), and let Vk (x) and V −
k (x) be the maximal

and minimal value for initial state x, respectively. For each x ∈ X, we define a “conserving
set”:

Γ1(x) ≡







a ∈ A(x) | V1(x) = c1r(x, a) + β1

∑

y∈X

p (y|x, a) V1(y)







. (9)

It is easy to see that Γ1(x) is the set of optimal actions in state x for criterion V1, and
thus a policy is optimal for this criterion if and only if it chooses actions from the set
Γ1 (x) when in state x: see Lemma 3.1 in [2].

Let X1 = {x ∈ X | Γ1(x) 6= A(x)} be the set of states for which suboptimal actions for
criterion V1 exist. If X1 6= ∅, define:

ε1 ≡ min
x∈X1,a∈A(x)\Γ1(x)



V1(x) − c1r(x, a) − β1

∑

y∈X

p (y|x, a)V1(y)



 . (10)

ε1 is the value of the smallest “mistake” one can make in the choice of a single action,
with regard to criterion V1. If X1 = ∅ define N1 ≡ 0. Otherwise define:

N1 = min

{

n ≥ 0 | ε1 >
∞
∑

k=2

(

βk
β1

)n

max
x∈X

(

Vk(x) − V −
k (x)

)

}

. (11)

Clearly, N1 “suffers” from the transition to an infinite sum, and we need to show that it
is well defined and finite.

Lemma 2.1. If f(n) is exponentially representable, N1 is well defined and finite.

Proof. Define:

S(n) =

∞
∑

k=2

(

βk
β1

)n

max
x∈X

(

Vk(x) − V −
k (x)

)

. (12)

Let M = maxx∈X,a∈A(x) r (x, a) − minx∈X,a∈A(x) r (x, a) denote the span semi-norm of
r (x, a). Using this definition, it is straightforward that

∀k : max
x∈X

(

Vk(x) − V −
k (x)

)

≤ |ck|
M

1 − βk
≤ |ck|

M

1 − β1
(13)

and therefore

S(n) ≤
β−n

1 M

1 − β1

∞
∑

k=2

βnk |ck| . (14)

Since f(n) is exponentially representable,
∑∞

k=2 β
n
k |ck| <∞ starting from some N <∞.

Therefore, for n > N we may write S(n) ≤ (β2/β1)
n−N

S (N) −→
n→∞

0 . This means that

there exist Ñ such that ε1 > S(Ñ), which proves N1 is finite.

Remark 2.2. Consider a very simple model with only one state x0 and only two actions
a1 and a2 for which r (x, a1) = 1 and r (x, a2) = 0. Then, maxx∈X

(

Vk(x) − V −
k (x)

)

=

|ck| /1 − βk for any k, and thus S(n) = β−n
1

∑∞
k=2 β

n
k |ck|. In this model, S(n) −→

n→∞
0

only if
∑∞
k=2 β

n
k ck converges absolutely for some N <∞, i.e. only if f(n) is exponentially

representable. It follows that, for a given discount function f , the bound N1 is well-defined
for any model if and only if the discount function is exponentially representable.



Having made sure that all the basic definitions of the weighted discounted theory are still
meaningful, we are ready to rephrase the theory’s main lemma. Using the definitions (9)
and (11) of Γ1(x) and N1 respectively,

Lemma 2.3. Consider a finite Markov Decision Process with an exponentially repre-
sentable discount function. If σ is an optimal Markov policy for this problem, then for
every n ≥ N1 and every state z ∈ X such that P

σ
x {xn = z} > 0, we have σ(z, n) ∈ Γ1(z).

Proof. Due to Lemma 2.1, the proof is essentially the same as that of Lemma 3.3 in [2],
and is therefore omitted. See [1] for details.

If the set Γ1(x) is a singleton for all x ∈ X, then the lemma requires any optimal policy to
be N1-stationary, and determines the stationary part of the policy. If it is not a singleton,
we know that after time N1 our action sets reduce to Γ1(x) and for every admissible
policy, V1 will attain its maximum value and therefore be irrelevant.

