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Abstract

This paper investigates the decision of an automaker concerning the alternative promo-

tion of a hybrid vehicle (HV) and a full electric vehicle (EV). We evaluate the HV project

by considering the option to change promotion from the HV to the EV in the future. The

results not only extend previous findings concerning American options on multiple assets,

but also include several new implications. One notable observation is that the increased

market demand for EVs can accelerate the promotion of the HV because of the embedded

option.
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1 Introduction

The global financial crisis beginning in 2007 has increased uncertainty about future market

demand in many industries throughout the world. As a result, it has becoming increasingly

important for firm project management to take into account uncertainty and flexibility

in the future. The real options approach, in which option pricing theory is applied to

capital budgeting decisions, better enables us to find an optimal investment strategy and

undertake project valuation in this environment than is possible under more classical

methods.

Using a real options approach, this paper investigates an automaker’s decisions con-

cerning investment timing and project choice. Recently, increased concerns about the

environmental impact of gasoline fueled cars, along with increasing fuel prices and the

Green New Deal, have promoted interest in hybrid and electric vehicles.1 This is because

both types of vehicles are perceived to be more environmentally friendly and cheaper to

maintain and run than comparable gasoline fueled vehicles. For example, the share of HV

sales in total monthly car sales in Japan reached 12% in May, 2009. However, although

interest in HVs is now overwhelming, most experts predict that they are only a temporary

development that will ultimately be replaced by EVs (see [4]). Under these circumstances,

an automaker faces an urgent problem: namely, what type of vehicle, a HV or an EV,

should it seek to promote, and when should it undertake the large-scale market promotion

of the vehicle chosen? For example, Toyota is currently undertaking the substantial sales

promotion of its HV, the Prius, while Nissan has announced that its EV, the Lief, will be

for sale from 2010.

This paper models the investment timing and project choice decision of an automaker

as follows. The automaker has an option to promote two alternatives2, namely the HV

and the EV, with sunk costs at some arbitrary timing. If and only if the automaker

chooses the HV does it have the option to change its promotion from the HV to the EV

with sunk costs. That is, the HV project is evaluated by taking into consideration the

value of the option to replace the HV with the EV in the future. For brevity, we assume

the cash flows from the HV and EV projects follow a bidimensional geometric Brownian

motion (GBM). Then, the investment problem becomes a problem combining a max-call

1In this paper, EV denotes a full electric vehicle, while HV denotes a hybrid vehicle that employs both

an engine and a battery. In turn, EVs are classified into several types depending on the type of battery.

Accordingly, the analysis considers not only fuel cells (which arguably have far to go before commercialization

in vehicles) but also lithium–ion batteries, currently one of the most promising battery technologies owing to

its lightweight and power. See [4] for details.
2It is assumed that the firm cannot promote both projects at the same time. Although some automakers

invest in both HV and EV technologies in the real world, most give emphasis to either HVs or EVs. For example,

Toyota emphasizes HVs while Nissan emphasizes EVs.
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option (studied by [7, 3, 12]) with a spread option (studied by [3, 12, 8]).3 Indeed, the

alternative project choice corresponds to the max-call option, while the replacement of

HV with EV corresponds to the spread option.

For the combined problem, we show the analytical properties of the project value

and the investment region. Along with a theoretical contribution to the literature on

American options on multiple assets, the results lead to several implications concerning

the automaker’s strategy. One notable finding is that the investment region for the HV

is not necessarily monotonic with respect to the market demand for EVs. This results

from an interaction between the max-call option and the spread option embedded in the

problem. In terms of the max-call option, increased market demand for EVs discourages

the promotion of the HV because the EV becomes more favorable. Conversely, in terms

of the spread option, increased market demand for EVs encourages the promotion of the

HV because the value of the spread option to replace the HV with the EV increases.

This tradeoff determines the investment region for the HV. In particular, we find that the

latter effect (encouragement of the HV) can dominate the former effect (discouragement

of the HV) if the market demand for EVs is small and the correlation between the EV

and the HV is low or negative. This is consistent with the promotion strategies used by

automakers such as Toyota and Honda that emphasize the promotion of HVs despite the

imminent dominance of EVs.

