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Comparative Performance of Tabu Search and Simulated Annealing

Heuristics for the Quadratic Assignment Problem
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Abstract

For almost two decades the question of whether tabu search (TS) or simulated annealing (SA) performs
better for the quadratic assignment problem has been unresolved. To answer this question satisfactorily, we
compare performance at various values of targeted solution quality, running each heuristic at its optimal
number of iterations for each target. We find that for a number of varied problem instances, SA performs
better for higher quality targets while TS performs better for lower quality targets.
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1. Introduction

The quadratic assignment problem (QAP) is
a combinatorial optimization problem first intro-
duced by Koopmans and Beckman [12]. It is NP-
hard and is considered to be one of the most diffi-
cult problems to be solved optimally. The problem
is defined in the following context: A set of N facil-
ities are to be located at N locations. The distance
between locations i and j is Di,j and the quantity
of materials which flow between facilities i and j is
Fi,j . The problem is to assign to each location a
single facility so as to minimize the cost

C =

N∑

i=1

N∑

j=1

Fi,jDp(i),p(j).

where p(i) represents the location to which facility
i is assigned.
There is an extensive literature which addresses

the QAP and is reviewed in [19, 7, 2, 11, 13]. With
the exception of specially constructed cases, opti-
mal algorithms have solved only relatively small in-
stances (N ≤ 36). Various heuristic approaches
have been developed and applied to problems typ-
ically of size N ≈ 100 or less. Two of the most
successful heuristics to date for the QAP are tabu
search (TS) and simulated annealing (SA). They
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are basic heuristics which are used alone or as com-
ponents in hybrid and iterative metaheuristics.
Comparisons of the performance of SA and TS

for the QAP have been inconclusive. In this work,
we are able to successfully characterize the relative
performance of these heuristics by performing the
comparisons for various values of solution quality
and by setting the number of iterations for each
heuristic to the optimal one for the target solution
quality.
As is common practice, we define the quality, Q

of a solution

Q ≡
C − Cbest

Cbest
,

where C is the value of the objective function for
the solution and Cbest is the best known value of
the objective function for the instance. The lower
the value of Q, the higher the quality.
We find that for each problem instance, there is

a value of Q, Q∗, above which (lower quality) tabu
search performs better — requires less time — than
simulated annealing and below which (higher qual-
ity) simulated annealing performs better.

2. Background

The tabu search heuristic for the quadratic as-
signment problem consists of repeatedly swapping
locations of two nodes. A single iteration of the
heuristic consists of making the swap which most
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decreases the total cost. Under certain conditions,
if a move which lowers the cost is not available,
a move which raises the cost is made. To ensure
that cycles of the same moves are avoided, the same
move is forbidden (taboo) until a specified later it-
eration; we call this later iteration the eligible it-

eration for a given move. This eligible iteration is
traditionally stored in a tabu list or tabu table. The
process is repeated for a specified number of itera-
tions.
The simulating annealing heuristic also consists

of swapping locations of two facilities. In the simu-
lated annealing approach used here [8], each possi-
ble swap is considered in turn and δ, the change in
cost for the potential swap, is calculated. The swap
is made if δ is negative or if

e−δ/T > r,

where T is an analog of temperature in physical sys-
tems that is slowly decreased according to a spec-
ified cooling schedule after each iteration and r is
a uniformly distributed random variable between 0
and 1. Randomly making moves which increase the
cost is done to help escape from local minima.
Pardalos [19] compared the performance of four

algorithms including simulated annealing and tabu
search and found that “all of these approaches have
almost the same performance”. Paulli [21] com-
pared simulated annealing and tabu search and
found that “when CPU time is taken into consid-
eration, simulated annealing is clearly preferable to
tabu search”. On the other hand, [5] finds that
“RTS (Reactive Tabu Search) needs less CPU time
than SA to reach average results in the 1% [of the
best known value] region”. In 1998, summarizing
the situation, Cela [7] commented that “There is
no general agreement concerning the comparison of
the performance of simulated annealing approaches
with that of tabu search approaches for the QAP”.
We are not aware of any later work which has clar-
ified the issue.

3. Approach

We address the question of whether tabu search
or simulated annealing performs better for the
quadratic assignment problem by recognizing that
the answer depends on desired solution quality and
by:

• defining a performance metric that ensures a
fair comparison of different heuristics,

• determining the optimal number of iterations
for a given target quality for TS and SA for
each problem instance; for a fair comparison
of heuristics, it is critical to run each heuristic
at its optimal number of iterations for a given
target solution quality.

