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Des algorithmes pour trouver les stratégies uniformément
optimales dans les jeux stochastiques a somme nulle avec geu
joueurs et avec information parfaite
Résumé : Dans les jeux stochastiques a information parfaite, damas|eh etat, au plus, un
joueur a plus d’'une action disponibles. Nous proposons digotithmes qui trouvent les stratégies
uniformément optimales pour les jeux stochastiques a sonuffeeavec deux joueurs et information
parfaite. Ces stratégies sont aussi optimales pour lererité la moyenne a long terme. Nous

prouvons la convergence pour un algorithme, qui a une plasdgr complexité que I'autre, pour
lequel nous offrons une analyse numérique.

Mots-clés : Jeux stochastiques, Information parfaite, Stratégie®mmément optimales, Calcul
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1 Introduction

Stochastic games are multi-stage interactions amongaesaticipants in an environment whose
conditions change stochastically, influenced by the dea$sof the players. Such games were in-
troduced by Shapley (1953), who proved the existence ofigwdnted value and of the stationary
discounted optimal strategies in two-player zero-sum ganith finite state and action spaces. The
problem of long term average reward games was addressetyfiGtllette (1957). Bewley and
Kohlberg (1976) proved that the field of real Puiseux serseari appropriate class to study the
asymptotic behavior of discounted stochastic game whedidw®unt factor tends to one. Mertens
and Neyman (1981) showed the existence of the long term g@eadue of stochastic games. Then,
Parthasarathy and Raghavan (1981) first introduced themofiorder field property. This prop-
erty implies that the solution of a game lies in the same @diéield of the game data. Solan and
Vieille (2009) presented an algorithm to find theoptimal uniform discounted strategies in two-
player zero-sum stochastic games, where0.

Perfect information games were addressed by several obszale.g. see Thuijsman and Ragha-
van, 1997, Altman and Feinberg, 2000), since they are the¢ @hermentary form of stochastic games:
the reward and the transition probabilities in each staeantrolled at most by one player. Recently,
Raghavan and Syed (2002) provided an algorithm which finel@fitimal strategies for two-player
zero-sum perfect information games under the discountestion for a fixed discount factor.

Markov Decision Processes (MDPs) can be seen as stochastiesgn which only one player
can possess more than one action in each state. It is wellrk(g®e e.g. Filar and Vrieze, 1996)
that the optimal strategy in an MDP can be computed with tHp ba linear programming for-
mulation. Hordijk, Dekker and Kallenberg (1985) proposefind the Blackwell optimal strategies
(uniform optimal discount strategies) for MDPs by using simaplex method in the ordered field of
rational functions with real coefficients. Altman, Avractkev and Filar (1999) analysed singularly
perturbed MDP using the simplex method in the ordered fieldtidnal functions. More generally,
Eaves and Rothblum (1994) studied how to solve a vast clakseafr problems, including linear
programming, in any ordered field.

In this paper we propose two algorithms to determine theoumifoptimal discount strategies
in two-player zero-sum games with perfect information. ISetrategies are optimal in the long
run average criterion as well. The proposed approachesaemethe works by Hordijk, Dekker,
Kallenberg (1985) and Raghavan, Syed (2003) to the game Imodee field F(R) of the non-
archimedean ordered field of rational functions with cogfits inRR.

LetT be a two-player zero-sum stochastic game with perfectinétion and;(h),i=1,2 be
the MDP that player faces when the other player fixes his own strateg@ur first algorithm can
be summed up in the following 3 steps:

1. Choose a stationary pure stratepfpr player 2.

2. Find the uniform optimal stratedyfor player 1 in the MDH 1(Q).

RR n° 7355



4 K. Avrachenkov & L. Cottatellucci & L. Maggi

3. Find thefirst state controlled by player 2 in which a change of stratgdgy a benefit for player
2 for all the discount factors close enough to 1. If it doeseasts, ther(f,g) are uniform
optimal, otherwise sag:=¢' and go to step 2.

