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Stock Repurchase with an Adaptive Reservation Price: A Study of

the Greedy Policy

Ye Lu∗ Asuman Ozdaglar† David Simchi-Levi‡

November 8, 2010

Abstract. We consider the problem of stock repurchase over a finite time horizon. We assume
that a firm has a reservation price for the stock, which is the highest price that the firm is willing
to pay to repurchase its own stock. We characterize the optimal policy for the trader to maximize
the total number of shares he can buy over a fixed time horizon. In particular, we study a greedy
policy, which involves in each period buying a quantity that drives stock price to the reservation
price.
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1 Introduction

Since 1980, there has been an extraordinary growth in the use of stock (share) repurchases in the
world’s major financial markets. Grullon and Michaely [8] report that in the U.S., expenditures on
stock repurchase programs (relative to total earnings) increased from 4.8 percent in 1980 to 41.8
percent in 2000. In 2005, the use of share repurchases had grown to $ 349 billion in the U.S. while it
was $5 billion in 1980. In the financial markets of UK and Japan, hundreds of firms have made stock
repurchase announcements in the last two decades. Today, stock repurchase is becoming a popular
financial strategy among firms. There are many incentives for firms to buy back their own stock
in a share repurchase. The major motivations are to take advantage of potential undervaluation,
distribute excess capital, alter their leverage ratio, fend off takeovers and counter the dilution effects
of stock options. For an excellent study of motivations for stock repurchases, we refer the reader
to Dittmar[7].

Here, we give a example of stock repurchase that specifies in advance a single purchase price, the
number of shares sought and the duration of the offer. TDK corporation (TYO:6762, NYSE:TDK,
LSE:TDK) is a leading Japanese company that manufactures electronic materials, electronic com-
ponents, recording and data-storage media. On May 15, 2007, the corporation’s board of directors
made a decision to buy back up to 4 million shares of TDK corporation common stock with the
total cost up to 44 billion yen from May 16, 2007 through June 30, 2007. On May 29, 2007, TDK
announced that the company would place an order to purchase shares at 8:45am on May 30, 2007
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through Tokyo stock exchange trading network system. The price in the purchase order would be
10900 yen per share. The number of shares to be purchased would be up to 4 million shares. In
the announcement, the company also noted that market conditions may mean that some or all
the shares are not purchased. On July 2, 2007 (two days after the end day of share repurchase
period), TDK corporation announced the results of share repurchase and completion of the share
repurchase program. The corporation purchased 3.599 million shares with a total cost of 39.2291
billion yen through Tokyo stock exchange trading network system on May 30, 2007. From May 31
to June 30, 2007, TDK corporation repurchased 0 share of its own stock.

Due to the large trading volume (up to 4 million shares in the TDK example), significant
impact on the stock price is unavoidable. In the last few years, several studies have been done
on dynamic optimal trading strategies that minimize the expected cost of trading a large block of
stock. Specifically, suppose that a trader has to buy Q units of a stock over N + 1 periods. Let qi
denote the trader’s order size for the stock at period i. Then, this problem can be expressed as:

minqiE{ΣN
i=0piqi} (1)

s.t. ΣN
i=0qi = Q. (2)

In each period, the price of the stock is a function of the trader’s order size. Evolution of the
price pi may be expressed as

pi = pi−1 + θqi + ϵi, (3)

where θ is a positive constant and ϵi is a random variable that represents the price change made
by the market. This model first appeared in Bertsimas and Lo [6]. They show that to minimize
expected execution cost, a trader should split his order evenly over time. Almgren and Chriss [5],
Huberman and Stanzl [9] and Schied, Schöneborn and Tehranchi[11] extend the Bertsimas and Lo
framework to allow risk aversion and temporary price impact. Alfonsi, Schied and Schulz [1] model
the dynamics of supply/demand in a limit-order-book market. We also refer the reader to Alfonsi
and Schied[3], Alfonsi, Schied and Schulz [2] and Almgren [4] for nonlinear price impact model
and Moallemi, Park and Van Roy [10] and Schöneborn and Schied[12] for trading in a competitive
setting.