Our task therefore becomes finding the optimal policy for the weighted sum starting from
the second discount factor, with the action sets restricted to Γ1. Clearly, we may iterate
the above process. For this purpose define recursively for k > 1, the restricted action sets
in iteration k — Ak (x) = Γk−1 (x), the mth value function restricted to the kth action
set — V Ak

m (x), and similarly the minimal value function V −,Ak
m (x). Additionally:

Γk(x) ≡







a ∈ Ak(x) | V
Ak

k (x) = ckr(x, a) + βk
∑

y∈X

p (y|x, a) V Ak

k (y)







(15)

Xk = {x ∈ X | Γk(x) 6= Ak(x)} (16)

εk ≡ min
x∈Xk,a∈Ak(x)\Γk(x)



V Ak

k (x) − ckr(x, a) − βk
∑

y∈X

p (y|x, a)V Ak

k (y)



 (17)

Nk = min

{

n ≥ Nk−1 | εk >
∞
∑

m=k+1

(

βm
βk

)n

max
x∈X

(

V Ak
m (x) − V −,Ak

m (x)
)

}

(18)

where εk is taken to be ∞ in the case that Xk = ∅. Similarly to N1, Nk is well defined
when f (n) is exponentially representable. Using the above definitions, the following is
evident:

Lemma 2.4. Consider a finite Markov Decision Process with an exponentially repre-
sentable discount function. If σ is an optimal Markov policy for this problem, then for
every k ≥ 1, n ≥ Nk and state z ∈ X such that P

σ
x {xn = z} > 0, we have σ(z, n) ∈ Γk(z).

Proof. By induction using Lemma 2.3 and the above definitions.

We will now prove that iterating this procedure does indeed provide us with an N -
stationary policy after a finite and bounded number of computations.

Lemma 2.5. Consider a finite Markov Decision Process with an exponentially repre-
sentable discount function, and let S = |X|. Then for all k ≥ 2S − 1 and every x ∈ X,
Γk (x) = Γ2S−1 (x).

Proof. If Γ2S−1 (x) is a singleton for all x ∈ X, then the lemma is immediate. Otherwise,
let Φ = {φ1, φ2, ..., φL} be the set of stationary policies such that φi (x) ∈ Γ2S−1 (x) for
all x ∈ X, i = 1, 2, ..., L. For φ ∈ Φ, define fφ : [0, 1) → R

S as

[fφ (β)]s = E
φ
xs

∞
∑

n=0

βnr (xn, an) , (19)



so that Vk (xs;φ) = ck (fφ (βk))s. Let [Pφ]m,n ≡ p (xn|xm, φ (xs)) and [rφ]s = r (xs, φ (xs))

be the state transition matrix and reward vector induced by φi. Then

fφ (β) = rφ + βPφfφ (β) ⇒ fφ (β) = (I − βPφ)
−1
rφ . (20)

Since Pφ is a stochastic matrix, by the Perron–Frobenius theorem I − βPφ is invert-
ible for β ∈ [0, 1) and singular for β = 1. For a square invertible matrix M , M−1 =
adj (M) / det (M). Applying this relation to (20) reveals that every entry (coordinate) of
fφ is a rational function of β, with numerator degree S − 1 and denominator degree S.
We also know that every entry of fφ has a pole at β = 1, which possibly cancels with a
zero in some of the entries.

Since φ ∈ Φ if and only if it is optimal for all criteria Vk for k = 1, 2, ..., 2S−1 (under differ-
ent action sets for each k), all policies in Φ must have the same values for β1, β2, ..., β2S−1.
Consequently, for every i, j ≤ L:

fφi
(βk) = fφj

(βk) , ∀k = 1, 2, ..., 2S − 1 . (21)

Fix i and j and consider each entry of the vector equation fφi
(β)−fφj

(β) = 0 separately.
We find it is a polynomial equation of degree 2S − 2 (since the common poles at β = 1
cancel). However, according to (21), this polynomial has 2S − 1 distinct roots—and is
therefore identically zero. We conclude that fφi

(β) = fφj
(β) for all β ∈ [0, 1) and every

two policies φi, φj ∈ Φ, and accordingly Vk(x;φ) is the same over all φ ∈ Φ, for each x ∈ X

and k ≥ 2S−1. This means that for k ≥ 2S−1, all possible policies have identical values,
and will therefore all be optimal. Since the set of optimal policies remains constant, so
do the conserving sets.

