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a b s t r a c t

We compute a complete linear description of the bipartite subgraph polytope, for up to seven nodes, and
a conjectured complete description for eight nodes. We then show how these descriptions were used to
compute the integrality ratio of various relaxations of the max-cut problem, again for up to eight nodes.
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1. Introduction

Let G = (V , E) be an undirected graph, and let us call an
edge set F bipartite if the subgraph GF = (V , F) is bipartite. The
bipartite subgraph polytope of G, which we will denote by BIP(G),
is the convex hull of the incidence vectors of the bipartite edge
sets [1]. Since a graph is bipartite if and only if it does not contain
an odd circuit, BIP(G) is the convex hull of the vectors x ∈ {0, 1}|E|
satisfying the following inequalities:∑
e∈C

xe ≤ |C | − 1 (for all circuits C ⊂ E : |C | odd). (1)

These inequalities, known as odd circuit inequalities, were shown
to define facets of BIP(G) in [1]. Further results on BIP(G) can be
found in [3,14].
Themainmotivation for studying BIP(G) is that thewell-known

max-cut problem, in the special case of non-negative edge weights,
is equivalent to maximising a linear function over BIP(G). Indeed,
a set of edges defines a cut in G if and only if it is bipartite and is
not strictly contained in another bipartite edge set. In other words,
BIP(G) is the submissive or downward monotonisation of the cut
polytope CUT(G), which is the convex hull of the incidence vectors
of the cuts in G [2].
Now, let BIPn and CUTn denote the bipartite subgraph and cut

polytopes, respectively, for the complete graph Kn. In principle, a
complete linear description of BIP(G) or CUT(G) can be obtained
from a complete description of BIPn or CUTn, respectively, where
n = |V |. This makes BIPn and CUTn worth studying.
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Since the max-cut problem isN P -hard [15], we cannot expect
to obtain a complete description of BIPn or CUTn for general
n. Complete descriptions of CUTn have however been found for
n ≤ 7 [13], and a conjectured complete description has been
computed also for n ∈ {8, 9} [5]. In fact, CUTn has been explored in
great depth; see, e.g., [9,17] or [19]. The polytope BIPn, on the other
hand, has received much less attention.
This paper makes two main contributions. First, we present a

complete linear description of BIPn for n ≤ 7, and a conjectured
complete description of BIP8, along with an explanation of how
they were computed. In principle, these descriptions could lead
to improved cutting-plane algorithms for max-cut instances with
non-negative edgeweights. Second, we show that the descriptions
can be used to compute the exact integrality ratio of various
relaxations of the max-cut problem, again with non-negative edge
weights, for small values of n. Our hope is that this will shed light
on the relative strengths and weaknesses of the relaxations.
The structure of the paper is as follows. In Section 2, we explain

how we obtained the linear descriptions. In Section 3, we present
an annotated list of facets. In Section 4, we define integrality
ratios formally and explain how they can be computed. Finally,
in Section 5, we present a table of integrality ratios, for various
relaxations, along with a description of the max-cut instances for
which the ratios are attained.

2. Computing linear descriptions

There exists a software package, called PORTA, which is capable
of computing the facets of polyhedra of small dimension, given a
list of the extreme points and extreme rays [4]. For 2 ≤ n ≤ 5, we
were able simply to generate all extreme points of BIPn and feed
them into PORTA, to obtain a complete linear description.
For n ∈ {6, 7}, however, this naive approach did not work. This

is simply because the number of extreme points is huge. (Indeed,

http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:A.N.Letchford@lancaster.ac.uk
http://dx.doi.org/10.1016/j.orl.2010.05.004


338 L. Galli, A.N. Letchford / Operations Research Letters 38 (2010) 337–340
even for n = 6, there are thousands of extreme points.) To make
progress for these values of n, wemake use of the following lemma:

Lemma 1. Suppose an inequality induces a facet of BIPn, but is not
equivalent to a non-negativity inequality xe ≥ 0 for some e ∈ E. Then

it also induces a facet of CUTn + R(
n
2 )
− , i.e., the Minkowski sum of the

cut polytope and the non-positive orthant.

