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with hyperedges
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Abstract

In this paper we give results related to a theorem of Szigeti that concerns

the covering of symmetric skew-supermodular set functions with hyperedges of

minimum total size. In particular, we show the following generalization using a

variation of Schrijver’s supermodular colouring theorem: if p1 and p2 are skew-

supermodular functions whose maximum value is the same, then it is possible to

find in polynomial time a hypergraph of minimum total size that covers both of

them. Note that without the assumption on the maximum values this problem

is NP-hard. The result has applications concerning the local edge-connectivity

augmentation problem of hypergraphs and the global edge-connectivity augmen-

tation problem of mixed hypergraphs. We also present some results on the case

when the hypergraph must be obtained by merging given hyperedges.

1 Introduction

In this paper we give generalizations of a theorem of Szigeti (Theorem 2.1 below)
that concerns covering symmetric skew-supermodular set functions with hyperedges.
Szigeti’s main motivation was local edge-connectivity augmentation of hypergraphs;
we will show other applications, too.

Given a finite ground set V , a set function p : 2V → Z ∪ {−∞} is called skew-
supermodular if at least one of the following two inequalities holds for every X, Y ⊆ V :

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (∩∪)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X). (−)

A set function is symmetric if p(X) = p(V −X) for every X ⊆ V . For an arbitrary
set function p we define the symmetrized of p by ps(X) = max{p(X), p(X)} for
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any X ⊆ V . Observe that the symmetrized of a skew-supermodular function is skew-
supermodular. Two sets X, Y ⊆ V are crossing if X ∩Y, V −X ∪Y, X−Y and Y −X
are all nonempty. A set function p : 2V → Z ∪ {−∞} is called crossing supermodular
(crossing negamodular, resp.) if it satisfies (∩∪) ((−) , resp.) whenever X and Y
are crossing. One can check that the symmetrized of a crossing supermodular or a
crossing negamodular function is skew-supermodular.

For a set function p : 2V → Z ∪ {−∞} we introduce the polyhedron

C(p) = {x ∈ RV : x(Z) ≥ p(Z) ∀Z ⊆ V, x ≥ 0}.

It is known that for a skew-supermodular function p this is an (integer) contrapoly-
matroid (for details see [1]).

An undirected hypergraph (or shortly hypergraph) H = (V, E) is a pair of a finite
set V and a family E of subsets of V (repetitions are allowed). The set V is called the
node set of the hypergraph, the family E is called the edge set of the hypergraph. An
element of E will be called a hyperedge.

In a hypergraph H, a path between nodes s and t is an alternating sequence of
distinct nodes and hyperedges s = v0, e1, v1, e2, . . . , ek, vk = t, such that vi−1, vi ∈ ei

for all i between 1 and k. H is connected if there is a path between any two distinct
nodes. A hyperedge e enters a set X if e∩X 6= ∅ and e∩ (V −X) 6= ∅. For a set X we
define dH(X) = |{e ∈ E : e enters X}| (the degree of X in H). This is a symmetric
submodular function.

Definition 1.1. Given a hypergraph H = (V, E) and sets X, Y ⊆ V , let λH(X, Y )
denote the maximum number of edge-disjoint paths starting at a vertex of X and
ending at a vertex of Y (we say that λH(X, Y ) = ∞ if X ∩ Y 6= ∅). The subscript H
may be omitted if no confusion can arise.

It is well known that Menger’s theorem can be generalized for hypergraphs:

Theorem 1.2. Let H = (V, E) be a hypergraph, and s, t ∈ V distinct nodes. Then

λH(x, y) = min{dH(X) : X ⊆ V, s /∈ X, t ∈ X}.

The hypergraph H is said to cover the function p : 2V → Z∪{−∞} if dH(X) ≥ p(X)
for every X ⊆ V . The total size of a hypergraph is the sum of the sizes of its
hyperedges. A hypergraph is said to be nearly uniform if the sizes of its hyperedges
differ by at most one. A set {v} containing exactly one element will also be called a
singleton and we will sometimes write d(v) instead of d({v}) for a set function d.

Our results are presented in the following two sections. In Subsection 2.1 we extend
the results of Szigeti [9] to the problem where a hypergraph covering a given skew-
supermodular set function should be constructed by merging some hyperedges of a
given hypergraph (Theorem 2.2).

Szigeti’s result easily implied a special case of the supermodular colouring theorem
of Schrijver [7]. We show in Subsection 2.2 an inverse implication: a variation of the
supermodular colouring theorem implies a strengthening of the result of Szigeti which
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states that there is a solution where the hypergraph is nearly uniform, i.e. the sizes
of the hyperedges differ by at most one (Theorem 2.10).

In Section 3 we present applications for the results given: besides local edge-
connectivity augmentation of hypergraphs we introduce the node-to-area connectivity
augmentation problem in hypergraphs and the global arc-connectivity augmentation
problem of mixed hypergraphs.