Itis evident that player 1 is left totally free to optimizestMDP that he faces at each iteration of the
algorithm in the most efficient way.

Our second algorithm is a best response approach, in whéctwih players alternatively find their
own uniform optimal strategies:

1. Choose a stationary pure stratepfpr player 2.
2. Find the uniform optimal stratedyfor player 1 in the MDH 1(Q).

3. If gis uniform optimal for player 2 in the MDP;(f), then(f,g) are uniform optimal. Other-
wise, find the uniform optimal strategy in I'>(f), setg:=d and go to step 2.

The convergence in a finite time of the first algorithm is prgwehile for the second we provide
numerical analysis. We also show that the second algorimsraHower complexity.

This paper is organized as follows. In secfidn 2 we introdaomally the properties of stochastic
games, sectidd 3 is dedicated to the description of the ffeltional functions with real coefficients,
while in sectior # we recall the linear programming procedtin the field= (R) in order to find a
Blackwell optimal policy for MDPs. We present some new usedsults on perfect information
games in sectioh] 5 and sectioh 6 is dedicated to the deseriptid to the validation of our first
algorithm. In sectio]7 we provide a numerical example. letisa[8 we introduce an algorithm
whose convergence is only conjectured; we report some deraions and numerical results about
the complexity of our algorithms in sectibn B.1.

Some notation remarks: the ordering relation between veabthe same length > (<)b
means that for every componenta(i) > (<)b(i). The discount factor and the interest rate are
barred 3, p) if they are a fixed value; the symbgBs p represent the related variables.

2 The model

In a two-player stochastic ganfiewe have a set of stat€d= {s;,,...,Sv}, and for each state
the set of actions available to tixh player is called\()(s) = {a(li)(s),...,ar(::(s)}, i=12. Each
triple (s,a;,ap) with a; € AW, a, € A@ is assigned an immediate rewans, a;, a) for player 1,
—r(s,a1,ay) for player 2 and a transition probability distributi@.|s,a;,a) onS.

A stationary strategy € Us for thei-th player determines the probabilityals) that in states
playeri chooses the actiorsse [aéi), e ,aﬁ.‘)(s)].
We assume that both the number of states and the overall mahéeailable actions are finite.

INRIA



Two-player zero-sum stochastic games with perfect infiona 5

It is evident that a couple of strategies Fs, g € Gsfor player 1 and 2, respectively, sets up a
Markov chain in which the transition probability equals

S D) (a2
(SI|Safag z z psl|s ap 7aq ) (ap |S)g(aq |S)
=1 =1
Vs ¢ € S while the average immediate reward, f,g) equals
z z (sap’af)) f(ap[s)a(as’|s)
p=1 g=1

Let B € [0;1) be the discount factor an be the interest rate such thatl+p) = 1. Note
that whenB 1 1, thenp | 0. We defined (f g) as a column vector of lengtN such that its-th

component equals the expec;(é(ﬂscounted reward when the initial state of the stochastioe is
S:
o —t
P5(f.g) = Z)B P'(f,g)r(f.g)
t=

whereP(f,g) andr (f,g) are theN-by-N transition probability matrix and thié-by-1 average reward
vector associated to the couple of strategfeg) respectively.

Definition 1. TheB-discounted value of the garfid@s such that
@5(T) = supinf @5 (1,g) = infsup®s(f,g). (1)
Definition 2. An optimal strategy*ﬁ for player 1 assures to him a reward which is at Ie@%t(l')
®p(f:9) 2 @M vVgeG
whileg% is optimal for player 2 iff
dnﬁ(f,g%) < CDE(F) vfeF.

Let &(f,g) be the long term average value of the gamassociated to the couple of strategies
(f,0):

o(f,9) TIanmﬁ_Zthfg (f,g)

and®(I") be the value vector for the long term average criterion ofdgwmel”, defined in an analo-
gous way to expressionl(1).