Although this paper is intended to better understand the decision by automakers on

investment timing and project choice, the use of this model is not restricted to a particular

industry. For example, the model also applies, say, to a developer’s decisions concerning

the renovation and rebuilding of condominiums. That is, the developer accounts for not

only the value of the renovated condominium but also the value of the option to rebuild

it in the near future.

The paper is organized as follows. Section 2 introduces the setup and the preliminary

results in two cases; the alternative choice between the HV and the EV (Section 2.1) and

the replacement of the HV with the EV (Section 2.2). Section 3.1 shows several properties

of the value function and the stopping region for the combined problem. Section 3.2

presents numerical results and implications concerning the investment timing and project

choice decision of an automaker. Section 4 concludes the paper.

3Numerous studies propose new methods of computing the prices of American options on multiple assets,

including max-call and spread options. However, other than [7, 8], there are few studies concerning their

application to real options.
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2 Preliminaries

Consider an automaker that has an option to invest in a project i. Consider two kinds

of projects i = 1 (HV) and i = 2 (EV). When the firm conducts project i at time t with

sunk cost Ii(> 0), it receives a cash flow Xi(t) for the ongoing project i. For analytical

purposes, this analysis builds on the continuous time model with exogenous cash flows

X(t), which follows a bidimensional GBM

dXi(t) = µiXi(t)dt + σiXi(t)dBi(t), (1)

where (B1(t), B2(t)) is a two-dimensional Brownian Motion (BM) with correlation coeffi-

cient ρ satisfying |ρ| < 1. The drift µi and the volatility σi(> 0) represent the mean growth

rate and the volatility of the cash flow from project i. As usual, we assume max(µ1, µ2) < r

for convergence, where r(> 0) denotes the constant discount rate. Mathematically, the

model is built on the filtered probability space (Ω,F , P ;Ft) generated by (B1(t), B2(t)).

The set Ft is the available information set in time t, and a firm optimizes its investment

strategy under this information. Let T (> 0) denote the maturity of the option to choose

HV or EV. Although we can theoretically take T = ∞ (a perpetual option), we assume

recent circumstances oblige the automaker to make a short-term decision. Therefore, we

take a finite T , set to 1 year in the numerical example. In preparation for the main results

in Section 3, we present two earlier results in this section.

2.1 Choice among HV and EV

As a benchmark, we consider the case of no replacement of the HV with the EV. The

automaker has an option to invest between the HV and the EV at an arbitrary time

before maturity T . However, the firm cannot execute both projects. The option value at

time t(< T ) with X(t) = x ∈ R2
++ is equal to the value function of the optimal stopping

problem as follows:

VA(x, t) = sup
τ∈Tt,T

Ex
t [e−r(τ−t) max

(
X1(τ)
r − µ1

− I1,
X2(τ)
r − µ2

− I2, 0
)

], (2)

where Tt,T denotes the set of all stopping times τ satisfying τ ∈ [t, T ] and Ex
t [·] is the

expectation conditional on X(t) = x. Throughout the paper, the subscript A denotes

“Alternative choice.” Problem (2) has been essentially investigated in [7, 3] (also refer to

Section 6 in [6]).4 The optimal stopping time τA(t) in problem (2) becomes:

τA(t) = inf{s ≥ t | X(s) ∈ SA(s) = SA,1(s) ∪ SA,2(s)}, (3)

4In relation to problem (2), [5] investigated investment of different scales under a one-dimensional state

variable. As an alternative, [11, 10] examined preemptive competition where two firms strategically preempt a

project between two alternative projects using one-dimensional and bidimensional models, respectively.
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where the stopping region SA,i(s) is defined by:

SA,i(s) = {x ∈ R2
++ | VA(x, s) =

xi

r − µi
− Ii}. (4)

If X(t) ∈ SA,i(t), the firm makes immediate investment in project i. Both the value

function VA(t) and the stopping region SA(t) cannot be derived in a closed form for this

bidimensional problem. However, for t < T , the following properties concerning VA(x, t)

and SA(t) hold (see Section 6 in [6]).

