
The mixing set with divisible capacities: a

simple approach

Michele Conforti and Giacomo Zambelli∗

September 2008, revised April 2009, July 2009

Abstract

We give a simple algorithm for linear optimization over the mixing
set with divisible capacities, and derive a compact extended formu-
lation from such an algorithm. The main idea is to apply a suitable
unimodular transformation to obtain an equivalent problem that is
easier to analyze.

Keywords: Mixing set, Unimodular Transformations, Dynamic Pro-
gramming, Extended Formulations.

1 Introduction

The generalized mixing set is the set of points (s, y) ∈ Rn+1 satisfying

s + θiyi ≥ βi i = 1 . . . , n;

s ≥ 0 (1)

yi ∈ Z i = 1 . . . , n.

where θi, βi ∈ Q and θi > 0, i = 1 . . . , n. This set arises as a relaxation
of lot-sizing problems (see [8] for an extensive overview). Eisenbrand and
Rothvoss [3] proved that optimizing over the generalized mixing set is NP-
hard in general. However, cases have been studied in the literature where

∗Dipartimento di Matematica Pura e Applicata, Universitá di Padova, Via Trieste 63,
35121 Padova, Italy. (conforti@math.unipd.it, giacomo@math.unipd.it)

1

the optimization problem can be solved in polynomial time. Günlük and
Pochet [4] gave a description of the facet-defining inequalities for the mixing
set, which is the case where θi = 1, i = 1, . . . , n.

An extended formulation for a polyhedron P ⊂ Rd is a system of inequal-
ities Fy + Gz ≤ h, y ∈ Rd, defining a polyhedron in the (y, z) space whose
projection onto the y-space is P . When P is the convex hull of a mixed
integer set, we say that the formulation is compact if the size of (F, G, h) is
bounded by some polynomial function on the size of the description of the
mixed integer set (in the case of (1), a polynomial function of n and of the
sizes of the θis and βis). Miller and Wolsey [7] gave a compact extended
formulation for the mixing set.

Zhao and de Farias [11] introduced and studied the mixing set with di-
visible capacities, which is the case where θi+1/θi is an integer for every
i = 1, . . . , n − 1; they characterized the vertices and rays of the mixing
set with divisible capacities, and used this characterization to derive an algo-
rithm to maximize a linear function over the set performing O(n4) arithmetic
operations. Thus, if we denote by C the largest among the encoding sizes of
θ1, . . . , θn, β1, . . . , βn, Zhao and De Farias’ algorithm has complexity O(n4C).
A compact extended formulation for the mixing set with divisible capacities
was given by Conforti, Di Summa and Wolsey [1]; Di Summa [2] gave a new
O(n3C) algorithm for optimizing over the mixing set with divisible capac-
ities, while Zhao and de Farias observed, using an improvement presented
in Di Summa’s algorithm, that their original algorithm could be modified to
run in time O(n3C) as well [11]. All these results on the mixing set with
divisible capacities are quite involved and technical.

Here we transform the problem of optimizing over the mixing set with
divisible capacities into an equivalent integer programming problem, which
we refer to as the transformed problem, via a suitable unimodular trans-
formation. The advantage is that the transformed problem appears to be
simpler to study, and the results we derive are more transparent and direct.
We describe an algorithm for such problem that performs O(n2) arithmetic
operations. Since the encoding sizes of numbers in the transformed problem
can be as large as nC, this gives an O(n3C) algorithm for the mixing set
with divisible capacities. We then show how one can easily derive from the
algorithm a compact extended formulation for the transformed problem, and
consequently for the mixing set with divisible capacities.

2

2 The transformed problem

In our treatment, the assumption that θi > 0, i = 1, . . . , n can be relaxed
to θi ≥ 0. Therefore the constraint s ≥ 0 needs not be considered, since we
may express it as s+ θn+1yn+1 ≥ 0, where θn+1 = 0 and yn+1 is an additional
integer variable that does not actually appear in the constraints.