The existence of optimal strategies in discounted stothgames is guaranteed by the following
theorem (Filar and Vrieze, 1996):

RR n° 7355



6 K. Avrachenkov & L. Cottatellucci & L. Maggi

Theorem 2.1. Under the hypothesis of discounted pay-off, stochasticeggmossess a value, the

optimal strategie$f*ﬁ, g*ﬁ) exist among stationary strategies and moreovg(r) = dbﬁ(f*ﬁ, E).

Definition 3. A stationary strategy is said to be uniformly discount optimal for a playerhifis
optimal for eveng close enough to 1 (or, equivalently, for @liclose enough to 0).
In the present paper we deal with perfect information stetibgames.

Definition 4. Under the hypothesis of perfect information, in each stata@st one player has more
than one action available.

LetS; = {si,...,5, } be the set of states controlled by player 1 &d- {s,1,..., S+1,} be
the set controlled by player 2, with+t, <N.

3 The ordered field of rational functions with real coefficierts

Let P(R) be the ring of all the polynomials with real coefficients.

Definition 5. The dominating coefficient of a polynomiakfag + ai;x+ - - - +anx" is the coefficient
a, where k= min{i : g # 0} and we denote it witl¥( f).

Let F(R) be the non-archimedean ordered field of fractions of polyiatemvith coefficients in

R:
_ CotCaX+- X"

= do+ dix+ - - 4 dmx™
where the operations of sum and product are defined in thd usya(see Hordijk, Dekker and
Kallenberg, 1985). Two rational functiomig'g, p/q are identical (and we sdy/g = p/q) if and
only if h(x)g(x) = p(X)g(x) Vx € R.

f eF(R)

The following lemma (Hordijk et al., 1985) introduces theering in the field= (R):
Lemma 3.1. A complete ordering in FR) is obtained by the rule

§>| 0+ 2(p)Z(a) >0  p,geP(R)

In the same way, we can also define the operations of maximuay @nd minimum (mip) in
F(R).

The ordering law defined above is useful when one wants to acerjhe behavior of rational
functions whose indipendent variable is positive and apgines to O (see Hordijk et al., 1985).

Lemma 3.2. The rational function pq is positive(p/q > 0) if and only if there existspc> 0 such
that p(x)/q(x) > O for every xe (0;xg).

INRIA
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3.1 Application to stochastic games

From the next theorems the reader will start perceivingripgoirtance of dealing with the fiekl(RR)
in stochastic games.

Theorem 3.3. Letf,g be two stationary strategies respectively for players 1 arahd ®,(f,9) :
R — RN be the discounted reward associated to the couple of siestéig) expressed as a variable
of p. Then®,(f,g) € F(R).

Proof. For any couple of stationary strategigsg), we can write

N
SZ [(14p)dss — p(S|s.f,0)|Pp(f,0,8) = (1+p)r(sf,g) se[LiN] 2
=1

wherep is a variable. By solving the above system of equations iuth@ownd, by Cramer rule,
it is evident thatb, (f,g) € F(R). O

Generally, the discounted value of a stochastic game fahealinterest rates close enough to 0
belongs to the field of real Puiseux series (see Filar andz¥/i#996). From Theorerhs 2.1 dnd|3.3
it is straightforward to obtain the following important Lema.

Lemma 3.4. Letl be a zero-sum stochastic game which possesses unifornudisgatimal strate-
gies for both players. Then, there exst>0and®,(I") € F(R) such thatb;(I") is the discounted
optimal value for all the interest ratgs < (0;p0"].

Proof. Let (f*,g*) be a couple of uniformly discount optimal strategies folypls 1 and 2 respec-
tively. Then, by definition, there exisg’ > 0 such tha{f*,g*) are discounted optimal for all the
interest rate® € (0;p*]. From Theorer 3]3 we know thdt, (f*,g*) € F(R) and, from Theorem
[2.1, the optimum uniform discounted valdg; (") = ®5(f*,g*) Vp € (0;p"]. So, P, () € F(R)
represents the discounted valud dbr all the interest rates sufficiently close to 0. O

Lemma 3.5. Letl" be a zero-sum stochastic game which possesses unifornudisgatimal strate-
giesf*, g* for players 1 and 2 respectively. Then,

