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Abstract

The Perspective Reformulation generates tight approximations to MINLP problems with semicontinuous variables.

It can be implemented either as a Second-Order Cone Program, or as a Semi-Infinite Linear Program. We compare

the two reformulations on two MIQPs in the context of exact or approximate Branch-and-Cut algorithms.

Key words: Mixed-Integer Non Linear Programs, Reformulations, Second-Order Cone Programs, Valid Inequalities, Unit
Commitment problem, Portfolio Optimization

1. Introduction

Semi-continuous variables are very often found in
models of real-world problems such as production
planning problems [17,5,7,8], financial trading and
planning problems [10,6], and many others [4,1,9].
These are variables that are constrained to either as-
sume the value 0, or to lie in some given convex com-
pact set P ⊆ R

m; in our applications P will always
be a polyhedron. Often 0 /∈ P . For example, this
the case when the variable represents the output of
a production process that has a “nonzero minimum
producible amount”, but that can be switched off al-
together. Alternatively, 0 may belong to P , but one
may incur in a fixed cost c to “activate” the process
(produce a nonzero amount).
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We will consider optimization with n semi-
continuous variables pi ∈ R

mi for each i ∈ N =
{1, . . . , n}. Assuming that each Pi = {pi : Aipi ≤
bi} has the property that {pi : Aipi ≤ 0} = {0},
each pi can be modeled by using an associated bi-
nary variable ui. We will consider Mixed-Integer
NonLinear Programs (MINLP) of the form

min g(z) +
∑

i∈N fi(pi) + ciui (1)

Aipi ≤ biui i ∈ N (2)

(p, u, z) ∈ O (3)

u ∈ {0, 1}n , p ∈ R
m , z ∈ R

q (4)

where all fi and g are closed convex functions, z is
the vector of the non-semi-continuous variables, and
O is any subset of R

m+n+q (with m =
∑

i∈N mi),
representing the other constraints of the problem.

It is known that the convex hull of the (discon-
nected) domain {0} ∪ Pi of each pi can be conve-
niently represented in a higher-dimensional space,
which allows the derivation of disjunctive cuts for
the problem [14]. This leads to defining the Perspec-

tive Reformulation (PRef) of (MINLP) [3,5]

min g(z) +
∑

i∈N uifi(pi/ui) + ciui (5)

(2) , (3) , (4) .
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While (5) is undefined when some ui = 0, it can be
extended by continuity to allow for null values. This
results in (5) and (1) coincident for u ∈ {0, 1}n,
hence (PRef) is a “good” reformulation of (MINLP)
since its continuous relaxation, called the Per-

spective Relaxation (PRel), provides significantly
stronger bounds than the continuous relaxation of
(MINLP) [5,6,1,8,9]. We remark that uifi(pi/ui)
for ui ≥ 0 is the perspective function of fi(pi), a
well-known tool in convex analysis, hence the name.

However, an issue with (PRel) is the high non-
linearity in the objective function due to the added
fractional term. Two workable reformulations of
(PRel) have been proposed: one as a Second-Order
Cone Program (SOCP) [15,1,9], and the other as a
Semi-Infinite Linear Program [5]. These are recalled
in Section 2. In Section 3 we compare them, from a
computational standpoint, in the context of exact
or approximate Branch&Cut algorithms for two dif-
ferent Mixed-Integer Quadratic Programs (MIQP):
the Mean-Variance problem (§ 3.1) and the Unit
Commitment problem (§ 3.2), respectively.