The real strength of the supermodular colouring theorem is the fact that two re-
quirement functions can be satisfied simultaneously. The main result presented in
Subsection 3.4 is that we can generalize Theorem 2.10 to the problem of covering two
symmetric skew-supermodular functions simultaneously, provided that the maximum
values of the two functions are the same (Corollary 3.5). It turns out that without
this last assumption the problem is NP-complete. As an example, we show that the
local edge-connectivity augmentation problem for hypergraphs can be solved simul-
taneously for two hypergraphs if the maximum deficiencies are the same in the two
instances.

2 Results

In this paper we consider the problem of covering a symmetric skew-supermodular
set function p : 2V → Z ∪ {−∞} by a hypergraph. We distinguish two versions
of this problem. In the degree bounded version we are also given a degree bound
m : V → Z+ and the question is whether a hypergraph H covering p exists with
dH(v) ≤ m(v) for every v ∈ V . In the minimum version we simply want to find
a hypergraph covering p that has minimum total size. Possibly the latter problem
seems more interesting and natural, however by the properties of a contrapolymatroid,
a polynomial algorithm to the degree bounded covering problem will give rise to a
solution to the minimum version of the problem, and to more general versions, too.
As an example, the minimum node-cost version of the problem is the following: find
a hypergraph H covering p that minimizes

∑
v∈V c(v)dH(v), where c : V → R is a

nonnegative cost function. Therefore we will mainly speak about the degree bounded
version of the problem. For more details we refer to [1] and [4].

In [9], Szigeti proved the following result, which is fundamental for solving local
edge-connectivity augmentation problems in hypergraphs.

Theorem 2.1 ([9]). Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular
set function, and m : V → Z+ a degree bound. There exists a hypergraph H s.t.
dH(v) ≤ m(v) for every v ∈ V and dH(X) ≥ p(X) for every X ⊆ V if and only if

∑

v∈X

m(v) ≥ p(X) for every X ⊆ V . (1)

Furthermore, if m(v) ≤ k = max{p(X) : X ⊆ V } for any v ∈ V , then H can be
chosen so that it consists of exactly k hyperedges.

In this paper we give several generalizations of this theorem. As an application
Szigeti considers local edge-connectivity augmentation of hypergraphs with hyper-
edges of minimum total size: we will give other applications, too.
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2.1 Merging hyperedges 4

Let us mention an algorithmic aspect. We think of the symmetric skew-supermodular
function p : 2V → Z ∪ {−∞} as a function that is given with a function-evaluation
oracle. It will be clear that the proof below can be converted to a polynomial time algo-
rithm to find the hypergraphs covering p if we can maximize the function p−dH′−bH′′

in polynomial time for arbitrary hypergraphs H ′ and H ′′ (where these hypergraphs
are given with their adjacency matrices, bH′′ will be defined later). However, there is
no hope to maximize such a function in general, since the question “Is p ≤ B?” (where
B ∈ Z) is not even in NP , as can be checked easily. However, if p is finite then it is
an open problem at the moment whether we can maximize p in polynomial time. In
many applications however we can clearly do this: in what follows we assume that we
can maximize such functions, since this will hold in the applications detailed below.

2.1 Merging hyperedges

Part of the results presented in this subsection has already appeared in [6]. Let
H = (V, E) be a hypergraph. By merging two disjoint hyperedges of H we mean the
operation of replacing them in H by their union. “Merging some hyperedges of H”
means repeating this operation a few times. Let us define the set function

bH(X) := |{e ∈ E : e ∩ X 6= ∅}|.

It is easy to see that bH is fully submodular, monotone, and

bH(X) + bH(Y ) ≥ bH(X − Y ) + bH(Y − X) + |{e ∈ E : ∅ 6= e ∩ Y ⊆ X ∩ Y }|.

Theorem 2.2. Let H = (V, E) be a hypergraph, and let p : 2V → Z ∪ {−∞} be a
symmetric skew-supermodular set function with k = max{p(X) : X ⊆ V } ≥ 0, for
which

bH(X) ≥ p(X) for every X ⊆ V . (2)

(i) Then by merging some hyperedges of H we can obtain a hypergraph H∗ = (V, E∗)
that covers p.

(ii) Furthermore, if there are k hyperedges f 1, f2, . . . , fk in H such that every hy-
peredge in H − {f 1, . . . , fk} is a singleton and bH(v) ≤ k for any v ∈ V , then
the merging operations can be organized in a way that H∗ = (V, {f 1

∗
, f2

∗
. . . , fk

∗
})

where f i ⊆ f i
∗

for i = 1, . . . , k.

Proof. We prove (i) by induction on the number of hyperedges of H (it is clearly true
if E = ∅). A set X ⊆ V is called tight if bH(X) = p(X). By the properties of bH and
p, if X and Y are tight, then either X ∩Y and X ∪Y are tight, or X −Y and Y −X
are tight. Furthermore, if X and Y are tight and there is a hyperedge e such that
∅ 6= e ∩ Y ⊆ X ∩ Y , then X ∩ Y and X ∪ Y are tight.