(Convexity of the value function) VA(x, t) is convex with respect to x ∈ R2
++.

(Convexity of each stopping region) SA,i(t) is a convex set.

(Monotonicity of each stopping region) x ∈ SA,1(t) ⇒ x′ ∈ SA,1(t) (∀x′
1 ≥ x1,∀x′

2 ∈
(0, x2]). x ∈ SA,2(t) ⇒ x′ ∈ SA,2(t) (∀x′

1 ∈ (0, x1],∀x′
2 ≥ x2).

(Behavior on the indifference line) x1/(r−µ1)− I1 = x2/(r−µ2)− I2 ⇒ x /∈ SA(t).

The monotonicity of each stopping region ensures the intuition that a higher market

demand for HVs (resp. EVs) and a lower demand for EVs (resp. HVs) encourages the

promotion of the HV (resp. EV). The last property means that, in the situation where

the value of the HV project is the same as that of the EV, the automaker waits and sees

which project is more promising. For other detailed properties, refer to [12, 6].

2.2 The replacement of the HV with the EV

Now, we consider that the automaker is promoting the HV and has an option to replace the

HV with the EV. Assume that the replacement requires sunk costs IR. For consistency, we

also assume that IR > max(I2−I1, 0). Throughout the subscript R denotes “Replacement

of the HV with the EV.” As mentioned earlier, maturity T for the option to initiate the HV

or the EV project is reasonably considered as a short-term decision, while the replacement

of the HV with the EV may take place in the longer term. We then consider the infinite

maturity for the replacement option.

The option value at time t with X(t) = x ∈ R2
++ is equal to the value function of the

time-homogeneous optimal stopping problem5 as follows:

VR(x) = sup
τ∈Tt,∞

Ex
t [e−r(τ−t)

(
X2(τ)
r − µ2

− X1(τ)
r − µ1

− IR

)
]. (5)

The project value including the ongoing HV project at time t becomes:

X1(t)
r − µ1︸ ︷︷ ︸

perpetual HV

+ VR(X(t))︸ ︷︷ ︸
option value

. (6)

Problem (5) is essentially the same as the value function of an American spread option

(refer to [9, 6]). In terms of real options, [8] used a similar problem to find the optimal

5Assume that in (5) the payoff is zero in the case of τ = ∞.
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timing in changing the method of nuclear waste disposal. According to [8], the optimal

stopping time τR(t) in problem (5) allows a closed form:

τR(t) = inf{s ≥ t | SR = {X2(s) ≥ c1X1(s) + c2}}, (7)

where c1(> 0), c2(> IR) are constants derived in a closed form (for details, see [8]).

Although the value function VR(x) cannot be derived in a closed form, the following

properties are known. For other detailed properties, refer to [12, 6].

(Convexity of the value function) VR(x) is convex with respect to x ∈ R2
++.

Furthermore, we provide the following lemmas concerning VR(x) for the next section.

Lemma 1

VR(x′) − VR(x) ≤ x1 − x′
1

r − µ1
+

x′
2 − x2

r − µ2
(∀x′

1 ∈ (0, x1],∀x′
2 ≥ x2).

Proof First, note that for any x ∈ R2
++

−1
r − µ1

≤ ∂VR

∂x1
(x) < 0 (8)

and

0 <
∂VR

∂x2
(x) ≤ 1

r − µ2
, (9)

where the equalities in (8) and (9) hold if and only if x ∈ SR(t). These are readily proved

by the differentiability (refer to [3]) and convexity of VR(x) and VR(x) = x2/(r − µ2) −
x1/(r − µ1) − I1 (x ∈ SR(t)). By (8), (9), and the convexity of VR(x, t), we have for any

x′
1 ≤ x1 and x′

2 ≥ x2:

VR(x) ≥ VR(x′) +
∂VR

∂x1
(x′)(x1 − x′

1) +
∂VR

∂x2
(x′)(x2 − x′

2)