2. The solution methods

2.1. SOCP reformulation

It is well-known that the epigraphs of many con-
vex functions can be represented by means of conic

inequalities ; this is in particular true for the per-
spective function of any SOCP-representable con-
vex function [2]. It is therefore not surprising that
(PRel) can be written as a SOCP, as recently pro-
posed in [1,9] following suggestions dating back to
[15], provided that the same is possible for (MINLP).
The reformulation of (PRel) as a SOCP is actually
quite simple in the quadratic case fi(pi) = aip

2
i +

bipi, as when ui > 0 a constraint ti ≥ aip
2
i /ui

can be algebraically transformed into the equivalent
(ti + ui)

2/4 ≥ aip
2
i + (ti − ui)

2/4, leading to the
Mixed-Integer SOCP

min g(z) +
∑

i∈N ti + bipi + ciui

√

aip2
i + (ti − ui)2/4 ≤ (ti + ui)/2 i ∈ N

(2) , (3) , (4) , t ∈ R
n
+ ,

which can be approached with solvers such as Cplex.
This can be more efficient than attacking (MINLP)
directly [1,9]. We call the above the Conic Program
(CP) reformulation.

2.2. Perspective Cuts

An alternative formulation [5] is based on the fact
that the epigraph of uf(p/u)+cu on conv( {0}∪P )
can be represented by the following (infinite) family
of linear inequalities, called Perspective Cuts (P/C),

v ≥ sp + (c + f(p̄) − sp̄)u (6)

indexed over all the (uncountably many) p̄ ∈ P and
s ∈ ∂f(p̄), where ∂f(p̄) denotes the subdifferential
of f at p̄. When f is quadratic, this leads to the
following Semi-Infinite MINLP

min g(z) +
∑

i∈N vi

vi ≥ (2aip̄i + bi)pi + (ci − aip̄
2
i )ui

p̄i ∈ Pi

i ∈ N

(2) , (3) , (4) , v ∈ R
n ,

which we call the P/C formulation of (PRef).
While this problem cannot be solved directly, it
lends itself nicely to iterative approximation tech-
niques whereby a (small) finite subset of the P/C
(6) are kept, the current solution (p∗, u∗, v∗) of the
relaxation is produced, and all the violated P/C
with p̄i = p∗i /u∗

i (assuming 0/0 = 0) are added.
This procedure can easily be implemented by using
the standard tools made available by off-the-shelf
solvers such as Cplex. Again, this is usually more
efficient than approaching (MINLP) directly [5,6,8].

2.3. Features comparison

The two formulations have different potential
strengths and weaknesses. CP is more appealing
because it can be solved one-shot, instead of re-
quiring a—theoretically, infinite—iterative process.
However, it can only be used if the fis are SOCP-

representable, at least approximately [13]. Further-
more, SOCP-representing a function typically re-
quires the introduction of auxiliary variables, whose
number, roughly speaking, grows as the function
becomes “more complex”. Finally, conic programs
require interior-point solution methods, which are
less efficient than active-set ones in the context of
enumerative approaches [16]. On the contrary, the
P/C formulation can be used even if the fis are not

SOCP-representable, it always requires only one

additional variable vi for each i ∈ N , irrespective of
the “complexity” of fi, and (PRel) is a LP or QP if
g and O are “simple enough”, allowing to use more
reoptimization-friendly active-set methods. Of the
other hand, repeated solutions of the approximated
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versions of (PRel) are needed. Furthermore, if g and
O are nonlinear then interior-point approaches may
need to be used also for P/C, possibly negating it a
potential advantage.

In the following, we will compare CP and P/C
on the case where (MINLP) is a MIQP. This allows
both approaches to be implemented within the same
general-purpose solver, making the comparison be-
tween them as fair as possible. Besides, this is in
some sense the “best case” for both approaches: in
CP it only require one extra variable for each i, thus
resulting in the smallest (all the rest being equal)
formulation, and in P/C it allows the use of active-
set solvers.

2.4. Implementation details

For our experiments we have used Cplex 11,
which allows to directly input the CP formula-
tion as a Mixed-Integer Quadratically Constrained
Quadratic Program (QCQP). As for the P/C formu-
lation, the dynamic generation of (6) can be easily
implemented by means of the cutcallback proce-
dure. Thus, apart from the basic formulation, the
same sophisticated tools (valid inequalities, branch-
ing rules, . . . ) are used for both. A few differences
remain: for instance, the need for invoking the call-
back functions disables the—allegedly—more effi-
cient dynamic search of Cplex 11 for P/C, whereas
it is used with CP. Apart from these, the very same
machinery is used with both formulations, allowing
a fair comparison.