Let e0 be an arbitrary hyperedge of H. If there is no tight set X such that e0 ⊆ X,
then let H ′ := H − e0 and p′ = p − dH0

where H0 = (V, {e0}). The set function p′

is symmetric and skew-supermodular, and bH′(X) ≥ p′(X) for every X ⊆ V , so by
induction there is a hypergraph H ′

∗
, obtained by merging some hyperedges of H ′, such
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2.1 Merging hyperedges 5

that dH′

∗
(X) ≥ p′(X) for every X ⊆ V . It follows that H∗ := H ′

∗
+ e0 covers p. We

can thus assume that there is a tight set X0 such that e0 ⊆ X0: let X0 be a maximal
tight set containing e0.

Suppose that there is no hyperedge e ∈ E such that e ∩ X0 = ∅. Then p(V −
X0) = p(X0) = bH(X0) > bH(V − X0) since e0 ⊆ X0, contradicting (2). Thus
there is a hyperedge e1 ∈ E such that e1 ∩ X0 = ∅. Consider the hypergraph H ′ :=
(V, E − {e0, e1} + (e0 ∪ e1)), i.e. the hypergraph obtained by merging e0 and e1. If
bH′(Y0) < p(Y0) for some Y0 ⊆ V , then e0 ∩ Y0 6= ∅, e1 ∩ Y0 6= ∅, and Y0 was tight.
Since ∅ 6= e0 ∩ Y0 ⊆ X0 ∩ Y0, X0 ∪ Y0 is also tight, which contradicts the maximality
of X0.

We proved that H ′ and p satisfy (2), so by induction there is a hypergraph H∗,
obtained by merging some hyperedges of H ′ (hence obtained by merging some hyper-
edges of H), that covers p.

The proof of (ii) is similar to the proof of Theorem 2.1 by Szigeti. We will use
the following observation. Let X, Y ⊆ V such that X is tight and p(Y ) = k. If
(∩∪) applies for X and Y then p(X ∪ Y ) ≤ p(Y ) = k implies that p(X ∩ Y ) ≥
p(X) = bH(X) ≥ bH(X ∩Y ) ≥ p(X ∩Y ), so every inequality is satisfied with equality
here (including p(X ∪ Y ) = k). On the other hand, if (−) applies for X and Y then
p(Y − X) ≤ p(Y ) = k implies that p(X − Y ) ≥ p(X) = bH(X) ≥ bH(X − Y ) ≥
p(X−Y ), so every inequality is satisfied with equality here (including p(Y −X) = k).

We will prove the statement indirectly: suppose that H, p and f 1, . . . , fk form a
counterexample with k as small as possible and, subject to that, |V − fk| as small as
possible. Trivially, k > 0. Suppose that there is a set Y with p(Y ) = k that is disjoint
from fk. Since bH(Y ) ≥ p(Y ) = k there must be a hyperedge e ∈ E−{f 1, . . . , fk−1, fk}
that intersects Y : since these hyperedges are singletons, in fact e ⊆ Y . Let H ′ be
obtained from H by merging fk and e into a hyperedge f ′k. We claim that H ′ does
not violate (2): if it does then there was a tight set X such that fk∩X 6= ∅, e∩X 6= ∅
(e ⊆ X in fact). But bH(X) > b(X ∩ Y ) because of the edge fk, implying that
(∩∪) cannot apply for X and Y . On the other hand, bH(X) > bH(X − Y ) because
of the hyperedge e, so (−) cannot apply for X and Y either, a contradiction. By the
minimal choice of H, the statement is true for H ′, but then also for H, a contradiction.
So in our minimal counterexample fk intersects every set Y with p(Y ) = k.

Similarly we claim that in this minimal counterexample fk must cover every vertex
v with bH(v) = k. Assume that this is not the case and v is such a vertex not covered
by fk. Then there must be a hyperedge e ∈ E − {f 1, . . . , fk−1, fk} that covers v and
if we merge fk with e then the hypergraph H ′ obtained will not violate (2), since
every set Y that intersects both e and fk has bH(Y ) ≥ k + 1, so it cannot be tight.
Therefore the statement is true for H ′, and then also for H, a contradiction.

We claim that there is no tight set X satisfying fk ⊆ X. Assume that this is not
true and let X be such a tight set. Let Y be an arbitrary set with p(Y ) = k (such a
set exists by the definition of k). If (∩∪) applies for X and Y then p(X ∪Y ) = k, but
then p(V − (X ∪Y )) = k, too, but this set is not covered by fk. However, (−) cannot
apply for X and Y either, because then Y − X would be a set with p(Y − X) = k
not covered by fk. So we really obtained that there is no tight set containing fk.