Py (f,97) <i Pp(f*,9") = P,H(T) < Pp(f*,9) Vg 3)
where
qu_.,(I') =) max min, ®,(f,g) = min, max ®,(f,g). (4)
f g g f

Proof. From Theorerh 211 and by the definition of uniform discountrapt strategy, we assert that
Ip*>0:Vp e (0;p"] = ®5(f,g") < P5(f",9") < P5(f",9) Vi,g
which coincides with[(B) for Lemma3.2. The equatibh (4) isgract consequence dfl(3). O

Definition 6. @, (I"), defined as irfd), is the uniform discount value of the stochastic gdime

RR n° 7355
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4 Computation of Blackwell optimum policy in MDPs

In this section we will discuss about some concepts of ligagramming, which can be easily
found on any book on linear optimization (e.g. see Luenlyeagd Ye 2008).

Let W be a Markov Decision Process, which can be seen as a twormty@hastic game in
which one of the two players either fixes his own strategy ardraly one available action in each
state. We caltb,(f) the value of the discounted MDP associated to the strétegth interest rate
variablep.

It is known (Puterman, 1994) that the interval of interest (8;) can be broken into a finite
numbern of subintervals, say0 = ao; o], (01;02],...,(0n—1;%) in such a way that for each one
there exists an optimal pure strategy.

A Blackwell optimal policy is an optimal strategy associhte the first sub-interval.

Definition 7. We say that the stratedy is Blackwell optimal iff there existg* > 0 such thatf* is
optimal in the(1/p — 1)-discounted MDP for all the interest ratgse (0;0*].

Since for Theorem 31®, (f) € F (R) for anyf € Fs, we can say
®p(f) > Bp(f)  VieF

whereF is the set of all possible strategies.
Hordijk, Dekker and Kallenberg (1985) provided a usefubaipm to compute the Blackwell opti-
mum policy in MDPs. It consists in solving the following paratric linear programming problem:

max 381 575 Xsa(P)r (5.2)

SN S+ p)8y — P(EIs @) xsalp) =1 1, SE€S ®)
Xsa(p) 210, s€S acA(s)

in the ordered field of rational functions with real coeffitigF (R). This means that
i) pis the variable of polynoms;
ii) all the elements of the related simplex tableau belorfg(i®);

ii) all the algebraic and ordering operations required by ith@lex method are carried out in the
field F(R).

The practical technique to solve the linear optimizatioobpem [%) proposed by Hordijk et al.
(1985) is the so-calletivo-phases method

In thefirst phasethe artificial variableg, ..., zy are introduced as basic variables and the tableau of
the following linear programming problem

max 58 531 XeeP)r(5.2)

SN ST+ p) 85y — P(SIs@)]%salp) +2¢(P) =1 1, S €S ©)
%sa(p) >10, seS acA(y

INRIA
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is built. Then,N successive pivot operations on all the artificial variallescarried out so that the
feasibility of the solution is preserved. We cafitering variableghe basic variables of the tableau
at the end of the first phase. In thecond phasthe columns of the tableau associated to the artificial
variables,, ..., zy (which are now all non-basic) are removed and the simplexatkis performed
in the ordered fieldr (R) on the obtained tableau.

We note that another approach for the solution of the pamdarigtear program[(b) is given by
simplex method in the field of Laurent series (see Filar, Atrand Avrachenkov, 2002).

The optimal Blackwell stationary pure stratefyis computed as:

S %a(p)
where{x{,(p) Vs,a} is the solution of the optimization problem. The simplex huet guarantees
that the optimum stratedy is well-defined and pure (see Filar and Vrieze 1996).

f*(als) = Vse S acAs) (7)

5 Uniform optimality in perfect information games

As we said before, in a perfect information game in each stateost one player has more than one
action available. A stationary strategy for the player1,2 is a functiorf; : S— UE:lAi (s«) with

fi(.|s) € A(s).