The tests have been performed on an Opteron 246
(2 GHz) computer with 2 GigaBytes of RAM, run-
ning Linux Fedora Core 3. Unless otherwise stated,
the default required gap for Mixed-Integer programs
(0.01%) has been set; a maximum time limit of 24
hours (86400 seconds) of CPU time has been set.

3. Computational results

3.1. Markowitz Mean-Variance model

A set of n risky assets are available for purchase;
for each asset i, the expected unit return µi for the
considered time horizon is known, and minimum and

maximum buy-in thresholds 0 < pmin
i < pmax

i are
set on the purchasable quantity. The Mean-Variance
(MV) model with minimum buy-in thresholds in
portfolio optimization

min pT Qp

ep = 1 , µp ≥ ρ , u ∈ {0, 1}n

uip
min
i ≤ pi ≤ uip

max
i i ∈ N ,

(7)

where Q � 0 is the n×n variance-covariance matrix
and e is the all-ones vector, requires the selection of
a minimum-risk (as measured by variance) portfolio
produceing a desired level of return ρ. This MIQP
has a very “simple” structure, consisting almost only
of the nonlinear semicontinuous variables; however,
it does not directly qualify for (PRef), as the cost
function is nonseparable. This can be dodged with a
reformulation trick first proposed in [5], and some-
what reminiscent of the so-called Larangian Decom-

position; compute a diagonal matrix D � 0 such
that R = Q − D � 0, change the objective function
to pT Dp + zT Rz, and add the additional constraint
z = p. In this way, the perspective reformulation
can be applied to the—now, separable—p variables,
while all the “nonseparability” in the objective func-
tion is moved to the “other” variables z. An efficient
and effective way for computing a “large” D is by
solving a single SemiDefinite Program [6].

We have compared P/C and CP on 90 randomly
generated MV instances, described in [6] and freely
available at

http://www.di.unipi.it/optimize/Data .
The instances are characterized by the value of n∈
{200, 300, 400}, and by the dominance index of Q,
i.e., the average over all i ∈ N of 1−

∑

j 6=i |Qij |/Qii,
measuring how much the matrix is diagonally domi-
nant; this turned out to have a significant impact on
the effectiveness of the (PRef) [6]. The “+”, “0” and
“−” instances have, respectively, strongly, weakly,
and strongly not diagonally dominant Q (the domi-
nance index is ≈ 0.6, ≈ 0 and ≈ −0.5, respectively).
For each combination, 10 instances are generated.

In Table 1 we report results of four different vari-
ants. For P/C, we have tested both with default
Cplex settings, which lead to using the quadratic

simplex for solving the relaxations during the B&C,
as well as with forcing Cplex to use its IP algo-
rithm throughout all the search. For CP, we have
tested both with default Cplex settings and with
miqcpstrat = 2, which implements a linearization-
based method for the solution of QCQPs (new to
Cplex 11) akin to [11,12,17]. In the Table, columns
“nds” and “time” report the number of nodes in the
B&C tree and the total running time (in seconds)
required by each approach, while column “gap” re-
ports, only for those cases where not all the instances
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could be solved to optimality within the allotted
time limit, the attained gap (in percentage) at termi-
nation. The number in parenthesis next to the gap is
the number of unsolved instances. Columns “LPs”
(resp. “QPs”, “CPs”) and “t/LP” (resp. “t/QP”,
“t/CP”) report respectively the total number of Lin-
ear (resp. Quadratic, Conic) Programs solved, and
the average time required for solving one of them.