First we observe that, in (1), we may assume that all data are integer and
all variables are restricted to be integer. In fact, let N be the smallest positive
integer such that Nθ1, . . . , Nθn, Nβ1, . . . , Nβn are integer. Let ci = Nθi,
bi = Nβi, i = 1, . . . , n. Thus we are interested in the set M of points
(s, y) ∈ R × Zn satisfying

Ns + ciyi ≥ bi, i = 1 . . . , n. (2)

Given any vertex (s̄, ȳ) of conv(M), it is straightforward to observe that
there is one of the inequalities in (1) tight at (s̄, ȳ), say s̄ + θj ȳj = βj , hence
Ns̄ = bj−cj ȳj is integer, since ȳ ∈ Zn. So, by the change of variable y0 = Ns,
(2) is equivalent to

y0 + ciyi ≥ bi, i = 1 . . . , n (3)

yi ∈ Z i = 0, . . . , n

Therefore we are interested in the following problem: given nonnegative
integers c1, . . . , cn such that c1| c2 | . . . | cn, integers b1, . . . , bn, and a vector
v ∈ Rn+1, find an optimal solution to

min{v⊤y | y ∈ Zn+1, y0 + ciyi ≥ bi, i = 1 . . . , n}. (4)

We will give an algorithm to solve (4) that performs O(n2) arithmetic op-
erations on numbers c1, . . . , cn, b1, . . . , bn. Thus its complexity is O(n2(log N+
C). Note that, if θi = pi/qi and βi = pn+i/qn+i, i = 1, . . . , n, where pj and
qj are coprime integers for j = 1, . . . , 2n, then N can be, in the worst case,
of the order of

∏

2n

j=1
qj . Hence the size of the encoding Npj/qj can be of

the order of nC in the worst case. Thus the algorithm performing O(n2)
arithmetic operations on c1, . . . , cn, b1, . . . , bn provides an O(n3C) algorithm
for the mixing set with divisible capacity.

Without loss of generality, we assume that at most one among c1, . . . , cn

is zero, hence c1, . . . , cn−1 > 0 because c1| c2 | . . . | cn. In the remainder, we
denote by C the n × (n + 1) matrix defining the inequalities (3).

3

A unimodular transformation. Consider the following (n+1)×(n+1) integral
upper-triangular matrix U = (uij)0≤i,j≤n

U =

















1 c1 c2 . . . cn

0 −1 − c2
c1

. . . − cn

c1
... −1

...
. . . − cn

cn−1

0 −1

















, i.e. uij =























1, i = j = 0,
cj, i = 0, 1 ≤ j ≤ n,
−1, i = j, i > 0,
−

cj

ci
, 1 ≤ i < j ≤ n,

0, 0 ≤ j < i ≤ n.

Notice that |det(U)| = 1, thus the vector x = U−1y is integral if and only if
y is integral. Therefore solving (4) is equivalent to solving

min{v⊤Ux | x ∈ Zn+1, CUx ≥ b}. (5)

One can readily verify that the system CUx ≥ b is

x0 +

i−1
∑

j=1

cjxj ≥ bi, i = 1, . . . , n. (6)

Notice that the variable xn does not appear in any constraint. Therefore,
if we let w⊤ = v⊤U , we may assume wn = 0, otherwise (5) is unbounded.
Therefore (5) is a problem in the variables x0, . . . , xn−1.

3 The algorithm.

We present an algorithm to solve problems of the form

min
n

∑

j=0

wjxj

x0 +
i

∑

j=1

cjxj ≥ bi, i = 0, . . . , n, (7)

xj ∈ Z j = 0, . . . , n,

where w0, . . . , wn ∈ R, c1, . . . , cn are positive integers such that c1| c2 | . . . | cn,
and b0, . . . , bn ∈ Z (note that we have changed the indices from (6) for con-
venience of notation). We denote by X the set of points x = (x0, . . . , xn) in
Zn+1 satisfying (7).

4

We start by observing that the vectors

r0 =



















c1

−1
0
...
0
0



















, r1 =



















0
c2
c1

−1
...
0
0



















, . . . , rn−1 =



















0
0
0
...

cn

cn−1

−1



















, rn =



















0
0
0
...
0
1



















(8)

are all the extreme rays of conv(X). This is the case because the recession
cone of conv(X) is equal to the recession cone of the feasible region of the
linear relaxation of (7) (see Schrijver [9], Theorem 16.1), namely the cone
Q = {r ∈ Rn+1 | r0 +

∑i

j=1
cjrj ≥ 0, i = 0, . . . , n}. Any extreme ray must

satisfy at equality n of the n+1 inequalities defining Q. One can verify that,
for h = 0, . . . , n, rh ∈ Q and it satisfies at equality all but the hth inequality,
hence r0, . . . , rn are all possible extreme rays of conv(X).

