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a b s t r a c t

We show that the 2-opt heuristic for the traveling salesman problem achieves an expected approximation
ratio of roughly O(

√
n) for instances with n nodes, where the edge weights are drawn uniformly and

independently at random.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The traveling salesman problem (TSP) is one of the most
important problems in combinatorial optimization: Given a
complete graphwith edgeweights, the goal is to find aHamiltonian
cycle (also called a tour) of minimumweight. 2-opt is probably the
mostwidely used local searchheuristic for the TSP. It incrementally
improves an initial tour by exchanging two edges of the tour with
two other edges, until a local optimum is reached. More formally:
Let w be the edge weights. If {a, b} and {c, d} are two edges of the
current cycle such that a, b, c, d appear in that order in the cycle,
thenwe can improve the tour by replacing {a, b} and {c, d} by {a, c}
and {b, d}, provided that w({a, c}) + w({b, d}) < w({a, b}) +
w({c, d}). On randomly generated instances, 2-opt comes within
a small percentage of the global optimum [1]. Chandra et al. [2]
analyzed 2-opt’s worst-case approximation ratio: On instances
that fulfil the triangle inequality it isO(

√
n), where n is the number

of nodes. This means that the worst local optimum is within a
factor of O(

√
n) of the global optimum. For Euclidean instances, 2-

opt’s worst-case approximation ratio is O(log n). Englert et al. [3]
showed that the expected approximation ratio is O( d

√
φ) for

d-dimensional Euclidean instances that are drawn according to
density functions bounded by φ.
To explain the good performance of subtour patching for TSP,

Karp [4] analyzed its approximation performance in a simple
probabilistic setting: All edge weights are drawn uniformly and
independently at random from the interval [0, 1]. In this setting,
the triangle inequality is usually not fulfilled. In theworst case, TSP
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cannot be approximated at all without triangle inequality, and also
2-opt cannot provide any approximation guarantee.
WeuseKarp’s probabilisticmodel [4] to analyze the approxima-

tion performance of 2-opt. Let WLOn be the weight of the worst,
i.e., heaviest, locally optimal tour of a graph of n nodes with ran-
dom edge weights, and let OPTn be the weight of an optimum tour.
We prove an upper bound forWLOn that holds with high probabil-
ity (Theorem 2), and we bound the expected approximation ratio
(Theorem 4).

2. Approximation performance of 2-opt

First, we bound the probability that a specific tour is locally
optimal, provided that it contains enough ‘‘heavy’’ edges. This
lemma is the crucial ingredient for Theorem 2.

Lemma 1. Let H be any fixed Hamiltonian cycle, and let η ∈ (0, 1].
Assume that H contains at least m ≥ 4 edges of weight at least η.
Then

P
(
H is locally optimal

)
≤ exp(−η2m2/16).

Proof. The tour H contains m heavy edges. For simplicity, we
assume that m is even. (Odd m can be handled similarly.) Thus,
we can find at least m/2 pairwise non-adjacent edges among
them. Consider any two edges e, e′ of them. Let f , f ′ be the two
replacement edges for e and e′. If both w(f ) < η and w(f ′) < η,
then surely replacing e, e′ by f , f ′ improves the tour, and H would
not be locally optimal. By independence, P

(
w(f ), w(f ′) < η

)
=

η2.
There are

(
m/2
2

)
=

m2−2m
8 ≥

m2
16 possible choices for e and e

′,

and all of them result in different replacement candidates f and f ′.
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(The inequality holds sincem ≥ 4.) This yields

P
(
H is locally optimal

)
≤
(
1− η2

)m2/16
≤ exp

(
−η2m2/16

)
. �

Theorem 2. For any c > 0, we have

P
(
WLOn ≥ (17+ c) ·

√
n · (log n)3/2

)
≤ exp(−cn log n).

Proof. Let η = (17+c) ·
√
log n/n. Letmi = 2−in, and let ηi = 2iη.

If i ≥ log n, then mi < 4 and ηi > 1. Thus, it suffices to consider
i ∈ {0, . . . , log n− 1} in the following. If for all i, a tour H does not
contain more thanmi edges of weight at least ηi, then

w(H) ≤
log n−1∑
i=0

miηi+1 = (17+ c) · (log n)3/2 ·
√
n.

Fix any tour H . The probability that H is locally optimal,
provided that H contains at least mi edges of weight at least ηi for
some fixed i, is exp(−η2n2/16) by Lemma 1. By Boole’s inequality,
the probability that H is locally optimal, provided that there exists
an i ∈ {0, . . . , log n− 1} for which H contains at least mi edges of
weight at least ηi, is atmost log n·exp(−η2n2/16). Again by Boole’s
inequality, the probability that one of the n! possible tours is locally
optimal, provided that it contains at leastmi edges of weight ηi for
some i, is at most

n! · log n · exp(−η2n2/16) ≤ exp (−cn log n) ,

which is the desired bound. �

Since OPTn and WLOn are not independent, we do not have
E
(WLOn
OPTn

)
=

E(WLOn)
E(OPTn)

. In order to bound the expected approximation
ratio, we need the following lower bound for OPTn. Combining this
lower boundwith Theorem 2 yields our second result (Theorem 4).
Lemma 3. For any n ≥ 2 and c ∈ [0, 1], we have P
(
OPTn ≤ c

)
≤ cn.

Proof. Fix any tour H . By independence, P
(
w(H) ≤ c

)
=

cn
n! .

(This can be proved by induction on n.) Using Boole’s inequality,
the probability that there exists a tourH withw(H) ≤ c is bounded
as claimed. �

Theorem 4. We have

E
(
WLOn
OPTn

)
∈ O

(√
n · (log n)3/2

)
.

Proof. Assume that WLOn /OPTn exceeds 2c2 ·
√
n · (log n)3/2 for

c ≥ 17. Then WLOn ≥ (17 + c) ·
√
n · (log n)3/2 or OPTn ≤

1
c . The probability that any of these events happens is at most
c−n + exp(−cn log n) = Pc . By substituting x = 2c2, we obtain

E
(
WLOn
OPTn

)
≤
√
n · (log n)3/2 ·

∫
∞

578
P√x/2 dx

+O
(√
n · (log n)3/2

)
∈ O

(√
n · (log n)3/2

)
since the integral evaluates to O(1) for sufficiently large n. �
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