≥ VR(x′) − x1 − x′
1

r − µ1
− x′

2 − x2

r − µ2
,

where the last inequality completes the proof. ¤

Lemma 2 Fix any x /∈ SR(t). There exist constants a1 ∈ (0, 1/(r − µ1)), a2 ∈ (0, 1/(r −
µ2)), and a3 ≥ I1 (which may depend on x) such that

x′
1

r − µ1
+ VR(x′) − I1 ≥ a1x

′
1 + a2x

′
2 − a3 (∀x′ ∈ R++),

where the equality holds when x′ = x.

Proof By the convexity of VR(x), we have for any x′ ∈ R2
++:

x′
1

r − µ1
+ VR(x′) − I1

≥ x′
1

r − µ1
+ VR(x) +

∂VR

∂x1
(x)(x′

1 − x1) +
∂VR

∂x2
(x)(x′

2 − x2) − I1

=
(

1
r − µ1

+
∂VR

∂x1
(x)

)
︸ ︷︷ ︸

a1

x′
1 +

∂VR

∂x2
(x)︸ ︷︷ ︸

a2

x′
2 + VR(x) − ∂VR

∂x1
(x)x1 −

∂VR

∂x2
(x)x2 − I1︸ ︷︷ ︸

−a3

.
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By (8), (9), and x /∈ SR(t), we have a1 ∈ (0, 1/(r − µ1)) and a2 ∈ (0, 1/(r − µ1)).

Considering the limit x′
1 ↓ 0, x′

2 ↓ 0, we have a3 ≥ I1. ¤
Note that in Lemma 2 the right-hand side is the first order Taylor approximation to

the left-hand function for x′ near a fixed point x.

3 Main Results

This section combines Sections 2.1 and 2.2. The automaker initiates the promotion of

either the HV or the EV before maturity T . If and only if the automaker chooses the HV

does it have an option to change its promotions from the HV to the EV in future. Before

the initiation of any promotion, the option value at time t(< T ) with X(t) = x ∈ R2
++ is

equal to the value function of the optimal stopping problem:

VAR(x, t) = sup
τ∈Tt,T

Ex
t [e−r(τ−t) max

 X1(τ)
r − µ1

+ VR(X(τ))︸ ︷︷ ︸
equation (6)

−I1,
X2(τ)
r − µ2

− I2, 0

]. (10)

Throughout the paper, the subscript AR denotes “Alternative choice including the re-

placement option.” The optimal stopping time τAR(t) in problem (10) then becomes:

τAR(t) = inf{s ≥ t | X(s) ∈ SAR(s) = SAR,1(s) ∪ SAR,2(s)}, (11)

where each stopping region SAR,i(s) is defined by:

SAR,1(s) = {x ∈ R2
++ | VAR(x, s) =

x1

r − µ1
+ VR(x) − I1}. (12)

and

SAR,2(s) = {x ∈ R2
++ | VAR(x, s) =

x2

r − µ2
− I2}. (13)

Problem (10) differs from problem (2) in that the value of the HV includes the spread

option value VR(X(τ)). This paper focuses on the effects of the spread option to replace

the HV with the EV.

3.1 Theoretical results

The following proposition provides the properties of the value function VAR(x, t) and the

stopping region SAR(t) in problem (10) for t < T .

Proposition 1

(Convexity of the value function) VAR(x, t) is convex with respect to x ∈ R2
++.

(Convexity of the stopping region for EV) SAR,2(t) is a convex set.

(Monotonicity of the stopping region for EV) x ∈ SAR,2(t) ⇒ x′ ∈ SAR,2(t) (∀x′
1 ∈
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(0, x1],∀x′
2 ≥ x2).

(Behavior on the indifference curve) x1/(r − µ1) + VR(x) − I1 = x2/(r − µ2) − I2

⇒ x /∈ SAR(t).

(Comparison with the case of no replacement) VAR(x, t) ≥ VA(x, t), SAR,1(t) ⊃
SA,1(t), and SAR,2(t) ⊂ SA,2(t).