Proof. Let αT x ≤ β be an inequality that induces a facet of BIPn,
and assume that it is not equivalent to a non-negativity inequality.
Since BIPn is the submissive of CUTn, α and β are non-negative.

Therefore, the inequality induces a facet also of BIPn + R(
n
2 )
− . But

BIPn + R(
n
2 )
− is equal to CUTn + R(

n
2 )
− . So, the inequality induces a

facet of the latter. �

So, instead of enumerating all extreme points of BIPn for n ∈
{6, 7}, we enumerated the extreme points of CUTn, which are far
fewer, and provided them to PORTA, togetherwith the

( n
2

)
extreme

rays of R(
n
2 )
− . PORTA was then able easily to compute a complete

description of CUT6 + R

(
6
2

)
− . For n = 7, it managed to compute

the complete description, but only if we used the ‘-o’ flag, which
according to the PORTAmanual invokes a heuristic for ordering the
variables for Fourier–Motzkin elimination.
Once the descriptions of CUTn + R(

n
2 )
− were obtained, we

organised the inequalities into equivalence classes, where two
inequalities are deemed to be equivalent if one can be obtained
from the other by a permutation of the nodes. We then took one
inequality from each class, and checked whether it induced a facet
of BIPn.
For the case n = 8, we were unable to obtain a complete de-

scription using PORTA, even after using the above simplifications,
along with several decomposition ‘tricks’ along the lines of those
described in [5]. We obtained a partial description using three pro-
cedures.
First, observe that, if an inequality induces a facet of CUTn and

is valid for BIPn, then it induces a facet of BIPn. So, we took the
conjectured complete description of CUT8, available online at [6],
and identified the inequalities that met this condition. In fact, 147
equivalence classes are listed on the site, where two inequalities
are deemed to be equivalent if one can be obtained from the other
either by a permutation of the nodes, or by the so-called switching
operation (see [2] or [9] for a formal definition of switching). It
turned out that, in 72 out of 147 cases, the inequality could be
switched to make it valid for BIP8. This yielded 72 facet classes for
BIP8.
Second,we use the (easy) result that, if an inequality of the form∑

1≤i<j≤n−1

αijxij ≤ β

induces a facet of BIPn−1, then it also induces a facet of BIPn. Using
this result, togetherwith our complete description of BIP7, wewere
able to obtain an additional eight facet classes for BIP8.
Finally, we used some results of Barahona et al. [3], which

enable one to obtain facets of BIPn from facets of BIPn−2. We found
that, by taking one particular facet of BIP6, and applying these
operations, we were able to derive five additional facet classes of
BIP8. That makes 85 facet classes in total.

3. An annotated list of facets

Table 1 gives a summary of the results for n ≤ 7. In this
table,wepresent only one representative of each equivalence class,
where two inequalities are deemed to be equivalent if one can be
obtained from the other by a permutation of nodes. (There is no
switching symmetry for BIPn.) Moreover, for any given n, we do
not present an inequality for BIPn if it can be derived trivially from
an inequality for BIPn−1, as explained in the penultimate paragraph
of the previous section.
We now make some remarks on the inequalities listed in the

table:
• We let Ct , for t ≥ 3 and odd, denote an odd circuit inequality of
the form (1), where t = |C |. These inequalities appeared in [3].
• We let Kt , for t ≥ 3 and odd, denote an ‘odd clique’ inequality
of the form∑
{i,j}⊂S

xij ≤ b|S|2/4c, (2)

where S ⊂ V and t = |S|. These inequalities also appeared
in [3].
• The term ‘hyp’, followed by a vector b ∈ Zn, indicates that the
inequality can be obtained by applying the switching operation
to a hypermetric inequality of the form∑
1≤i<j≤n

bibjxij ≤ 0, (3)

where
∑
1≤i≤n bi = 1. See [9] for an extensive survey on

hypermetric inequalities.
• The subdividedK5 and splitK5 inequalities can be obtained from
K5 inequalities by applying the operations in [3], mentioned at
the end of the previous section.
• The bicycle wheel inequalities were also introduced in [3].
• The cliqueweb inequalities, introduced byDeza and Laurent [8],
form a huge class of valid inequalities for CUTn. For the sake of
brevity, we do not present the general formula for them here.
• The inequalities labelled ‘NEW’ do not seem to have appeared
in the literature before now.