Thus (7) is unbounded if and only if w⊤rj < 0 for some j. Therefore
throughout the rest of this section we assume w⊤rj ≥ 0 for j = 1, . . . , n.
One can easily verify that such condition is equivalent to the following;

w0 ≥
w1

c1

≥
w2

c2

≥ . . . ≥
wn

cn

≥ 0. (9)

Lemma 1 If bounded, there exists an optimal solution x̄ of (7) such that
⌊

bn − bn−1

cn

⌋

≤ x̄n ≤

⌈

bn − bn−1

cn

⌉

.

Proof. First we show that, if x̄ is an optimal solution of (7), we may assume
that

x̄0 +
n−1
∑

j=1

cj x̄j ≤ bn−1 + cn − 1. (10)

If not, then the vector x̃ defined by x̃n = x̄n +1, x̃n−1 = x̄n−1 −
cn

cn−1

, x̃j = x̄j

for j = 0, . . . , n − 2, is a feasible solution of (7), and by (9) w⊤x̃ ≤ w⊤x̄,
hence x̃ is also an optimal solution.

By (9), wn ≥ 0, hence we may assume

x̄n =

⌈

bn − (x̄0 +
∑n−1

j=1
cjx̄j)

cn

⌉

.

5

By (10),
⌈

bn − (x̄0 +
∑n−1

j=1
cjx̄j)

cn

⌉

≥

⌈

bn − bn−1 + 1

cn

− 1

⌉

=

⌊

bn − bn−1

cn

⌋

,

while (7) implies
⌈

bn − (x̄0 +
∑n−1

j=1
cjx̄j)

cn

⌉

≤

⌈

bn − bn−1

cn

⌉

.

�

Given an integer β and an integer k, 0 ≤ k ≤ n, we denote by Pk(β) the
problem

min

k
∑

j=0

wjxj

x0 +

i
∑

j=1

cjxj ≥ bi, i = 0, . . . , k − 1,

x0 +

k
∑

j=1

cjxj ≥ β,

xj ∈ Z j = 0, . . . , k,

and denote by zk(β) its optimal value. Notice that (7) is the problem Pn(bn),
and its optimal value is z∗ = zn(bn).
By Lemma 1, we may assume that, in an optimal solution to Pk(β), xk takes
one of the following values

x↓

k(β) =

⌊

β − bk−1

ck

⌋

, x↑

k(β) =

⌈

β − bk−1

ck

⌉

.

Notice that β − ckx
↓

k(β) ≥ bk−1 ≥ β − ckx
↑

k(β). Therefore:

zk(β) = min
{

wkx
↓

k(β) + zk−1(β − ckx
↓

k(β)) , wkx
↑

k(β) + zk−1(bk−1)
}

. (11)

For k = n, . . . , 0, define recursively integers β1
k , . . . , β

n−k+1

k as follows:
Let β1

n := bn, and for k = n − 1, . . . , 0, let

βi
k := βi

k+1 − ck+1x
↓

k+1
(βi

k+1), i = 1, . . . , n − k; (12)

βn−k+1

k := bk. (13)

6

Given k = n, . . . , 0, define recursively α1
k, . . . , α

n−k+1

k as follows:
Let α1

n := 0, and for k = n − 1, . . . , 0, let

αi
k := αi

k+1 + wk+1x
↓

k+1
(βi

k+1), i = 1, . . . , n − k; (14)

αn−k+1

k := min
i=1,...,n−k

αi
k+1 + wk+1x

↑

k+1
(βi

k+1). (15)

Lemma 2 If bounded, the optimal value z∗ of (7) is

min
i=1,...,n+1

αi
0 + w0β

i
0.

Proof. We show that, for k = n, n − 1, . . . , 0,

z∗ = min
i=1,...,n−k+1

αi
k + zk(β

i
k). (16)

This will prove the theorem, since z0(β
i
0) = w0β

i
0 for i = 1, . . . , n + 1.

For k = n, α1
n = 0 and β1

n = bn. Since z∗ = zn(bn) by definition, (16) is
trivially satisfied.
For k = n−1, α1

n−1 = wnx↓
n(bn), α2

n−1 = wnx
↑
n(bn), β1

n−1 = bn−cnx↓
n(bn), and

β2
n−1 = bn−1, hence by (11) z∗ = zn(bn) = min{α1

n−1 + zn−1(β
1
n−1), α2

n−1 +
zn−1(β

2
n−1)}.