Proof For simplicity, we denote the payoff function of the combined option by

f(x) := max
(

x1

r − µ1
+ VR(x) − I1,

x2

r − µ2
− I2, 0

)
.

(Convexity of the value function) By the convexity of VR(x), the payoff function

f(x) is also convex. Because the payoff function is convex, the value function VAR(x, t) is

convex with respect to x ∈ R2
++ (by Proposition A.6 in [3], or equivalently, Proposition

88 in [6]).

(Convexity of the stopping region for EV) Take any λ ∈ (0, 1), x ∈ SAR,2(t), and

y ∈ SAR,2(t). By the convexity of VAR(x, t) with respect to x ∈ R2
++, we have

VAR(λx + (1 − λ)y, t) ≤ λVAR(x, t) + (1 − λ)VAR(y, t)

= λ

(
x2

r − µ2
− I2

)
+ (1 − λ)

(
y2

r − µ2
− I2

)
=

λx2 + (1 − λ)y2

r − µ2
− I2,

where the last inequality implies λx + (1 − λ)y ∈ SAR,2(t), i.e., the convexity of the

stopping region SAR,2(t).

(Monotonicity of the stopping region for EV) Take any x ∈ R2
++, x′

1 ∈ (0, x1], and

x′
2 ≥ x2. By Lemma 1, we have:

x′
1

r − µ1
+ VR(x′) − I1 ≤ x1

r − µ1
+ VR(x) − I1 +

x′
2 − x2

r − µ2
. (14)

By (14) we have:

f(x′) = max
(

x′
1

r − µ1
+ VR(x′) − I1,

x2

r − µ2
− I2 +

x′
2 − x2

r − µ2
, 0

)
≤ max

(
x1

r − µ1
+ VR(x) − I1,

x2

r − µ2
− I2, 0

)
︸ ︷︷ ︸

=f(x)

+
x′

2 − x2

r − µ2

= f(x) +
x′

2 − x2

r − µ2
. (15)
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Then, for x ∈ SAR,2(t), we have:

VAR(x′, t) = sup
τ∈Tt,T

E(1,1)
t [e−r(τ−t)f(x′

1X1(τ), x′
2X2(τ))]

≤ sup
τ∈Tt,T

E(1,1)
t [e−r(τ−t)

(
f(x1X1(τ), x2X2(τ)) +

(x′
2 − x2)X2(τ)

r − µ2

)
] (16)

≤ sup
τ∈Tt,T

E(1,1)
t [e−r(τ−t)f(x1X1(τ), x2X2(τ))]︸ ︷︷ ︸

=VAR(x,t)

+ sup
τ∈Tt,T

E(1,1)
t [e−r(τ−t) (x

′
2 − x2)X2(τ)

r − µ2
]

= VAR(x, t) +
(x′

2 − x2)
r − µ2

=
x2

r − µ2
+

(x′
2 − x2)
r − µ2

(17)

=
x′

2

r − µ2
, (18)

where (16) and (17) follow from (15) and x ∈ SAR,2(t), respectively. The last inequality

(18) implies x′ ∈ SAR,2(t), and hence we have x ∈ SAR,2(t) ⇒ x′ ∈ SAR,2(t) (∀x′
1 ∈

(0, x1],∀x′
2 ≥ x2).6

(Behavior on the indifference curve) Take any x ∈ R2
++ satisfying x1/(r − µ1) +

VR(x) − I1 = x2/(r − µ2) − I2. Note that x /∈ SR(t) because of the assumption IR >

max(I2−I1, 0). Using the constants a1, a2, and a3 in Lemma 2, we have for any s ∈ (t, T ]:

VAR(x, t)

≥ sup
τ∈Tt,T

Ex
t [e−r(τ−t) max

(
a1X1(τ) + a2X2(τ) + a3,

X2(τ)
r − µ2

− I2, 0
)

]

≥ e−r(s−t)Ex
t [max

(
a1X1(s) + a2X2(s) + a3,

X2(s)
r − µ2

− I2

)
]