We remark that,whereas theKt , hypermetric, bicyclewheel and
clique web inequalities induce facets also of CUTn, the remaining
inequalities (lower and upper bounds, C5, C7, subdivided K5, split
K5, NEW1 and NEW2) do not.
For the sake of brevity,we do not present the list of facets of BIP8

here.We have howevermade our results, for n up to 8, available on
the web [6].

4. Computing integrality ratios

In this section, we show that linear descriptions of BIPn can be
used to compute integrality ratios of various relaxations of themax-
cut problem with non-negative edge weights.
For a given value of n, let Tn be any convex subset of R(

n
2 ) that

is known to contain CUTn. We will call Tn a relaxation of CUTn.
Such a relaxation could be defined using, for example, linear or
semidefinite programming. To evaluate the quality of a relaxation,
we are interested in theworst possible ratio, over all instanceswith
non-negative edge weights, between the upper bound obtained by
optimising over Tn, and the weight of an optimal cut. That is, we
wish to compute the following quantity:

sup
w∈R

( n2 )
+

max{wT x : x ∈ Tn}
max{wT x : x ∈ CUTn}

, (4)

where by convention 0/0 = 1. This quantity is called the integrality
ratio of Tn.
Now observe that the numerator in (4) is unchanged if we

replace Tn with its submissive, i.e., with the convex set

T̃n =
{
x ∈ R(

n
2 )
+ : x ≤ x′ for some x′ ∈ Tn

}
.

Similarly, the denominator in (4) is unchanged if we replace CUTn
with BIPn. Note also that T̃n and BIPn are so-called antiblocking
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Table 1
Facets of BIPn , for small values of n.

Nodes Inequality Type

2 x12 ≥ 0 Lower bound

x12 ≤ 1 Upper bound

3 x12 + x13 + x23 ≤ 2 C3 = K3

5 x12 + x23 + x34 + x45 + x15 ≤ 4 C5
x12 + x13 + x14 + x15 + x23 + x24 + x25 + x34 + x35 + x45 ≤ 6 K5

6 2x12 + 2x13 + 2x14 + 2x15 + 2x16 + x23 + x24 + x25 + x26 + x34 + x35 + x36 + x45 + x46 + x56 ≤ 12 hyp(2, 1, 1,−1,−1,−1)

7 x12 + x23 + x34 + x45 + x56 + x67 + x17 ≤ 6 C7
x13 + x14 + x15 + x16 + x23 + x24 + x25 + x27 + x34 + x35 + x45 + x67 ≤ 8 Subdivided K5
x12 + x13 + x14 + x15 + x16 + x17 + x23 + x24 + x25 + x26 + x27 + x34 + x37 + x45 + x56 + x67 ≤ 10 Bicycle wheel

2x12 + 2x13 + x24 + x25 + x36 + x37 + x45 + x46 + x47 + x56 + x57 + x67 ≤ 10 Split K5
x12 + x13 + x14 + x15 + x16 + x17 + x23 + x24 + x25 + x26 + x27 + x34 + x35 + x36 + x37
+ x45 + x46 + x47 + x56 + x57 + x67 ≤ 12

K7

x12 + x13 + x14 + x15 + x16 + x17 + x23 + x24 + x25 + x26 + x27 + x34 + x35 + x36 + x37
+ x45 + x46 + x47 + 2x67 ≤ 12

NEW1

x13 + x14 + x15 + x16 + 2x17 + x23 + x24 + x25 + 2x26 + x27 + x34 + x35 + 2x36 + 2x37
+ x45 + 2x46 + 2x47 + 2x56 + 2x57 + 3x67 ≤ 18