(1)-(2) is a good model if the trader has an obligation to buy Q units. However, in the case
of stock repurchase like the TDK example, the trader does not have this obligation. Although
the firm has a target of purchasing up to 4 million shares, the repurchase program was completed
with actually 3.599 million shares. Instead, the trader has a reservation price, 10900 yen per share,
which is the highest price the firm is willing to pay for the stock. Therefore, the trader’s objective
is to maximize the total number of shares (with share cap and budget cap, 4 million shares and 44
billion yen in the TDK example) he can buy in the N + 1 periods below a reservation price p, (
p = 10900 yen in the TDK example). If, at some time period, the trader runs into the share cap
or the budget cap, then he can stop. If, at the end of the last period, the target number of shares
is still unmet, the trader at least has bought as many units as possible below the reservation price
p. This is what happened in the TDK example.

In the open market stock repurchase, a firm may or may not announce that it will repurchase
some shares in the open market from time to time as market conditions dictate and maintains the
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option of deciding wether, when and how many shares to buy at what price. In our model, we give
the trader the full flexibility to adjust his reservation price from pi to pi+1 as the market conditions
change, i.e, at the beginning of period i, the trader only need to know the reservation price for
the current period, pi, and doesn’t need to know pj for j > i. In many papers of the literature,

{ϵi}Ni=0 that represent the market conditions are assumed to be i.i.d with zero mean. As noted in
Huberman and Stanzl [9], the zero-mean assumptions are not made for convenience. In this paper,
we relax these assumptions. Actually, we don’t make any assumption on {ϵi}Ni=0.

In this paper, we use the structure developed in Almgren and Chriss [5] to model how stock’s
price is affected by the trader’s order and its evolution over periods. This model is also used in
Huberman and Stanzl [9]. In particular, in each period, the trader’s order has temporary and
permanent impact on the stock’s price. The initial price of the stock at time i, pi, is observed by
the trader. Given this price, the trader faces the transaction price p̂i = pi+λ1iqi to buy the quantity
qi, where λ1i is a positive constant that measures the temporary price impact of the trader’s order.
The new initial price for the next period evolves according to pi+1 = pi + λ2iqi + ϵi, where λ2i

is a positive constant that measures the permanent price impact of the trader’s order and ϵi is a
random variable. Given this law of motion for price pi and the above analysis, the optimal policy
of the trader is given as the optimal solution of the following optimization problem:

maximize qi E{ΣN
i=0qi} (4)

subject to p̂i = pi + λ1iqi (5)

pi+1 = pi + λ2iqi + ϵi (6)

p̂i ≤ pi, i = 0, . . . , N. (7)

The objective of this paper is to characterize the optimal trading strategy based on the above
formulation. It is easy to see that if pi ≥ pi in period i, the trader will not purchase anything in
this period. On the other hand, it is not clear how much should the trader purchase when pi < pi.
It is tempting to conclude that since the trader’s goal is to maximize the number of units of stock,
the trader should purchase to increase price up to pi, i.e, purchase q∗i = pi−pi

λ1i
. This is the strategy

used in the TDK example. We refer to this policy as the greedy policy. Unfortunately, we show in
Section 3.1, using a counter example, that the greedy policy is not always optimal. The following
questions are therefore natural: What is the structure of the optimal policy? Under what conditions
the greedy policy is optimal? And, when it is not optimal, how far is it from the optimal?

In Section 2, we we show that in each period, the optimal policy of (4)-(7) is either the greedy
policy or a no-buy policy. In Section 3.2, we show that under some reasonable conditions, the
greedy policy is indeed optimal. Remarkably, we need only impose conditions on the price impact
parameters λki, k = 1, 2 and i = 0 . . . , N . We do not need to make any assumption on the random
variable ϵi, price pi or reservation price pi. In Section 3.3, we study the performance of the greedy
policy when it is not optimal. We derive a lower bound on the ratio of the value returned by the
greedy policy to the optimal value of (4)-(7).