≥ e−r(s−t)Ex
t [

X2(s)
r − µ2

− I2]︸ ︷︷ ︸
↑x2/(r−µ2)−I2 (s↓t)

+e−r(s−t)Ex
t [max

(
a1X1(s) −

(
1

r − µ2
− a2

)
X2(s) + a3 − I2, 0

)
]︸ ︷︷ ︸

↓0 (s↓t)

. (19)

In the right-hand side of (19), the first term ↑ x2/(r−µ2)− I2 (s ↓ t) at a finite rate while

the second term7 ↓ 0 (s ↓ t) at a rate that increases to infinity in the limit (refer to Lemma

B.1 in [3], or equivalently, Lemma 91 in [6]). Therefore, there exists some s ∈ (t, T ] such

that the right-hand side of (19) is strictly larger than x2/(r − µ2)− I2. This implies that

VAR(x, t) > x2/(r − µ2) − I2 = x1/(r − µ1) + VR(x) − I1, i.e., x /∈ SAR(x, t).

(Comparison with the case of no replacement) The inequality VAR(x, t) ≥ VA(x, t)

6We used a similar method of the proof of Proposition A.3 in [3], or equivalently, Proposition 85 in [6].
7This is equal to the value of the European spread option with maturity s.
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is clear. We have for any x ∈ SA,1(t):

VAR(x, t)

≤ sup
τ∈Tt,T

Ex
t [e−r(τ−t)

(
VR(X(τ)) + max

(
X1(τ)
r − µ1

− I1,
X2(τ)
r − µ2

− I2, 0
))

]

≤ sup
τ∈Tt,T

Ex
t [e−r(τ−t)VR(X(τ))] + sup

τ∈Tt,T

Ex
t [e−r(τ−t) max

(
X1(τ)
r − µ1

− I1,
X2(τ)
r − µ2

− I2, 0
)

]︸ ︷︷ ︸
=VA(x,t)

= VR(x) + VA(x, t)

= VR(x) +
x1

r − µ1
− I1,

where the last inequality implies x ∈ SAR,1(t). We have for any x ∈ SAR,2(t):

VA(x, t) ≤ VAR(x, t)

=
x2

r − µ2
− I2,

where the last inequality implies x ∈ SA,2(t). ¤
Proposition 1 extends previous findings by [7, 3, 1] allowing only a linear function to

a case allowing a nonlinear function VR(x). The difference from problem (2) in Section

2.1 is that the investment region for the HV, SAR,1(t), does not necessarily satisfy either

convexity or monotonicity. The monotonicity of SAR,2(t) brings about the straightforward

fact that an increased demand for EVs and a decreased demand for HVs accelerates the

automaker’s investment in the EV. However, this monotonicity does not necessarily hold

for the HV because of the spread option to replace the HV with the EV. Indeed, as will

be shown in the numerical example, increased demand for the EV may encourage the

promotion of the HV because the value of the spread option increases. Note that SAR,1(t)

includes SA,1(t), which has both monotonicity and convexity (see the final property in

Proposition 1). On the other hand, the behavior on the indifference curve is inherited

from the option without replacement. The automaker delays the decision on project choice

when the market demand X(t) lies on the curve where both project values are equal. The

property of SAR,1(t) ⊃ SA,1(t) and SAR,2(t) ⊂ SA,2(t) supports the natural intuition that

the potential replacement of the HV with the EV encourages (resp. discourages) the HV

(resp. EV).

3.2 Numerical results and implications

This subsection provides a numerical example with some implications. As reported in [4],

it is difficult to forecast the future market share of HVs and EVs. What appears to be

certain is that EVs have more potential and more volatile than HVs in the future, but

at present the market demand for EVs is much lower. Considering this, we set the base

parameter values as: µ1 = 1%, σ1 = 20% for the HV, µ2 = 5%, σ2 = 40% for the EV, and
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the discount rate r = 8%. The sunk costs Ii (i = 1, 2) are not essential because they are

adjustable by X(t) = x. We set I1 = 100 for the HV, I2 = 100 for the EV, and IR = 100

for the replacement. The maturity of the option is reasonably set as T − t = 1 year. In

the numerical procedure, we make a discretization with 200 time steps per 1 year, and use

a bivariate version of the lattice binomial method (see [2]). We compute the perpetual

spread option VR(x) using a value iteration algorithm in the first step, and using the

computed VR(x) compute the max-call option VAR(x, t) backward from maturity T using

a dynamic programming algorithm.