The results clearly favor P/C over CP. Using the
default quadratic simplex allows extremely quick re-
optimization, and therefore enumeration of enough
B&C nodes to solve even the largest instances. Us-
ing the IP algorithm instead often has a significant
positive effect on the number of explored nodes.
The reason is not very clear; apparently, the “more
interior” solutions it generates help the branching
rules to perform better. However, since the cost per
relaxation can be more than two orders of magni-

tude higher, P/C-IP is never competitive with P/C.
It is instead quite competitive with CP, which re-
quires a comparable (often slightly smaller) number
of nodes, but whose relaxation cost is even higher by
at least one order of magnitude, often more. Using
the linearization-based method provided by Cplex

produces mixed results: the cost per relaxation does
indeed decrease very significantly, although that of
standard P/C is still considerably lower, but the
number of B&C nodes, and especially the number
of LPs, is significantly larger than in all other cases.
The net result is that while the miqcpstrat = 2

setting does improve on the results of standard CP
for the “easy +” instances, where the quality of the
bound is better, it actually worsens them in all other
cases. All in all, the P/C reformulation, especially
when the quadratic simplex is used, is by far the
more efficient one in this case.

3.2. The Unit Commitment problem

The Unit Commitment (UC) problem in electri-
cal power production requires to optimally operate
a set I of thermal generating units and a set H of
hydro generating units to satisfy a given total power
demand on each of a set T of discretized time in-
stants, covering some time horizon (e.g., hours in a
day or a week). Each thermal unit i ∈ I is char-
acterized by a minimum and maximum power out-
put 0 < pmin

i < pmax
i , when the unit is operational,

and by a convex quadratic power (fuel) cost func-
tion fi(p) = aip

2 + bip + ci. Thus, UC is a MIQP
with n = |T | · |I| semi-continuous variables. Besides
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these, the problem includes several other groups of
variables and constraints. We will not describe the
complete formulation here for space reasons; the in-
terested reader is referred e.g. to [7,8]. It is how-
ever worth mentioning that thermal units are sub-
ject to minimum up- and down-time and ramp rate

constraints, hydro units are subject to mass balance

and reservoir volume constraints, while the inter-
connecting electrical network adds spinning reserve

and capacity constraints. What is relevant here is
that UC problems have a “rich” structure, besides
that of nonlinear-cost semicontinuous variables.

We have compared P/C and CP on a test bed of
randomly generated realistic instances already em-
ployed in [5,7,8], and freely available at the previ-
ously mentioned web address. In the tables, “p” is
number of thermal units (hence n = 24p, as the time
discretization is hourly on daily instances) and “h”
is the number of hydro units. The first half of the
tables, with h = 0, is therefore composed by “pure
thermal” instances, and each row reports averaged
results of 5 instances of the same size.

Table 2
Results for UC with optimality tolerance 0.01%

P/C CP

p h gap nds LPs time t/LP gap nds CPs time t/CP

10 0 4.3e2 7.8e2 14 0.018 5.8e2 1.0e3 20 0.021

20 0 5.0e4 5.8e4 6805 0.094 6.6e4 7.5e4 13392 0.145

50 0 0.08 1.7e5 2.1e5 86400 0.421 0.08 9.1e4 1.1e5 86400 0.781

20 10 1.1e4 1.3e4 161 0.014 1.4e4 1.8e4 626 1.937

50 20 5.5e5 6.6e5 29874 0.037 0.00 5.0e5 6.1e5 86400 0.460

75 35 0.01 8.5e5 1.0e6 73076 0.073 0.01 1.8e5 2.2e5 86400 0.314

Table 2 reports the results with standard optimal-
ity tolerance 0.01%. These are limited to smaller-size
instances, as none the approaches could solve any of
the largest-size ones within the 24 hours time limit.
The results confirm a distinct advantage of P/C over
CP, but of a largely reduced magnitude. This is due
to the fact that LPs are “only” up to two orders of
magnitude faster to solve than CPs, most often less,
as opposed to the 4+ orders of magnitude witnessed
in the MV case. This is likely due to the fact that
these instances have a much larger number of con-
straints and continuous variables, those devoted to
modeling the hydro units, and IP approaches have
a better asymptotic complexity than active-set ones
which actually shows in practical performances. In-
deed, relative performances of CP w.r.t. P/C seem
to improve as the size of the instances grow. Also,

P/C requires somewhat less nodes. Since the lower
bound is the same, the difference is likely due to the
fact that the corresponding formulation is a MILP,
for which more algorithmic options (such as Go-
mory cuts) are available with respect to the MI-
QCQP corresponding to CP. Specific tests, not re-
ported here for space reasons, have excluded that
the heuristics play a major role in this, as was the
case in [7].