2 The Optimal Policy

In this section, we show that in each period, the optimal policy of (4)-(7) is either the greedy policy
or a no-buy policy. We need the following lemmas.
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Lemma 2.1. If a function f(x) is convex over [a, b], then maxx∈[a,b] f(x) = max{f(a), f(b)}.

This lemma is straight-forward, which tells us that the maximal value of a univariate convex
function is achieved at one of the endpoints.

Lemma 2.2. Assume f1(x) and f2(x) are convex functions. Given any z, define f(x) = max{f1(x), f2(x)}
for x ≤ z, and f(x) = f1(x) for x ≥ z. Then f(x) is a convex function.

Proof. Assume x ≤ z′ ≤ y. If z′ ≥ z,

f(z′) = f1(z
′) ≤ y − z′

y − x
f1(x) +

z′ − x

y − x
f1(y) ≤

y − z′

y − x
f(x) +

z′ − x

y − x
f(y), (8)

where the first inequality follows from the convexity of f1(x) and the second inequality follows
from the definition of f(x).

If z′ ≤ z, we only need to consider the case of x ≤ z′ ≤ z ≤ y since the case of x ≤ z′ ≤ y ≤ z
is trivial. We have

f(z′) ≤ z − z′

z − x
f(x)+

z′ − x

z − x
f(z) ≤ z − z′

z − x
f(x)+

z′ − x

z − x
(
y − z

y − x
f(x)+

z − x

y − x
f(y)) =

y − z′

y − x
f(x)+

z′ − x

y − x
f(y),

(9)

where the first inequality follows that f(x) is convex over (−∞, z] and the second inequality
follows from (8). 2

For problem (4)-(7), we define Ji(pi) to be the optimal value to go from period i at price pi.
For i = N ,

JN (p) =

{
pN−p
λ1N

if p < pN ,

0 if p ≥ pN ,
(10)

which is a convex function. Assume Ji+1(p) is a convex function. For any p ≥ pi, Ji(p) =
E(Ji+1(p+ ϵi). For any p ≤ pi,

Ji(p) = max
0≤qi≤

pi−p

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi))

= max{E(Ji+1(p+ ϵi),
pi − p

λ1i
+ E(Ji+1(p+ λ2i

pi − p

λ1i
+ ϵi)}, (11)

where the second equality follows from Lemma 2.1. Lemma 2.2 implies that Ji(p) is a convex
function. Hence, Lemma 2.1 implies the following optimal policy of (4)-(7).

Theorem 2.1. In period i, if the stating price pi < pi, the optimal order quantity q∗i is either 0 or
pi−pi
λ1i

.

3 The Greedy Policy

In this section, we show that the greedy policy is not always optimal, and give conditions under
which the greedy policy is optimal. We also derive a bound to measure the performance of the
greedy policy.
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3.1 Greedy Policy is Not Always Optimal

Example 3.1. We consider a two-period model, N=1, and assume p0 = p1 = p. Theorem 2.1
implies that if J0(p0) is achieved at E(J1(p0 + ϵ0)) the trader should not order anything in period
0; otherwise he should use the greedy policy in that period.

We define s = p− p0, a = 1− λ20
λ10

and

∆ = E(J1(p0 + ϵ0))− E(J1(p0 + λ20
p− p0
λ10

+ ϵ0))−
p− p0
λ10

=

∫ p−p0

−∞

p− p0 − t

λ11
ϕ(t)dt−

∫ p−p0−λ20
p−p0
λ10

−∞

p− p0 − λ20
p−p0
λ10

− t

λ11
ϕ(t)dt− p− p0

λ10

=
1

λ11
(

∫ s

−∞
(s− t)ϕ(t)dt−

∫ as

−∞
(as− t)ϕ(t)dt)− s

λ10
=

1

λ11

∫ s

as
Φ(t)dt− s

λ10
, (12)

where ϕ(t) and Φ(t) are pdf and cdf of random variable ϵ0. The last equality follows from integration
by parts.