Clique web 1

x12 + x13 + x14 + x15 + 2x16 + x23 + x24 + x25 + 2x27 + 2x34 + 2x35 + 2x36 + 2x37
+ 2x45 + 2x46 + 2x47 + 2x56 + 2x57 ≤ 18

NEW2

4x12 + 2x13 + 2x14 + 2x15 + 2x16 + 2x17 + 2x23 + 2x24 + 2x25 + 2x26 + 2x27 + x34 + x35 + x36
+ x37 + x45 + x46 + x47 + x56 + x57 + x67 ≤ 20

hyp(2, 2, 1,−1,−1,−1,−1)

3x12 + 3x13 + 3x14 + 3x15 + 3x16 + 3x17 + x23 + x24 + x25 + x26 + x27 + x34 + x35 + x36
+ x37 + x45 + x46 + x47 + x56 + x57 + x67 ≤ 20

hyp(3, 1, 1,−1,−1,−1,−1)

x12 + x13 + x14 + 2x15 + 2x16 + 3x17 + x23 + x24 + 2x25 + 2x26 + 3x27 + x34 + 2x35 + 2x36 + 3x37
+ 2x45 + 2x46 + 3x47 + 3x56 + 5x57 + 5x67 ≤ 28

Clique web 2
sets, which means that they belong to the non-negative orthant
and coincide with their own submissive.
We now recall the following result from [11]:

Proposition 1 (Goemans and Hall). Let Q ⊂ Rd
+
be a polytope of

antiblocking type and let P ⊂ Rd
+
be a convex set of antiblocking type

that contains Q . Assume that

Q = {x ∈ Rd
+
: aix ≤ bi for i = 1, . . . ,m},

where ai and bi are non-negative for i = 1, . . . ,m. Then,

sup
w∈Rd

+

max{wT x : x ∈ P}
max{wT x : x ∈ Q }

= max
1≤i≤m

max{aix : x ∈ P}
bi

.

(In fact, Goemans and Hall proved this result only for the case
in which P is a polytope, but the proof holds for general convex
sets P .)
Setting P = T̃n and Q = BIP(n) in Proposition 1, we arrive at

the following result:

Corollary 1. For a given n, let F denote the set of facets of BIPn that
are not defined by non-negativity inequalities. Let the corresponding
facet-defining inequalities be denoted by αi · x ≤ βi, for i ∈ F . Then
the integrality ratio (4) is equal to

max
i∈F

max{αi · x : x ∈ Tn}
βi

.

In this way, we reduce the computation of the integrality ratio
to a finite series of optimisation problems. Moreover, we can
reduce the amount of work needed by exploiting the symmetry
of BIPn. Specifically, instead of solving one optimisation problem
for each inequality defining a facet of BIPn, it suffices to solve one
optimisation problem for each equivalence class, where, as in the
previous section, two inequalities are deemed to be equivalent if
one can be obtained from the other by a permutation of nodes.
5. An annotated table of ratios

Table 2 presents the integrality ratios that we obtained, for
several different relaxations of the max-cut problem, and for
several values of n. For convenience, we present the ratios as
both fractions and decimals, where possible. (The ratio denoted
by ‘φ(C5)’ is an irrational number, as explained below.) The values
presented for n ≤ 7 are exact. The column for n = 8 is marked
with an asterisk because the values are based on our partial linear
description of BIP8, and therefore represent lower bounds on the
true value. Nevertheless, we conjecture that these values are also
exact.
The following relaxations appear in the table:

• The ‘trivial’ relaxation, defined by the bounds 0 ≤ xe ≤ 1 for all
e ∈ E.
• The ‘triangle’ relaxation, which is the linear relaxation defined
by the triangle inequalities:

xij + xik + xjk ≤ 2 (1 ≤ i < j < k ≤ n),
xij − xik − xjk ≤ 0 (1 ≤ i < j ≤ n; k 6= i, j).