We are now able to prove our main result.

Proof. [of Theorem 1.5] Suppose the given Markov Decision Process has state space of
size S, a finite action space, an exponentially representable discount function f(n) =
∑∞

k=1 ckβ
n
k , and immediate reward function r (x, a). Rewrite the criterion as an infi-

nite weighted discounted criterion, with discount factors {βk}
∞
k=1 and reward functions

rk (x, a) = ckr (x, a). Compute N2S−1 as defined in (18). Let π (x, n) denote an optimal
Markov policy for this problem. Applying Lemma 2.4, we may assume without loss of
generality that

π (z, n) ∈ Γ2S−1 (z) for all z ∈ X andn ≥ N2S−1 (22)

since when P
π
x {xn = z} = 0 we can change π so that π (z, n) ∈ Γ2S−1 (z) without changing

its (optimal) value. Write the value of the MDP as

V (x;σ) = E
σ
x

∞
∑

n=0

f(n)r (xn, an) = E
σ
x

N2S−1−1
∑

n=0

f(n)r (xn, an)

+ E
σ
x







E
σ
x







∞
∑

n=N2S−1

f(n)r (xn, an) |xN2S−1













= E
σ
x

N2S−1−1
∑

n=0

f(n)r (xn, an) +
∑

z∈X

P
σ
x

(

xN2S−1
= z

)

∞
∑

k=1

β
N2S−1

k Vk
(

z;σN2S−1

)

(23)

The expression
∑∞

k=1 β
N2S−1

k Vk
(

z;σN2S−1

)

in (23) can be optimized separately, since it

depends only on σ (x, n) for n ≥ N2S−1, while the expressions E
σ
x

∑N2S−1−1
n=0 f(n)r (xn, an)

and P
σ
x

(

xN2S−1
= z

)

depend only on the policy at times n < N2S−1. On the other hand,



by Lemma 2.5, for any policy π satisfying (22), πN2S−1 (x,m) = π (x, n+N2S−1) ∈ Γk (x)
for any x ∈ X, k ≥ 1 and m ≥ 0. Therefore Vk

(

z;πN2S−1

)

is constant over all such

policies, for each z ∈ X, and so is
∑∞

k=1 β
N2S−1

k Vk
(

z;πN2S−1

)

. This means that we can

choose the actions in πN2S−1 (x, n) arbitrarily from Γ2S−1 (x), and might as well make the
choice constant for all times n. This proves the existence of an N2S−1-stationary optimal
policy.

Before describing a computation method for the optimal policy, there is one more issue

that needs to be addressed. The computation of {Nk}
2S−1
k=1 involves evaluations of infinite

sums, which are unlikely to be feasible for non-trivial models. In order to avoid this, we
can instead find upper bounds N̂k ≥ Nk for each k, and compute an N̂2S−1-stationary
optimal policy with a stationary part determined by the conserving sets. One way to
find N̂k is to use the semi-norm bounds in (14). In each iteration, the semi-norm of
the reward function should be computed with respect to the restricted action set, and
therefore decrease.

Finally, the computation algorithm is stated.

Algorithm 2.6.

1. Find {βk}
∞
k=1 and {ck}

∞
k=1 of Definition 1.2, set S = |X| and k = 1.

2. Compute Γk (x) for all x ∈ X, εk and Nk or an appropriate upper bound.
3. If Γk (x) is a singleton for every x ∈ X, or k = 2S + 1, set N = Nk and continue.

Otherwise set Ak+1 (·) = Γk (·), increment k by 1 and go back to step 2.
4. Fix a stationary policy ψ, such that ψ (x) ∈ Γk (x) for all x ∈ X.
5. Compute an optimal Markov policy σ, for the N -step finite-horizon MDP, with state

space, action space and transition probabilities as the original model, immediate
reward function rn (x, a) = f (n) r (x, a), for n = 0, 1, ...N − 1 and terminal reward

E
ψ
xN

∞
∑

n=0

f (n+N) r (xn+N , an+N ) =

∞
∑

k=1

βNk Vk (xN ;ψ) . (24)

6. Output the N -stationary optimal policy

π (x, n) =

{

σ (x, n) n < N

ψ (x) n ≥ N
(25)

The optimal N -stationary policy in times before N can be computed using standard
Dynamic Programming methods. For more details, see [5].