We set λ11 = 0.001, λ10 = 0.00105 λ20 = 0.00315, and assume that ϵ0 follows normal distribution
N(0.15, 1). In Figure 1, the x-axis is s, the difference between the current price and the reservation
price, and the y-axis is ∆, the difference between the objective function for ”no-buy” policy and
”greedy” policy. As you can see, there are two separate regions where the no-buy policy is optimal;
otherwise the greedy is optimal.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

0

50

100

No−buy policy
 

Greedy policy

No−buy policy
 

Figure 1: Optimal regions for No-buy and greedy policy.

3.2 When is Greedy Policy Optimal?

In this section, we establish conditions under which the greedy policy is an optimal solution to
(4)-(7). For this purpose, we first show some properties of Ji(p). For notational convenience, in
this section we omit the time index of price p. The following lemma shows a monotonicity property
of Ji(p).
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Lemma 3.1. For any i = 0, 1, . . . , N , Ji(p) decreases with p.

Proof. We prove the lemma by applying backward induction. For i = N , this property easily
follows from (10). Assume Ji+1(p) decreases with p. Without loss of generality, let p1 ≤ p2. We
consider three cases:

Case 1: For any p1 ≤ p2 ≤ pi,

Ji(p1) = max
0≤qi≤

pi−p1
λ1i

qi + E(Ji+1(p1 + λ2iqi + ϵi)) ≥ max
0≤qi≤

pi−p1
λ1i

qi + E(Ji+1(p2 + λ2iqi + ϵi))

≥ max
0≤qi≤

pi−p2
λ1i

qi + E(Ji+1(p2 + λ2iqi + ϵi))

= Ji(p2), (13)

where the first inequality follows from the induction assumption and the second inequality follows
from the facts that pi−p1

λ1i
≥ pi−p2

λ1i
and this is a maximization problem.

Case 2: For any p2 ≥ p1 ≥ pi, we have

Ji(p1) = E(Ji+1(p1 + ϵi)) ≥ E(Ji+1(p2 + ϵi)) = Ji(p2). (14)

Case 3: For any p1 ≤ pi ≤ p2, it follows from (13) and (14) that Ji(p1) ≥ Ji(pi) ≥ Ji(p2). 2

We now provide an upper bound on the amount lost if the starting price in period i is increased
by h, i.e., an upper bound on Ji(p)− Ji(p+ h) for any h > 0 and i = 0, . . . , N . Consider first the
last period N . For any p and h > 0, we must have

JN (p)− JN (p+ h) ≤ h

λ1N
. (15)

This is easy to see by inspecting equation (10) for p, p + h < pN or p, p + h ≥ pN . If p < pN
and p + h ≥ pN , then the same equation suggests that JN (p)− JN (p + h) = pN−p

λ1N
≤ h

λ1N
because

p+ h ≥ pN . The following theorem extends this observation by providing an upper bound for any
i.

Theorem 3.2. Define aN = 1
λ1N

and ai = max{ai+1,
1
λ1i

, ai+1+
(1−λ2iai+1)

λ1i
} for i = 0, 1, . . . , N −1.

Then for any price p and h > 0, we have

Ji(p)− Ji(p+ h) ≤ aih, (16)

for any i.

Proof. We prove the result using backward induction. We have shown that (16) holds for
i = N . Assume (16) holds for i+ 1, for any p with p+ h < pi, we know

Ji(p) = max
0≤qi≤

pi−p

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi))

= max{ max
0≤qi≤

pi−p−h

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi)), max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi))}.