• The ‘odd clique’ relaxation, which is the linear relaxation
defined by all inequalities that can be derived from the odd
clique inequalities (2) by switching.
• The ‘hypermetric’ relaxation, which is the linear relaxation
defined by all inequalities that can be derived from the
hypermetric inequalities (3) by switching.
• The ‘sdp’ relaxation, which is the semidefinite relaxation
derived by Schrijver (unpublished) and used in the famous
approximation algorithm of Goemans and Williamson [12].
• Three further relaxations obtained by combining the previous
linear and semidefinite relaxations.

That makes eight relaxations in total.
As explained in the previous section, to compute each number

in Table 2, a sequence of linear or semidefinite programs had to be
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Table 2
Integrality ratios of various relaxations of the max-cut problem, for small values of
n. For a definition of φ(C5), see the text.

n 3 4 5 6 7 8∗

Trivial 3/2 3/2 5/3 5/3 7/4 7/4
1.5 1.5 1.667 1.667 1.75 1.75

Triangle 1 1 10/9 10/9 7/6 7/6
1 1 1.111 1.111 1.167 1.167

Odd clique 1 1 1 25/24 21/20 21/20
1 1 1 1.042 1.05 1.05

Hypermetric 1 1 1 1 31/30 31/30
1 1 1 1 1.033 1.033

sdp 9/8 9/8 φ(C5) φ(C5) φ(C5) φ(C5)
1.125 1.125 1.131 1.131 1.131 1.131

sdp+ triangle 1 1 25/24 25/24 47/45 47/45
1 1 1.042 1.042 1.044 1.044

sdp+ odd clique 1 1 1 49/48 31/30 31/30
1 1 1 1.021 1.033 1.033

sdp+ hypermetric 1 1 1 1 31/30 31/30
1 1 1 1 1.033 1.033

solved. To this end,we had to implement a cutting-plane algorithm
for small max-cut instances. Note that the number of switched
odd clique and hypermetric inequalities grows exponentially with
n, and their corresponding separation problems had to be solved
exactly in order to obtain reliable ratios. Fortunately, for such small
values of n, it was possible to solve the separation problems exactly
by integer programming. For the sake of brevity,wedonot describe
the integer programming formulations in detail.
To aid the reader, we now describe the specific max-cut

instances for which each of the ratios in Table 2 are attained:

• The ratios 3/2, 5/3 and 7/4 in the ‘trivial’ row arise when the
objective function is equal to the left-hand side (LHS) of a K3, K5
and K7 inequality, respectively.
• The ratios 10/9 and 7/6 in the ‘triangle’ row arise when the
objective function is equal to the LHS of a K5 and K7 inequality,
respectively.
• The ratios 25/24 and 21/20 in the ‘odd clique’ row arise when
the objective function is the LHS of a switched hypermetric
inequality with b = (2, 1, 1,−1,−1,−1) and b = (3, 1, 1,
−1,−1,−1,−1), respectively.
• The ratio 31/30 which appears in the ‘hypermetric’, ‘sdp+ odd
clique’ and ‘sdp+ hypermetric’ rows arises when the objective
function is the LHS of a bicycle wheel inequality.
• The ratio 9/8 in the ‘sdp’ row ariseswhen the objective function
is the LHS of a K3 inequality.
• The ratio denoted by ‘φ(C5)’ in the ‘sdp’ row arises when the
objective function is the LHS of a C5 inequality. Delorme and
Poljak [7] showed that φ(C5) = (25+ 5

√
5)/32.

• The ratios of 25/24 and 47/45 in the ‘sdp+ triangle’ row arise
when the objective function is the LHS of a K5 and bicycle wheel
inequality, respectively.
• Finally, the ratio of 49/48 in the ‘sdp + odd clique’ row
arises when the objective function is the LHS of a switched
hypermetric inequality with b = (2, 1, 1,−1,−1,−1).
We remark that, as n goes to infinity, the integrality ratio
approaches 2 for the ‘trivial’ and ‘triangle’ relaxations [18], and

π

2
max
0≤θ≤π

1− cos θ
θ

≈ 1.1383

for the ‘sdp’ and ‘sdp + triangle’ relaxations (see [10,16],
respectively). To our knowledge, the corresponding figures for the
other relaxations are unknown.
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