Let H ′ = H − fk and p′ = p − dHk , where Hk = (V, {fk}). Then max{p′(X) :
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2.2 Skew-supermodular colourings 6

X ⊆ V } = k − 1, bH′(v) ≤ k − 1 for every v ∈ V , and bH′ ≥ p′, thus H ′, p′ and
f 1, . . . , fk−1 must satisfy the statement to be proved (otherwise H was not a minimal
counterexample), so there exists a hypergraph H ′

∗
= (V, {f 1

∗
, . . . , fk−1

∗
}) that covers

p′ and satisfies f i ⊆ f i
∗

for any i between 1 and k − 1. But then one can easily check
that H∗ = H ′

∗
+ fk satisfies our requirements, so H was not a counterexample.

Theorem 2.1 corresponds to the case when H consists of hyperedges of size 1, and
m(v) is the multiplicity of {v} in H.

2.2 Skew-supermodular colourings

Szigeti showed that Theorem 2.1 implies a special case of the supermodular colouring
theorem of Schrijver [7]. We have to mention that the supermodular colouring theorem
is true in a more general form, namely it is true for skew-supermodular functions
instead of intersecting supermodular functions. This was observed by the second
author in [5]: let us call this the “skew-supermodular colouring theorem”, a proof of
it will be given below. With similar methods to those of Szigeti we can prove the
following theorem related to skew-supermodular colourings. Let us first introduce
some terminology. A k-colouring is a partition X1, . . . , Xk of V (where Xi 6= ∅ for
any i = 1, . . . , k). If a set function p : 2V → Z∪{−∞} is also given then a k-colouring
is good (for p) if |{i : Xi ∩ X 6= ∅}| ≥ p(X) for any X ⊆ V . More generally we will
say that a hypergraph H weakly covers the set function p if bH(X) ≥ p(X) for any
X ⊆ V .

Theorem 2.3. Let p : 2V → Z ∪ {−∞} be a skew-supermodular function with k =
max{p(X) : X ⊆ V } > 0. Let furthermore X1, . . . , Xk be a subpartition of V . Then
there is a good k-colouring X ′

1, X
′

2, . . . X
′

k of V satisfying Xi ⊆ X ′

i for any i = 1, . . . , k
if and only if

p(X) ≤ |{i : Xi ∩ X 6= ∅}| + |X − ∪iXi| for any X ⊆ V. (3)

Proof. The necessity of (3) is clear so let us prove its sufficiency. Let x /∈ V be a
new vertex and V ′ = V + x. Define p′ : 2V ′

→ Z ∪ {−∞} the following way: let
p′(X) = p(X) if X ⊆ V and p′(X) = p(V − X) if x ∈ X. It is easy to check that p′

is symmetric and skew-supermodular. Let H = (V ′, E ′) be the following: it contains
hyperedges fi = Xi for i = 1, . . . , k and singleton hyperedges {v} for any v ∈ V −∪iXi

with multiplicity one and the hyperedge {x} with multiplicity k. Observe that H and
p′ satisfy (2): for a set X ⊆ V this translates to (3), and for a set X ⊆ V ′ with
x ∈ X we have p′(X) = p(V − X) ≤ k ≤ bH(X). So by Theorem 2.2 (ii) there exists
H∗ = (V ′, {f 1

∗
, . . . , fk

∗
}) with fi ⊆ f i

∗
for i = 1, . . . , k that covers p′: this hypergraph

defines a good k-colouring of V by X ′

i = f i
∗
− x for all i = 1, 2, . . . , k.

Now we give a generalized version of the skew-supermodular colouring theorem
that will have an interesting consequence concerning simultaneous augmentation of
hypergraphs. Let p : 2V → Z ∪ {−∞} be an arbitrary skew-supermodular function.
Then it is well known that the polyhedron

C = C(p) = {y ∈ RV : y(Z) ≥ p(Z) ∀Z ⊆ V, y ≥ 0}
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is a contrapolymatroid. Assume that C 6= ∅ (equivalently, p(∅) ≤ 0) and let y ∈ C∩ZV

be an arbitrary integer vector in C. Let k ≥ max{p(X) : X ⊆ V } (note that the
vector (k, k, . . . , k) is in C). Then we can define the polyhedron

Q = Q(p, k, y) = {x ∈ RV : x(Z) ≥ 1 if p(Z) = k,

x(Z) ≤ y(Z) − p(Z) + 1 ∀Z ⊆ V, 0 ≤ x ≤ y}.

One can simply prove that y/k ∈ Q, so Q is not empty. The proof of the following
lemma essentially follows the line of the proof of the supermodular colouring theorem
that appears in Schrijver’s book [8].

Lemma 2.4. Q is a (nonempty, integer) g-polymatroid.