6



We start by focusing on the first component of the right hand side of the above equation.

max
0≤qi≤

pi−p−h

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi)) ≤ max
0≤qi≤

pi−p−h

λ1i

{qi + E(Ji+1(p+ h+ λ2iqi + ϵi))}+ ai+1h

= Ji(p+ h) + ai+1h ≤ Ji(p+ h) + aih, (17)

where the first inequality follows from induction assumption, the equality follows from definition
of Ji(p+ h), and the last inequality follows from the definition of ai.

For the second component, observe that the definition of Ji(p + h) implies that Ji(p + h) ≥
pi−p−h

λ1i
+E(Ji+1(p+ h+ λ2i

pi−p−h
λ1i

+ ϵi)). It follows that

max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi)) ≤ max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

{qi + E(Ji+1(p+ λ2iqi + ϵi))−
pi − p− h

λ1i

− E(Ji+1(p+ h+ λ2i
pi − p− h

λ1i
+ ϵi))}+ Ji(p+ h). (18)

If λ2iqi ≥ h+ λ2i
pi−p−h

λ1i
, Lemma 3.1 and inequality (18) imply that

max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

qi +E(Ji+1(p+ λ2iqi + ϵi)) ≤ max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

(qi −
pi − p− h

λ1i
) + Ji(p+ h)

=
h

λ1i
+ Ji(p+ h) ≤ aih+ Ji(p+ h).

If λ2iqi < h+ λ2i
pi−p−h

λ1i
, the induction assumption and inequality (18) imply that

max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi)) ≤ max
pi−pi−h

λ1i
≤qi≤

pi−p

λ1i

{qi −
pi − p− h

λ1i

+ ai+1(h+ λ2i
pi − p− h

λ1i
− λ2iqi)}+ Ji(p+ h)

= max
pi−p−h

λ1i
≤qi≤

pi−p

λ1i

{(1− λ2iai+1)(qi −
pi − p− h

λ1i
)}

+ ai+1h+ Ji(p+ h)

≤ max{ai+1,
(1− λ2iai+1)

λ1i
+ ai+1}h+ Ji(p+ h)

≤ aih+ Ji(p+ h), (19)

where the second inequality follows from considering the two cases that 1 − λ2iai+1 ≤ 0 and
1− λ2iai+1 ≥ 0.

In summary, for any p, p+ h < pi, (16) holds.

We next consider any p with p, p+ h ≥ pi,

Ji(p)− Ji(p+ h) = E(Ji+1(p+ ϵi))− E(Ji+1(p+ h+ ϵi)) ≤ ai+1h ≤ aih, (20)

where the first inequality follows from induction assumption and the second inequality follows from
definition of ai.
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The last possible case is p < pi and p+ h ≥ pi. We have

Ji(p)− Ji(p+ h) = max
0≤qi≤

pi−p

λ1i

qi +E(Ji+1(p+ λ2iqi + ϵi))− E(Ji+1(p+ h+ ϵi))

≤ max
0≤qi≤ h

λ1i

qi + E(Ji+1(p+ λ2iqi + ϵi))− E(Ji+1(p+ h+ ϵi)), (21)

where the last inequality follows from pi − p ≤ h.

If λ2iqi > h, Lemma 3.1 and inequality (21) imply that

Ji(p)− Ji(p+ h) ≤ max
0≤qi≤ h

λ1i

qi =
h

λ1i
≤ aih (22)

If λ2iqi ≤ h, the induction assumption and inequality (21) imply that

Ji(p)− Ji(p+ h) ≤ max
0≤qi≤ h

λ1i

qi + ai+1(h− λ2iqi) = max
0≤qi≤ h

λ1i

(1− λ2iai+1)qi + ai+1h

≤ max{ai+1,
(1− λ2iai+1)

λ1i
+ ai+1}h ≤ aih,

where the first inequality of second row follows from considering the two cases: 1−λ2iai+1 ≤ 0 and
1− λ2iai+1 ≥ 0.