Table 3
Results for UC with optimality tolerance 0.5%

P/C CP

p h gap nds LPs time t/LP gap nds CPs time t/CP

10 0 0.09 0 30 0.67 0.023 0.06 0 70 1.91 0.028

20 0 0.06 0 34 2.81 0.085 0.09 0 65 6.78 0.106

50 0 0.18 0 39 15.45 0.411 0.19 0 91 37.91 0.421

75 0 0.22 0 30 23.28 0.785 0.23 0 71 63.27 0.933

100 0 0.15 0 29 34.16 1.182 0.19 0 64 100.28 1.578

150 0 0.10 0 75 90.13 1.410 0.11 0 106 233.46 2.256

200 0 0.09 0 57 126.28 2.313 0.11 0 104 386.36 3.860

20 10 0.11 0 83 2.77 0.034 0.24 20 194 10.45 2.372

50 20 0.04 0 79 6.53 0.102 0.35 1 115 20.55 0.575

75 35 0.09 0 61 10.60 0.182 0.08 15 202 64.50 0.319

100 50 0.04 0 81 20.17 0.267 0.08 10 193 97.03 0.421

150 75 0.06 100 417 247.73 0.596 0.04 15 331 368.92 0.778

200 100 0.04 30 222 247.22 1.111 0.03 5 165 385.03 1.563

In order to test the approaches on larger instances
we also experimented with the much coarser opti-
mality tolerance of 0.5%. This is the advised value
for quickly obtaining approximated solutions when
the operational environment requires fast response
times [7,8]. The corresponding results, reported in
Table 3, confirm the previous analysis. All the pure
thermal instances are solved at the root node by
both reformulations. Despite the fact that P/C in-
herently requires repeated LP solutions due to the
iterative nature of the approach, CP ends up actu-
ally requiring more relaxation solutions than P/C
to construct a good feasible solution. LPs are still,
on average, faster than CPs, although much less so
than in the previous cases; this is due to the much
smaller number of relaxations solved overall, which
reduces the impact of reoptimization. The compar-
ison between the two approaches is somewhat com-
plicated by the fact that on hydro-thermal instances
the two reformulations require a different amount of
enumeration; however, overall P/C is about a fac-
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tor of three faster than CP, and the quality of the
obtained solution is most often slightly better. In-
terestingly, the miqcpstrat = 2 setting was found in
this case to be even less effective than for MV; the
results are not reported here due to space concerns.

3.3. Conclusion

The Perspective Relaxation is a useful tool for ob-
taining tighter lower bounds on nonlinear programs
with semicontinuous variables. Both the Conic Pro-
gramand the Perspective Cut reformulation allow to
exploit state-of-the-art, off-the-shelf solvers to com-
pute them. Currently, the P/C reformulation seems
to be favored, at least in the two applications that we
tested. This is mostly due to the much more efficient
reoptimization capabilities of active-set algorithms
with respect to Interior Point ones. It should be re-
marked that P/C may be less competitive for “more
nonlinear” problems than MIQPs, as discussed in
§2.3, where the “other” structures of the problem
(g, O) are inherently conic. Also, our results suggest
that the CP reformulation becomes more competi-
tive as the size of the instances grows, and for in-
stances with “rich” structure. However, even in that
case the use of active-set LP technology should not
be ruled out a priori. This has been recently shown
in [16], where an efficient LP approximation of the
Second-Order Cone (in a lifted space) is shown to
outperform IP methods in the context of the solu-
tion of MI-SOCPs precisely because of the vastly
superior reoptimization capabilities of the simplex
method, despite the fact that IP methods are much
better for the one-off solution of SOCPs. All in all,
for the current state of solution technology, and on
original formulations with linear constraints, the ap-
parently more awkward P/C reformulation seems to
have a computational edge over the more compact
an elegant CP one.
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