Proof. We will show that Q′ = y − Q is a g-polymatroid, from which the statement
follows. One can see that

Q′ = {0 ≤ x ≤ y : x(Z) ≥ p(Z) − 1 ∀Z ⊆ V, x(T ) ≤ y(T ) − 1 if p(T ) = k}.

Let
D = {T ⊆ V : p(T ) = k but p(Y ) < k for any Y ( T},

C = {X ⊆ V : X ⊆ T for some T ∈ D or X ∩ T = ∅ ∀T ∈ D}.

It is easy to check that D is a subpartition. It is also clear that

Q′ = {0 ≤ x ≤ y : x(Z) ≥ p(Z) − 1 ∀Z ⊆ V, x(T ) ≤ y(T ) − 1 ∀T ∈ D}.

We claim that Q′ is actually equal to

Q′′ = {0 ≤ x ≤ y : x(Z) ≥ p(Z) − 1 ∀Z ∈ C, x(T ) ≤ y(T ) − 1 ∀T ∈ D}.

We only need to show that Q′′ ⊆ Q′. Let x ∈ Q′′ and Z ⊆ V arbitrary: we have to
show that x(Z) ≥ p(Z)− 1. To prove this assume that Z intersects t > 0 members of
D and prove by induction on t. Let T ∈ D be one of the t members of D intersected
by Z.

Assume T and Z satisfy (∩∪) . This implies p(Z) ≤ p(T ∩ Z) (since p(T ) is
maximum). Then x(Z) ≥ x(Z ∩ T ) ≥ p(Z ∩ T ) − 1 ≥ p(Z) − 1. Otherwise T and Z
satisfy (−) , implying p(Z) ≤ p(Z − T ). Then x(Z) ≥ x(Z − T ) ≥ p(Z − T ) − 1 ≥
p(Z) − 1, since Z − T intersects t − 1 members of D, so we can use induction.

Let f(X) = max{
∑t

i=1(p(Xi) − 1) : X1, . . . , Xt is a subpartition of X} for any
X ∈ C and −∞ otherwise, g(X) = y(X)−1 for any X ∈ D and ∞ otherwise. Then it
is easy to check that f and g form a weak pair and Q′ is the g-polymatroid determined
by them.

This lemma implies the following “skew-supermodular colouring theorem” which is
an extension of Schrijver’s supermodular colouring theorem.

Theorem 2.5 ([5]). Let p1, p2 : 2V → Z∪{−∞} be two skew-supermodular functions
and k ≥ 1 an integer. Then there is a k-colouring that is good for both p1 and p2 if
and only if

pi(X) ≤ min{k, |X|} for any X ⊆ V and i = 1, 2.
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2.2 Skew-supermodular colourings 8

We want to relate the integer points of Q with hyperedges of a hypergraph. To this
end we would need to generalize the notion of hypergraphs to allow multiplicities in
hyperedges. Note however that we do not really need this: if x ∈ Q then min(x, 1) ∈
Q, too. From known results we have the following.

Corollary 2.6. Q1 = Q ∩ {x ∈ RV : 0 ≤ x ≤ 1} and Q2 = Q1 ∩ {x ∈ RV : x(v) =

1 if y(v) = k, ⌊y(V )
k

⌋ ≤ x(V ) ≤ ⌈y(V )
k

⌉} are g-polymatroids ( Q1 is not empty and if
y ≤ k then Q2 is not empty, either).

Q1 corresponds to hypergraphs without multiplicities in the hyperedges and Q2

corresponds to nearly uniform hypergraphs.

Theorem 2.7. An integer vector x ∈ ZV is in Q1 if and only if it is the characteristic
vector of a hyperedge of a hypergraph H = (V, E) containing at most k hyperedges
which weakly covers p and satisfies dH(v) ≤ y(v) for any v ∈ V .

Proof. If H = (V, E) is a hypergraph containing at most k hyperedges that satisfies
dH(v) ≤ y(v) for every v ∈ V and bH ≥ p then clearly χe ∈ Q1 ∩ ZV for any e ∈ E.

Let x ∈ Q1 ∩ ZV (possibly x = 0). We need to prove that there is a hypergraph H
with the desired properties. We prove by induction on k, the k = 0 case being trivial.
Let Hk = (V, {ek}) where χek

= x, p∗ = p′ − bHk
, y∗ = y − x. By the assumptions

made above max{p∗(X) : X ⊆ V } ≤ k − 1 and y∗ ∈ C(p∗), so by induction (with an
arbitrary choice of an x∗ ∈ Q(p∗, k − 1, y∗) ∩ {0, 1}V ) there is a hypergraph H∗ with
at most k − 1 hyperedges satisfying bH∗ ≥ p∗ and dH∗(v) ≤ y∗(v) for every v ∈ V ,
and then H∗ + Hk is the hypergraph we were looking for.

An analogous theorem can be proved for Q2, the proof is omitted.