• measuring the performance of TS and SA at
multiple target qualities.

4. Performance Metric

To fairly compare heuristics, solution quality and
time must be taken into account. Simulated anneal-
ing and tabu search aremulti-start heuristics; many
runs of the heuristic are executed, each with a dif-
ferent random starting configuration. A commonly
used performance metric for multi-start heuristics
is the percentage of these runs which attain a spec-
ified value of the quality Q (typically 0.01). How-
ever, this metric doesn’t take run time into account.
Sometimes, the runs times for individual runs of
the heuristics are constrained to be equal but this
is problematic because, as we show below, for a fair
comparison each heuristic should be run at the op-
timal number of iterations for the quality goal Q.
One method of characterizing the performance of
multistart heuristics with different run times em-
ploys run-time distributions of the times needed
across multiple runs to achieve a certain quality
goal (see e.g. [23, 1]). Instead of using distribu-
tions, we define the performance metric T̄ (Q, I) as
the average time to attain a quality goal of Q during
a set of runs, each run with I iterations:

T̄ (Q, I) =

∑
i ti

N(Q, I)
,

where ti is the CPU time for run i and N(Q, I) is
the number of runs which attain a quality goal of
Q or better.
Because one heuristic may perform better de-

pending on the quality goal, we calculate this per-
formance metric not just for a single quality goal
(e.g. 0.01) but for a range of quality goals.

5. Numerical Results

We use C++ implementations of SA and TS
in the public domain to perform our computa-
tional experiments. Both implementations are by
Taillard, and are available at http://mistic.heig-vd
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.ch/taillard/. The TS code implements the robust
tabu search of [24]; the SA code implements the
simulated annealing heuristic of [8]. Both imple-
mentations are straightforward and a few pages
each in length. We run the TS heuristic with pa-
rameter settings as described in [24]): tabu list size
between 0.9N and 1.1N and aspiration function pa-
rameter equal to 2N2; there are no settable param-
eters for the SA implementation.

5.1. Determination of Optimal Number of Itera-

tions

Given a fixed time in which a heuristic can be
executed, there is a tradeoff between the number
of iterations per run and the number of runs which
can be performed. The optimal number of itera-
tions per run to reach a quality goal of Q, Iopt(Q),
is the value of I which minimizes T̄ (Q, I). We de-
termine Iopt(Q)) as follows: For various values of I,
Ii, we run each heuristic multiple times and calcu-
late T̄ (Q, Ii). Then,

Iopt(Q) = {Ii|T̄ (Q, Ii) = T̄ (Q)}

where
T̄ (Q) ≡ min

i
T̄ (Q, Ii).

Thus T̄ (Q) is the value of the performance metric
when the heuristic is run at Iopt(Q) iterations.
In Fig. 1(a), using the Tai100a problem instance

from QAPLIB [6] as an example, we illustrate the
process of finding the optimal number of simulated
annealing iterations for Q = 0.02, 0.01, and 0.006.
The optimal number of iterations, Iopt, for each
value of Q is the well defined minimum value of
T̄ for each plot. For a given value of Q, we note
the large variation in T̄ . We also note the large
variation in Iopt for the different values of Q. Thus,
choosing a non-optimal value of iterations (e.g. a
single value for the number of iterations for differ-
ent Q) will result in an unfair characterization of
the performance of the heuristic. Similarly, Fig.
1(b), illustrates the process of finding the optimal
number of tabu iterations for the instance Tai100a
for Q = 0.02, 0.015, 0.01 and 0.009.
In Fig. 1(c), we plot Iopt, versus Q for SA and

TS. For TS, Iopt increases as Q decreases but does
not increase below Q ≈ 0.01. We infer that for TS
there is no benefit to increasing the number of itera-
tions below this point; any improvements in quality
are gained by running more random starting con-
figurations. On the other hand, SA benefits by in-
creasing the number of iterations as Q is decreased

over the complete range of Q studied. The subject
of an optimal number of iterations for the quality
goal Q = 0 for simulated annealing is treated ana-
lytically in [4].

5.2. Performance Comparison of SA and TS

We perform computational experiments on the
following problem instances from QAPLIB [6] rep-
resenting a range of problem difficulty, type and
size.

• Tai100a [24] is a totally unstructured instance
consisting of random distance and flow matri-
ces.

• nug30 [17], sko100a [22], and tho150 [25] are
instances in which the distances are the Man-
hattan distances between locations on a grid.