Remark 2.7. Our results can be extended to criteria of the form:

V (x;π) = E
π
x

∞
∑

n=0

K
∑

k=1

fk (n) rk (xn, an) , (26)

where for each k, fk (n) is exponentially representable with representation fk (n) =
∑∞

i=1 ci,kβ
n
i,k, and the additional condition

βi,k > β1,k+1 , ∀i, k (27)

for every i and every k. Lemmas 2.3 and 2.4 can be extended by changing the definitions
of the Nk’s to include the rest of the discount functions, with condition (27) making
sure they remain well defined. The N -stationary optimal policy can then be obtained
by finding Γ2S−1,1 (x) for the first discount function. In the case it is not a singleton,
the action space will be restricted appropriately, and the procedure will be applied to
f2. This may continue until Γ2S−1,K (x) is computed, from which we may choose the
stationary part of the optimal policy arbitrarily. Finally, we remark that if rk (·) = bkr (·)
for some function r (x, a), the procedure will end in the computation of Γ2S−1,1 (x), since
afterwards all permissible policies for the stationary part will have the same value.



3. Structure and limitations of exponentially representable functions

An important property of exponentially representable functions is that they behave
asymptotically as exponential functions:

Lemma 3.1. Let f (n) be an exponentially representable function. Then there exist 0 <
β < 1 such that

lim
n→∞

β−nf (n) = c 6= 0 and c <∞ . (28)

Proof. Write f (n) =
∑∞
k=1 ckβ

n
k . Without loss of generality, we may assume that c1 6= 0.

Since f is exponentially representable, we have absolute convergence from some time
N <∞. Therefore, for n > N and some C <∞:

β−n
1

∣

∣

∣

∣

∣

∞
∑

k=2

ckβ
n
k

∣

∣

∣

∣

∣

≤ β−n
1

∞
∑

k=2

|ck|β
n
k <

βn−N2

βn1

∞
∑

k=2

|ck|β
N
k = C

(

β2

β1

)n

→
n→∞

0 . (29)

Consequently,

lim
n→∞

β−n
1

∞
∑

k=2

ckβ
n
k = 0

and choosing β ≡ β1 we have,

lim
n→∞

β−nf (n) = lim
n→∞

c1 + β−n
1

∞
∑

k=2

ckβ
n
k = c1 6= 0 and c1 <∞ .

Functions with power-law form, like (1 + n2)−1 or the hyperbolic discount function men-
tioned in the introduction do not satisfy the conclusion of Lemma 3.1, and are therefore
not exponentially representable. The same holds for sub-exponential functions, like 1/n!

and e−n
2

. Moreover, functions of the form g (n)βn, where g (n) → 0 or g (n) → ∞ sub-
exponentially, are also not exponentially representable for the same reason. Examples are
nβn and βn/ (1 + n) for some 0 < β < 1.

4. A cautionary note

When a discount function decreases monotonically it seems natural that it should produce
a behavior that is monotonic, or stationary, in some sense. However, this intuition is not
true: below we provide an example of a discount function and a model for which there
is no N -stationary optimal policy. By our previous results, the discount function is not
exponentially representable.

Consider the function f(n) = βnh(n), with some 0 < β < 1/2 and

h(n) =

{

2 nmod 6 = 0

1 otherwise
= [2, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . . ] (30)

which is periodic with period 6. The condition of Lemma 3.1 does not hold for f(n), and
it is therefore not exponentially representable: it is, however, monotone decreasing.

Now consider the following (deterministic) model:



X = {1, 2, 3, 4, 5} , A(1) = {a1, a2} , A(2) = A(3) = A(4) = A(5) = {a} (31)

p (2|1, a1) = p (3|1, a2) = p (4|3, a) = p (5|4, a) = p (1|5, a) = p (1|2, a) = 1

with the immediate reward function

r (1, a1) = 3 , r (1, a2) = 4 , r (2, a) = r (3, a) = r (4, a) = r (5, a) = 0 . (32)

It can be shown [1] that stationary policies are suboptimal when x0 = 1 and, moreover,
there cannot be an N -stationary optimal policy.
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