Theorem 2.8. Assume y ≤ k. Then x ∈ ZV ∩Q2 if and only if it is the characteristic
vector of a hyperedge of a nearly uniform hypergraph H = (V, E) containing at most
k hyperedges which weakly covers p and satisfies dH(v) ≤ bH(v) = y(v) for any v ∈ V .

These theorems imply the existence of a (nearly uniform) hypergraph of at most
k hyperedges satisfying the degree bound y that weakly covers p. However usually
we are more interested in hypergraphs covering a skew-supermodular function. The
following lemma shows that for symmetric set functions the two problems are closely
related.

Lemma 2.9. If p : 2V → Z ∪ {−∞} is a symmetric skew-supermodular function,
k = max{p(X) : X ⊆ V }, and H is a hypergraph containing exactly k hyperedges,
then bH ≥ p implies that H covers p.

Proof. The simplest way of proving this at this point is just to say that it obviously
follows from Theorem 2.2 (i). However we give a direct proof, too. Suppose that
H does not cover p, so there is a set X with bH(X) ≥ p(X) > dH(X) = bH(X) −
iH(X), where iH(X) denotes the number of hyperedges of H induced by X. By the
assumptions there is a set T with p(T ) = k. Since H contains exactly k hyperedges,
p(X ∪ T ) = p(V − (X ∪ T )) ≤ k − iH(X) and p(T − X) ≤ k − iH(X) also follows. If
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(∩∪) applies for X and T then p(X ∩T ) ≥ p(X)+ iH(X) > bH(X) ≥ bH(X ∩T ), and
if (−) applies for X and T then p(X − T ) ≥ p(X) + iH(X) > bH(X) ≥ bH(X − T ),
either of which contradicts our assumptions.

A consequence of these results is that the hypergraph H in Theorem 2.1 can be
chosen to be nearly uniform.

Theorem 2.10. Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular set
function, and m : V → Z+ a degree specification, such that m(v) ≤ k = max{p(X) :
X ⊆ V } for any v ∈ V , and

∑

v∈X

m(v) ≥ p(X) for every X ⊆ V .

Then there exists a nearly uniform hypergraph H of exactly k hyperedges s.t. dH(v) =
m(v) for every v ∈ V and dH(X) ≥ p(X) for every X ⊆ V .

Proof. Theorem 2.8 gives a hypergraph H of exactly k hyperedges which satisfies
dH(v) = m(v) for every v ∈ V and bH ≥ p (observe that H cannot have less hyperedges
and the strict inequality dH(v) < m(v) cannot hold for a node v, either). By Lemma
2.9, the hypergraph H covers p.

3 Applications

In this section we present applications of our results. Besides the local edge-connectivity
augmentation of hypergraphs discussed by Szigeti in [9], we show two other applica-
tions. For simplicity, we present the minimum version of the problems in the following
three subsections: by the remarks above one can solve other variants, too.

3.1 Local edge-connectivity augmentation of hypergraphs

The local edge-connectivity augmentation of hypergraphs with hyperedges

of minimum total size (solved by Szigeti in [9]) is the following. Given a hypergraph
H = (V, E) and a symmetric edge-connectivity requirement r : V × V → Z+, find a
hypergraph H ′ of minimum total size such that H + H ′ is r-edge-connected, meaning
that

λH+H′(u, v) ≥ r(u, v) for every u, v ∈ V. (4)

Let us define the set function R as R(∅) = R(V ) = 0 and

R(X) = max
u∈X,v/∈X

r(u, v) (∅ 6= X ( V ). (5)

One can simply check that a hypergraph H ′ satisfies (4) if and only if H ′ covers
p = R − dH . Since R is a skew supermodular function, applying Theorem 2.10 gives
the following extension of Szigeti’s result.

Theorem 3.1. The optimal solution of the local edge-connectivity augmentation of
hypergraphs with hyperedges of minimum total size can be chosen to be nearly uniform.
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3.2 The node-to-area connectivity augmentation problem in hypergraphs 10

3.2 The node-to-area connectivity augmentation problem in

hypergraphs

Given a hypergraph H = (V, E), a collection of subsets W of V and a function
r : W → Z+ satisfying r ≥ 2, find a hypergraph H ′ of minimum total size such that

λH+H′(x, W ) ≥ r(W ) for any W ∈ W and x ∈ V. (6)

We will call this problem the node-to-area connectivity augmentation problem

in hypergraphs. Define

R(X) = max{r(W ) : W ∈ W, W ∩ X = ∅} for any ∅ 6= X ⊆ V and R(∅) = 0. (7)

This is a crossing negamodular function and H ′ satisfies (6) if and only if it covers
p = Rs − dH . We mention that one can test membership in C(p) for this special
function p in polynomial time.

Theorem 3.2. The optimal solution of the node-to-area connectivity augmentation
problem in hypergraphs can be found in polynomial time and it can be chosen to be
nearly uniform.