In summary, for any p < pi and p+ h ≥ pi, (16) holds. 2

Theorem 3.2 tells us that the difference between Ji(p) and Ji(p + h) is bounded by a linear
function of h with slope ai, which depends on the price impact parameters λki but not on the price
p, noise ϵj , j = i, . . . , N − 1 and how the trader sets the reservation prices pj in the later periods
j = i, . . . , N . This theorem motivates the following sufficient condition under which the greedy
policy is optimal.

Theorem 3.3. At period i, if the temporary and permanent price impact parameters satisfy

λ2iai+1 ≤ 1, (23)

then greedy policy is optimal to (4)-(7), i.e, if p < pi, q
∗
i = pi−p

λ1i
is the optimal quantity.

Proof. For any 0 ≤ qi ≤ q∗i , we have

qi +E(Ji+1(p+ λ2iqi + ϵi))− (q∗i + E(Ji+1(p+ λ2iq
∗
i + ϵi))) ≤ qi − q∗i + ai+1λ2i(q

∗
i − qi)

= (qi − q∗i )(1− ai+1λ2i)

≤ 0, (24)

where the first inequality follows from Theorem 3.2.

Thus, since Ji(p) = max
0≤qi≤

pi−p

λ1i

qi + E(Ji+1(p + λ2iqi + ϵ0)), we have that q∗i = pi−p
λ1i

is the

optimal quantity. 2
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We now explain the intuition behind Theorem 3.3. Consider purchasing one additional unit in
period i. This unit will increase the price in period i+1 by λ2i. Theorem 3.2 tells us that starting
from period i+ 1, we will lose at most λ2iai+1 due to this price increase. Therefore, if Eq. (23) is
satisfied, greedy policy is optimal since what we can lose in subsequent periods is less than what
we gain in the current period.

We want to mention here that although condition (23) is independent of reservation price pi,
it doesn’t mean that reservation price has no impact on the optimality of greedy policy. Consider
the trivial case that p0 > 0 and pi = 0 for all i > 0, then greedy policy is always optimal at period
0. Another case is that if pj , j > i is fixed and ϵj is sufficiently large for j > i, then greedy policy
is optimal at period i.

Next we identify cases where the condition λ2iai+1 ≤ 1 is satisfied, that is, we identify cases
where the greedy policy is optimal. The first case is when the temporary price impact is greater
than or equal to the permanent price impact, i.e., λ1i ≥ λ2i, and the permanent price impact is
nondecreasing with time, i.e., λ2i ≤ λ2(i+1). This is shown in the following proposition.

Proposition 3.1. If for each i, λ1i ≥ λ2i and λ2i ≤ λ2(i+1), then the greedy policy is optimal.

Proof. We show λ2iai+1 ≤ 1 by backward induction. For i = N − 1, λ2(N−1)aN =
λ2(N−1)

λ1N
≤

λ2N
λ1N

≤ 1. Assume λ2iai+1 ≤ 1, then ai+1 + (1−λ2iai+1)
λ1i

≥ ai+1. Also, ai+1 + (1−λ2iai+1)
λ1i

=

(1 − λ2i
λ1i

)ai+1 + 1
λ1i

≥ 1
λ1i

, hence ai = (1 − λ2i
λ1i

)ai+1 + 1
λ1i

. Therefore, λ2(i−1)ai ≤ λ2iai =

(1 − λ2i
λ1i

)λ2iai+1 + λ2i
λ1i

≤ (1 − λ2i
λ1i

) + λ2i
λ1i

≤ 1. By Theorem 3.3, we know that the greedy pol-
icy is optimal. 2

The second case is when a unit ordered in this period will increase next period price more
than current period price, i.e., λ1i ≤ λ2i, but less than buying an additional unit next period, i.e.,
λ2i ≤ λ1(i+1). This intuitively implies that as time progresses, the stock is desirable by more and
more people.

Proposition 3.2. If for each i, λ1i ≤ λ2i and λ2i ≤ λ1(i+1), then the greedy policy is optimal.

Proof.We show λ2iai+1 ≤ 1 using backward induction. For i = N−1, λ2(N−1)aN =
λ2(N−1)

λ1N
≤ 1.