Let k ∈ {0, . . . , n − 1}. We assume that the condition (16) is satisfied
for k + 1, and we show that it holds for k. By (11) and by definition of βi

k,
i = 1, . . . , n − k + 1, we have

zk+1(β
i
k+1) = min{wk+1x

↓

k+1
(βi

k+1) + zk(β
i
k), wk+1x

↑

k+1
(βi

k+1) + zk(β
n−k+1

k)}
(17)

Since we assume z∗ = mini=1,...,n−k αi
k+1

+ zk+1(β
i
k+1

), then by (17), z∗ is
the minimum among the following 2(n − k) numbers:

αi
k+1

+ wk+1x
↓

k+1
(βi

k+1
) + zk(β

i
k) i = 1, . . . , n − k;

αi
k+1

+ wk+1x
↑

k+1
(βi

k+1
) + zk(β

n−k+1

k) i = 1, . . . , n − k.

By (14), the first n − k numbers are αi
k + zk(β

i
k).

The minimum of the last n − k numbers is

zk(β
n−k+1

k) + min
i=1,...,n−k

αi
k+1 + wk+1x

↑

k+1
(βi

k+1),

which by (15) is zk(β
n−k+1

k) + αn−k+1

k . Hence (16) is verified also for k. �

Remark 3 Applying their recursive definition, the numbers αi
k, βi

k, k =
0, . . . , n, i = 1, . . . , n− k + 1, can be computed in time O(n2). By Lemma 2,
this gives an O(n2) an algorithm to compute the optimal value of (7).

7

4 A compact extended formulation.

First we show that problem (7) can be formulated as a shortest path problem.
Let D = (V, A) be digraph defined as follows. The nodeset is

V = {vi
k | 0 ≤ k ≤ n, 1 ≤ i ≤ n − k + 1} ∪ {t},

where node vi
k represents number βi

k recursively defined in (12) and (13),
while the node t is a dummy node that represents the final state. Each arc
will have a label representing a possible value of some variable.

For k = 1, . . . , n, i = 1, . . . , n − k + 1, there are two arcs leaving node vi
k,

namely

• the arc (vi
k, v

i
k−1

) with ρ(vi
k, v

i
k−1

) = x↓

k(β
i
k),

• the arc (vi
k, v

n−k+2

k−1
) with label ρ(vi

k, v
n−k+2

k−1
) = x↑

k(β
i
k),

For k = 0 and i = 1, . . . , n+1 there are n+1 arcs (vi
0, t) with label ρ(vi

0, t) =
βi

0.

Let Ak be the set of arcs in D with tail in {v1
k, . . . , v

n−k+1

k }, k = 0, . . . , n.
To each arc a ∈ Ak, we assign length ℓ(a) = wkρ(a). It follows from the
construction of D and the recursive definition (14),(15) that αi

k is the length
of a shortest path from v1

n to vi
k. Therefore, by Lemma 2, the value of the

optimum solution of (7) is the length of a shortest path from v1
n to t, w.r.t.

the length ℓ.

The above construction immediately gives an extended formulation. Let
Z ⊆ {0, 1}A be the set of incidence vectors of paths from v1

n to t in D. From
the above discussion, all the vertices of conv(X) are of the form

xk =
∑

a∈Ak

ρ(a)za, k = 0, . . . , n

where z ∈ Z. By Minkowski’s theorem, any point in conv(X) is the sum
of a convex combination of vertices of conv(X) and a conic combination of
extreme rays of conv(X). Since the extreme rays of conv(X) are given in (8),
conv(X) is the set of points x ∈ Rn satisfying

xk =
∑

a∈Ak
ρ(a)za +

∑n

j=0
λjr

j
i , k = 0, . . . , n,

z ∈ conv(Z),
λ ≥ 0.

(18)

8

Since D is acyclic, conv(Z) can be expressed by |V | flow-balance inequalities
plus the nonnegativity constraints, thus (18) gives an extended formulation
for conv(X) with O(n2) variables, O(n2) constraints, and with O(n2) nonzero
coefficients.

Clearly, this gives also an extended formulation for the set Y = {y ∈
Zn+1 | y0 + ciyi ≥ bi, i = 1, . . . , n}, namely

conv(Y) = {y ∈ Rn+1 | y = Ux, x ∈ Rn+1, (x0, . . . , xn−1) ∈ conv(X)}.

The extended formulation for the mixing set with divisible capacities pro-
posed by Conforti, Di Summa, and Wolsey [1] is based on an expansion of the
continuous variable s into the remainders of the divisions of s by θ1, . . . , θn.
The approach presented in this paper is different, since it follows from a Dy-
namic Programming recursion to solve the associated optimization problem.
A technique to derive extended formulations from Dynamic Programming
algorithm was introduced by Martin et al. [6]. Similar ideas were recently
used by Faenza and Kaibel [5] to give a compact extended formulation for
packing and partitioning orbitopes.