Figure 18 illustrates the investment region SAR(t) along with SA(t) and SR(t). In

Figure 1, the investment region for the HV, SAR,1(t), does not satisfy monotonicity when

the market demand for EVs, x2, is small (see X(t) = x ≈ (9, 2)). This finding leads to the

following implication. In the current circumstance, where the market demand for EVs is

much lower than that of HVs, an increase in the market demand for EVs (or equivalently,

a technical innovation in the EV) can also accelerate the promotion of HVs because of the

effect of the spread option to replace the HV with the EV. This supports the promotion

strategies of automakers such as Toyota and Honda that emphasize the promotion of HVs

as a temporary measure before the introduction of EVs.9 In general, whether an increase

in the demand for EVs encourages HVs or not is determined by the tradeoff between

the max-call option (discouragement of HVs) and the spread option (encouragement of

HVs). According to computations using a wide range of parameter values, a larger gap

µ2 − µ1 and lower replacement costs IR(> I2 − I1) make the effect of the spread option

(encouragement of HVs) dominant for a small x2. In Figure 1, SAR,1(t) does not satisfy

convexity. This results from the nonlinearity of the indifference curve.

Another important feature of SAR,1(t) is the sensitivity with respect to the correlation

coefficient ρ. Figure 2 depicts the investment regions SAR(t) with ρ = −0.5, 0, and

0.5. It has been numerically verified in [7, 6] that SA,i(t) grows monotonically with ρ.

This is because a higher ρ decreases the value of the option to postpone the project

choice and therefore hastens the investment in each project. In contrast, in Figure 2, the

investment region SAR,1(t) does not present monotonicity. In the combined problem, a

higher ρ decreases not only the value of the option to postpone the decision, but also the

value of the spread option embedded in the HV project. The latter effect of a higher ρ

decreases the project value of the HV and then delays its promotion. Indeed, in the current

circumstance where X(t) = x ≈ (9, 2) in Figure 2, a lower ρ encourages the promotion

of the HV. Given the prospect that HVs will be replaced with EVs (ρ is negative), an

8Technically, we compute the lattice model with 400 time steps for maturity T = 2 year, and Figure 1 shows

the investment regions SAR(t), SA(t), and SR(t) for t = 1 year.
9Of course, Nissan’s emphasis on EVs is not necessarily criticized if one considers strategic competition

against Toyota and Honda, carmakers that have taken a lead in HV technologies. This strategic interaction is

one of several important issues to be addressed in future work.
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automaker then accelerates the investment in the HV. This also supports the rapid spread

of the promotion of HVs in present circumstances. Lastly, we remark that VAR(x, t) is

about 1.5 times higher than VA(x, t) for X(t) = x ≈ (9, 2) due to the spread option,

though the paper focuses on the investment strategy rather than the value.

4 Conclusion

From a real options perspective, this paper investigated an automaker’s decisions con-

cerning investment timing and project choice between the HV and EV. We modelled the

problem as the max-call option including the spread option to replace the HV with the

EV. We showed the analytical properties of the project value and the investment region.

A notable difference from the case of no replacement option is that the increased market

demand for EVs may accelerate the promotion of not only the EV but also the HV be-

cause of the replacement option. Especially, the encouragement of the HV is predicted in

the current circumstance where the market demand for EVs is much smaller than that of

HVs and the correlation between the EV and the HV is low or negative. This supports

the promotion strategies used by automakers such as Toyota and Honda that emphasize

the promotion of HVs despite the imminent dominance of EVs.
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