Assume λ2iai+1 ≤ 1, then ai+1+
(1−λ2iai+1)

λ1i
≥ ai+1, and ai+1+

(1−λ2iai+1)
λ1i

= (1− λ2i
λ1i

)ai+1+
1
λ1i

≤ 1
λ1i

.

Hence, using definition of ai, we have ai =
1
λ1i

. Therefore, λ2(i−1)ai =
λ2(i−1)

λ1i
≤ 1. Theorem 3.3

implies that the greedy policy is optimal. 2

3.3 Lower Bound for Greedy Policy

In Section 3.2, we identified conditions under which the greedy policy is optimal. Unfortunately,
as we saw in Section 3.1, the greedy policy is not always optimal. In these cases, it is important to
identify the effectiveness of this policy. For this purpose, we derive a lower bound on the ratio of
the value returned by greedy policy to the optimal value of (4)-(7).
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Theorem 3.4. For any p, let J0(p) be the optimal value of (4)-(7) and J∗
0 (p) be the value returned

by greedy policy. Denote I = {i ∈ {0, 1, . . . , N − 1}|λ2iai+1 ≥ 1}, then

J∗
0 (p)

J0(p)
≥

∏
i∈I

1

λ2iai+1
. (25)

Proof. For any p < pi, Let q
∗
i = pi−p

λ1i
and qi = argmax

0≤qi≤
pi−p

λ1i

{qi + E(Ji+1(p+ λ2iqi + ϵi))}.
Then for any i such that λ2iai+1 ≥ 1, we have

q∗i + E(Ji+1(p+ λ2iq
∗
i + ϵi))

qi + E(Ji+1(p+ λ2iqi + ϵi))
≥ q∗i + E(Ji+1(p+ λ2iq

∗
i + ϵi))

qi + E(Ji+1(p+ λ2iq∗i + ϵi)) + ai+1λ2i(q∗i − qi)

≥ q∗i + E(Ji+1(p+ λ2iq
∗
i + ϵi))

ai+1λ2i(q∗i +E(Ji+1(p+ λ2iq∗i + ϵi)))
=

1

ai+1λ2i
, (26)

where the first inequality follows from (16) and second inequality follows from the assumption

that λ2iai+1 ≥ 1. Now we prove (25) by induction on the number of periods. Assume
J∗
1 (p)

J1(p)
≥∏

i∈I\{0}
1

λ2iai+1
, then

J∗
0 (p) = q∗0 + E(J∗

1 (p+ λ20q
∗
0 + ϵ0)) ≥ q∗0 + (

∏
i∈I\{0}

1

λ2iai+1
)E(J1(p+ λ20q

∗
0 + ϵ0))

≥ (
∏

i∈I\{0}

1

λ2iai+1
)(q∗0 + E(J1(p+ λ20q

∗
0 + ϵ0)))

≥ (
∏

i∈I\{0}

1

λ2iai+1
)

1

λ20a1
(q0 + E(J1(p+ λ20q0 + ϵ0)))

= (
∏
i∈I

1

λ2iai+1
)J0(p), (27)

where the second inequality follows from λ2iai+1 ≥ 1 and third inequality follows from (26). 2

Observe that the theorem is noise-independent and price-independent, i.e., we do not make any
assumptions on the noise ϵi, price p and how the trader sets the reservation prices pj in the later
periods j = 1, . . . , N . As we can see, the performance of the greedy policy only depends on the
temporary and permanent price impact parameters λki, k = 1, 2 and i = 0, 1, . . . , N − 1.

4 Conclusion and Future Research

In our model, the impact on the price is assumed to be a linear function of the order size. It
will be interesting to see what results we can get from the nonlinear price impact models. In this
paper, we let time be measured in discrete time. As all the discrete time models in the literature,
the temporary price impact lasts only one period. An interesting future research is to consider
continuous time model, and allow that the resilience or transient price impact can decay over
longer interval.
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