3.3 Augmenting the global edge-connectivity of mixed hyper-

graphs

A mixed hypergraph M = (V,A) is a pair of a finite set V and a family A of subsets
of V (repetitions are allowed). For an a ∈ A every v ∈ a can be either a head node,
a tail node or even both (head-tail node), such that every hyperarc contains at
least one head and one tail. More formally we could say that A contains nonempty
ordered set-pairs (T,H) (T being the set of tails, H being the set of heads, possibly
H ∩ T 6= ∅). An undirected hypergraph can be considered (for our purposes) as a
special mixed hypergraph where every node in a hyperarc is a head-tail node of this
hyperarc. The set V is called the node set of the mixed hypergraph, the family A is
called the hyperarc set (or sometimes shortly the arc set) of the mixed hypergraph.
Reversing a hyperarc in A means switching the roles of the nodes in it, i.e. head
nodes become tail nodes and vice versa (so head-tail nodes remain like that). When
we say that v is a tail node of a hyperarc a then we also allow that it is a head-tail
node (and similarly for head nodes).

In a mixed hypergraph M , a path between nodes s and t is an alternating sequence
of distinct nodes and hyperarcs s = v0, a1, v1, a2, . . . , ak, vk = t, such that vi−1 is a tail
node of ai and vi is a head node of ai for all i between 1 and k. A hyperarc a enters

a set X if there is a head node of a in X and there is a tail node of a in V − X. A
hyperarc leaves a set if it enters the complement of this set. For a set X we define
̺M(X) = |{a ∈ A : a enters X}| (the in-degree of X) and δM(X) = ̺M(V − X)
(the out-degree of X). It is easy to check that the functions ̺ and δ are submodular
functions. Given a mixed hypergraph M = (V,A) and sets S, T ⊆ V , let λM(S, T )
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3.4 Simultaneous augmentation of two hypergraphs 11

denote the maximum number of arc-disjoint paths starting in S and ending in T (we
say that λM(S, T ) = ∞ if S ∩ T 6= ∅). By Menger’s theorem:

λM(S, T ) = min{̺M(X) : T ⊆ X ⊆ V − S}.

If M = (V,A) is a mixed hypergraph, r ∈ V is a designated root node and k, l
are nonnegative integers, then we say that M is (k, l)-arc-connected from r if
λM(r, v) ≥ k and λM(v, r) ≥ l for any v ∈ V . Let us define the set function q =
qM,r,k,l by q(∅) = q(V ) = 0, q(X) = k − ̺M(X) for any nonempty X ⊆ V − r and
q(X) = l − ̺M(X) for any X ( V with r ∈ X. Then one can check that q is crossing
supermodular. For a hypergraph H one can prove that M + H is (k, l)-arc-connected
from r if and only if dH covers q (or equivalently qs). Theorem 2.10 gives the following.

Theorem 3.3. If M = (V,A) is a mixed hypergraph, r ∈ V is a designated root node
and k, l are nonnegative integers and m ∈ ZV is a degree specification then there exists
a hypergraph H such that M +H is (k, l)-arc-connected from r and dH(v) ≤ m(v) for
any v ∈ V if and only if m ∈ C(p) with p = qs

M,r,k,l. Furthermore, H can be chosen
to be nearly uniform.

3.4 Simultaneous augmentation of two hypergraphs

We can generalize these results one step further using the fact that the intersection
of two integer g-polymatroids is an integer polyhedron. Let p1, p2 : 2V → Z ∪ {−∞}
be two skew-supermodular functions with max{p1(X) : X ⊆ V } = max{p2(X) : X ⊆
V } = k.

Let y ∈ C(p1) ∩ C(p2) ∩ ZV such that y(v) ≤ k for every v ∈ V (such a vector
clearly exists; in fact, for an arbitrary cost function on the nodes, we can find such a
vector of minimum cost if we can “handle” the functions p1 and p2).

Let R = R(p1, p2, k, y) = Q(p1, k, y) ∩ Q(p2, k, y) ∩ {x ∈ [0, 1]V : x(v) = 1 if y(v) =

k, ⌊y(V )
k

⌋ ≤ x(V ) ≤ ⌈y(V )
k

⌉}. Then y/k ∈ R, and R is the intersection of two integer
g-polymatroids, so R is a non-empty integer polyhedron.

Theorem 3.4. An integer vector x ∈ ZV is in R if and only if it is the character-
istic vector of a hyperedge of a nearly uniform hypergraph H = (V, E) containing k
hyperedges which satisfies bH ≥ max{p1, p2} and bH(v) = y(v) for every v ∈ V .

Proof. The proof is similar to that of Theorem 2.7. If a nearly uniform hypergraph
H = (V, E) containing k hyperedges satisfies bH ≥ max{p1, p2} and bH(v) = y(v) for
every v ∈ V , then clearly χe ∈ R ∩ ZV for any e ∈ E.