• lipa90a [14] is a generated problem instance
with a known optimal solution.

• dre110 [9] is a structured instance consisting of
a ”grid” flow matrix with non-zero entries for
nearest neighbors only. It is part of a series of
instances that are specifically designed to be
difficult for heuristics.

For each problem instance we execute a series
of runs for various values of I including: I = 106,
5 · 106, 10 · 106, 50 · 106, 100 · 106, 500 · 106, and 109

for SA and I = 103, 5 · 103, 10 · 103, 50 · 103, 100 ·
103, 500 · 103, and 106 for TS. For some instances,
additional values of I are used. As described above,
for each problem instance we determine the value
of T̄ (Q) for various values of Q.
By plotting T̄ (Q) for each heuristic we can com-

pare the performance of the heuristics when they
are run with the optimal number of iterations. Fig.
2 plots T̄ (Q) versus Q for the instances studied.
Despite differences in details, they all share the
characteristic that for each problem instance, there
is a value of Q, Q∗, above which (lower quality)
tabu search performs better — requires less time —
than simulated annealing and below which (higher
quality) simulated annealing performs better. SA
achieves lowest known costs for all but the Tai100a
instance. TS achieves the lowest known cost for
three of the six instances.
In Table 1 we list the values of Q∗ for each of

the instances studied. Note that if only the value
Q = 0.01 were considered, the conclusion would
be simply that SA is better for some instances and
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TS for others. This explains why earlier studies of
relative performance where not able to draw clear
conclusions.

5.3. Hardness of Problem Instances

To compare the relative hardness of the problem
instances studied, in Fig. 3 we plot T̄ versus Q for
the problem instances in a single panel. The rela-
tive hardness of the instances for a given solution
quality is given by the relative value of T̄ at that
quality. Comparing this figure with Table 1 note
that Q∗ appears to be correlated with the hardness
of the problem. With the exception of Tai100a, the
harder the problem, the higher the value of Q∗ and
thus the wider the range of Q in which SA performs
better than TS.

6. Discussion

How do we explain our results that, for each prob-
lem instance studied, there is a value of the quality
Q, Q∗, above which TS performs better than SA
and below which SA performs better? A possible
qualitative explanation is that TS essentially uses
a steepest descent method to quickly find an ini-
tial local minimum while SA finds the local min-
ima in a more random way — sometimes mak-
ing moves which increase the total cost even when
moves which reduce the cost could be made first.
Hence for high Q, TS performs better. Once a lo-
cal minimum is found, however, SA is better able
to escape and find a lower minimum. As opposed
to TS, to attain better solution quality it is always
better to run fewer SA runs with a higher number
of iterations.
Areas for future research might address the fol-

lowing questions:

• Is similar behavior observed when comparing
SA and TS applied to other combinatorially
complex problems?

• When optimal numbers of iterations are used
for SA and TS within such hybrid heuristics
as hybrid genetic search, is the performance of
the hybrid heuristic improved?

• How does the performance of other heuristics
(e.g. hybrid, iterated, ANT) compare when
taking solution quality into account?

• How are our findings changed if variants of TS
are used? Can SA be modified to also outper-
form TS at high values of Q?
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Table 1: Value of Q, Q∗ below which SA performs better
than TS.

Problem Cbest Q∗

nug30 6124 [3] 0.0014
lipa90a 360630 [14] 0.0047
sko100a 152002 [10] 0.01
tai100a 21052466 [16] 0.0125
tho150 8133398 [15] 0.025
dre110 2052 [9] 0.058
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Figure 1: (a)Dependence of T̄ on number of simulated an-
nealing iterations I for quality Q = 0.02, 0.01 and 0.006 for
the QAP instance Tai100a. (b)Dependence of T̄ on num-
ber of tabu iterations I for quality Q = 0.02, .015, 0.01 and
0.009 for the QAP instance Tai100a. (c) Optimal number of
iterations, Iopt versus Q for SA(squares) and TS (triangles).
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Figure 2: T̄ versus Q for various problem instances for SA(squares) and TS (triangles). For plots which achieve the lowest
known cost for an instance (Q = 0), we extend the line connecting the plot points to the left edge of the panel.

7



Figure 3: T̄ versus Q for for all problem instances studied: nug30 (squares), lipa90a (disks), sko100a (up-pointing triangles),
tho150 (diamonds), tai100a (right-pointing triangles, dre110 (left-pointing triangles).
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