Example. To illustrate the extended formulation, let us consider the fol-
lowing example, where n = 3, c1 = 3, c2 = 6, c3 = 12, b0 = −3, b1 = 7,
b2 = 5, b3 = 14. So X is the set of points (x0, x1, x2, x3) satisfying

x0 ≥ −3,
x0 + 3x1 ≥ 7,
x0 + 3x1 + 6x2 ≥ 5,
x0 + 3x1 + 6x2 + 12x3 ≥ 14,
x0, x1, x2, x3 ∈ Z.

The following table illustrates the computation of the βi
ks.

β1
3 = b3 = 14;

β1

3
−b2
c3

= 3

4
;

β1
2 = β1

3 − c3⌊
3

4
⌋ = 14 β2

2 = b2 = 5
β1

2
−b1
c2

= 7

6
;

β2

2
−b1
c2

= −1

3
;

β1
1 = β1

2 − c2⌊
7

6
⌋ = 8 β2

1 = β2
2 − c2⌊−

1

3
⌋ = 11 β3

1 = b1 = 7
β1

1
−b0
c1

= 11

3
;

β2

1
−b0
c1

= 14

3
;

β3

1
−b0
c1

= 10

3
;

β1
0 = β1

1 − c1⌊
11

3
⌋ = −1 β2

0 = β2
1 − c1⌊

14

3
⌋ = −1 β3

0 = β3
1 − c1⌊

10

3
⌋ = −2 β4

0 = b0 = −3

9

The corresponding x↓

k(β
i
k)s and x↑

k(β
i
k)s are given next.

x
↓
3
(β1

3) = 0 , x
↑
3
(β1

3) = 1

x
↓
2
(β1

2) = 1 , x
↑
2
(β1

2) = 2 x
↓
2
(β2

2) = −1 , x
↑
2
(β2

2) = 0

x
↓
1
(β1

0) = 3 , x
↑
1
(β1

1) = 4 x
↓
1
(β2

1) = 4 , x
↑
1
(β2

1) = 5 x
↓
1
(β3

1) = 3 , x
↑
1
(β3

1) = 4

Figure 1 depicts the corresponding digraph D, with the labels ρ(a) asso-
ciated to each arc a. The vertices of conv(X) correspond to the paths in D

Figure 1: Auxiliary digraph with ρ labels on the arcs.

from v1
3 to t, and they are given by the labels in such paths. For example,

the path v1
3, v

2
2, v

2
1, v

4
0, t corresponds to the point (−3, 5,−1, 1), which are the

labels on the edges (v3
0 , t), (v2

1, v
3
0), (v2

2, v
2
1), (v1

3, v
2
2), respectively. The path

(v1
3, v

1
2, v

1
1, v

1
0, t) gives the point (−1, 3, 1, 0).

10

References

[1] M. Conforti, M. Di Summa, L.A. Wolsey, The mixing set with divisible
capacities, Proceedings of IPCO XIII, Bertinoro, Italy, (2008), 435-449.

[2] M. Di Summa, The mixing set with divisible capacities, manuscript,
2007.

[3] F. Eisenbrand, T. Rothvoss, New Hardness Results for Diophantine Ap-
proximation, manuscript, 2009.

[4] O. Günlük and Y. Pochet, Mixing mixed integer inequalities, Mathe-

matical Programming 90 (2001), 429-457 .

[5] Y. Faenza and V. Kaibel, Extended Formulations for Packing and Par-
titioning Orbitopes, Mathematics of Operations Research, 2008, to ap-
pear.

[6] R.K. Martin, R.L. Rardin, and B.A. Campbell, Polyhedral characteriza-
tion of discrete dynamic programming, Operations Research 38 (1990),
127-138.

[7] A. Miller and L.A. Wolsey, Tight formulations for some simple MIPs and
convex objective IPs, Mathematical Programming B 98 (2003), 73–88.

[8] Y. Pochet and L.A. Wolsey, Production Planning by Mixed Integer Pro-

gramming, Springer Series in Operations Research and Financial Engi-
neering, New York, 2006.

[9] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New
York, 1986.

[10] M. Van Vyve, A solution approach of production planning problems

based on compact formulations for single-item lot-sizing models, Ph.D.
thesis, Faculté des Sciences appliquées, Université catholique de Lou-
vain, Belgium, 2003.

[11] M. Zhao and I. de Farias, The mixing-MIR set with divisible capacities,
Mathematical Programming 115 (2008), 73-103.

11