Let x ∈ R ∩ ZV . We need to prove that there is a hypergraph H with the desired
properties. We prove by induction on k, the k = 0 case being trivial. Let Hk =
(V, {ek}) where χek

= x, p∗1 = p1 − bHk
, p∗2 = p2 − bHk

, and y∗ = y − x. By the
assumptions made above, max{p∗1(X) : X ⊆ V } = max{p∗2(X) : X ⊆ V } = k − 1,
y∗ ∈ C(p∗1) ∩ C(p∗2) ∩ ZV , and y∗(v) ≤ k − 1 for every v ∈ V . Thus, by induction
(with an arbitrary choice of an x∗ ∈ R(p∗1, p

∗

2, k − 1, y∗) ∩ ZV ), there is a nearly
uniform hypergraph H∗ with k − 1 hyperedges that satisfies bH∗ ≥ max{p∗1, p

∗

2}, and
bH∗(v) = y∗(v) ∀v ∈ V . This means that the hypergraph H = H∗ + Hk has the
required properties.
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3.4 Simultaneous augmentation of two hypergraphs 12

Using Lemma 2.9 we obtain the following corollary.

Corollary 3.5. Let p1 : 2V → Z∪{−∞} and p2 : 2V → Z∪{−∞} be two symmetric
skew-supermodular set functions such that

max{p1(X) : X ⊆ V } = max{p2(X) : X ⊆ V } = k, (8)

and let m : V → Z+ be a degree specification such that m(v) ≤ k for any v ∈ V and

∑

v∈X

m(v) ≥ max{p1(X), p2(X)} for every X ⊆ V .

Then there exists a nearly uniform hypergraph H of exactly k hyperedges s.t. dH(v) =
m(v) for every v ∈ V and dH(X) ≥ max{p1(X), p2(X)} for every X ⊆ V .

Using this corollary we obtain, that under certain circumstances we can solve an
arbitrary combination of two problems from the above classes simultaneously. For
example we can optimally augment the local edge-connectivity of a hypergraph and
solve a node-to-area connectivity augmentation problem in another hypergraph simul-
taneously, if the fairly artificial condition (8) on the maximum deficiencies holds. In
what follows we detail this argument for a special case and we show that without the
assumption (8) we obtain NP -complete problems.

Consider the following problem, the simultaneous local edge-connectivity augmenta-
tion problem of two hypergraphs. Given two hypergraphs H1, H2 on the same ground
set V , two symmetric requirement functions r1, r2 : V × V → Z, and a nonnegative
cost function c : V → R, find a hypergraph H of minimum total cost such that Hi +H
is ri-edge-connected for i = 1, 2 (the cost of H is

∑
v∈V c(v)dH(v)). Our results imply

that if we assume that max{r1(u, v)−λH1
(u, v) : u, v ∈ V } = max{r2(u, v)−λH2

(u, v) :
u, v ∈ V }, then we can solve the problem optimally in polynomial time. Furthermore,
we can even achieve that the hypergraph H is nearly uniform. The following theorem
shows that without the assumption on the maximum deficiencies the problem becomes
NP -complete: the reduction is similar to that of [3].

Theorem 3.6. The simultaneous local edge-connectivity augmentation problem of two
hypergraphs is in general NP -complete, even if the cost function is constant.

Proof. The problem is clearly in NP . To show its completeness consider the Special
Bin-Packing Problem (SBP). An instance of this problem consists of a set of positive
integers W = {w1, w2, . . . , wn} (weights), a set of positive integers B = {b1, b2, . . . , bm}
(bins) such that γ =

∑
w∈W w =

∑
b∈B b. The SBP problem asks whether there exists

a partition W1, W2 . . . , Wm of W such that
∑

w∈Wj
w = bj for every j = 1, 2, . . . ,m.

This problem is shown to be strongly NP -complete in [2], i.e. it remains NP -complete
even if the weights and bins are unary encoded. We will reduce the unary-encoded
SBP problem to our problem. For each weight wi ∈ W consider a set Xi such that
|Xi| = wi and similarly, for each bin bj ∈ B let Yj be such that |Yj| = bj. The sets
Xi (i = 1, 2, . . . , n) and Yj (j = 1, 2, . . . ,m) are assumed to be pairwise disjoint. Let
X = ∪n

i=1Xi and Y = ∪m
j=1Yj. The ground set of the two hypergraphs is V = X ∪ Y .
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The edge-set of H1 consists of a γ − 1 regular and γ − 1-edge-connected graph on X
and a similar graph on Y : one can check that such a graph exists. The requirement
function r1 is uniformly γ. The edge-set of H2 consists of hyperedges Yj for every
j = 1, 2, . . . ,m and the requirement is r2(u, v) = 1 if u, v ∈ Xi for some i, and 0
otherwise. One can check that there is a hypergraph H of total size at most γ such
that Hi + H is ri-edge-connected for i = 1, 2 if and only if there is a solution of the
SBP problem. The details are left to the reader.
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