Theorem 5.1. For a stochastic game with perfect information, both playpossess uniform dis-
count optimal pure stationary strategies, which are optifoathe average criterion as well.

The Theorerh 511 (see Filar and Vrieze, 1996) guaranteexisierce of the optimal strategies
for both players in the average criterion for games with g&trinformation. Moreover, it suggests
that in order to find the optimal strategies for the averagerion one has to find the optimal strate-
gies in the discounted criterion for a discount factor sigfitly close to 1.

Definition 8. We call two pure stationary strategies adjacent if and ohihey differ only in one
state.

Then the following property holds, which proof is analogtahe one in the field of real num-
bers.

Lemma 5.2. Letg be a strategy for player 2 anidf;, be two adjacent strategies for player 1. Then
either®, (f1,9) > Pp(f,g) or Pp(f1,9) < Pp(f,g), which means that the two vectors are partially
ordered.

The property above allows us to give the following definition

Definition 9. Let(f,g) be a pair of pure stationary strategy respectively for playand 2. We call
f1 (g1) a uniform adjacent improvement for player(2) in state s if and only iff; (g1) is a pure
stationary strategy which differs from(g) only in state sand @, (f1,9) > @, (f,9) (Pp(f,01) <
®,(f,0)) where the strict inequality holds in at least one component.

RR n° 7355



10 K. Avrachenkov & L. Cottatellucci & L. Maggi

As in the case in which the discount interest rate is fixed, eteese the following results.

Lemma 5.3. Letl" be a perfect information stochastic game. A couple of patostary strategies
(f*,g") is uniform discount optimal if and only if no uniform adjatémprovement is possible for
both players.

Proof. Theonly if implication is obvious. If the strategi€s’, g*) are such that no uniform adjacent
improvements are possible for both players, then no impnaves are possible also for the first
stage of the game too, that is

f*(s) = argmax {r(s,a)+(1+p)1 % p(s’|s,a)q3p(s’,f*,g*)} SES
=1

acA(s)

N
g'(s) = argmin {r(aa)+(1+p)lsz p(dls,a)d)p(if*,g*)} seS

achy(s) =1

Itis known (see Filar and Vrieze, 1996) that if the strategié, g*) satisfy such equations then they
are uniform discount optimal. O

In perfect information games, the following result (see Ragn and Syed, 2002) holds

Lemma 5.4. In a zero-sum, perfect information, two-player discounseathastic gamé& with
interest ratep > 0, a pair of pure stationary strategig$*,g") is optimal if and only ifP5(f*,g*) =
®,5(I"), the value of the discounted stochastic gdime

From the above result we can easily derive the analogougpsoip the ordered fielé (R).

Lemma 5.5. In a zero-sum, two-player stochastic gamevith perfect information, a pair of pure
stationary strategie§f*,g*) are uniform discount optimal if and onlyd¥, (f*,g") = @, (') € F(R),
where®;, (") is the uniform discount value &f

Proof. Theonly if statement coincides with the assertion of Thedre 2.1.ifThendition is less
obvious. If a pair of strategig$*,g*) has the propertp, (f*,g*) = @, (), then there existp™ >0
such thatvp € (0;p*], @5(f*,g*) coincides with the value of the ganfie Vp € (0;p*]. Then,
thanks to Lemmpa5l4, we can say thd € (0;p*| the strategie§’, g* are optimal in the discounted
gamel’, which means that they are discount optimal. O

Let s be a state controlled by playe(i = 1,2) andX C Ai(s). Let us calll'}; the stochastic
game which is equivalent tb except in states, where playei has only the actionX available.
Analogously to the result of Raghavan and Syed (2002), weqs®the following Lemma.

Lemma 5.6. Leti=1,2and s € §, XCA(s), Y CA(s), XNY = 0. Thend; (I ) € F(R),
which is the uniform value of the garfig , equals

P (My) = max {®,(Fy), @5 (rYy)}  ifi=1
@, (Mkuy) = min {@5 (M%), @p(MY)}  if i=2.

INRIA
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Proof. Let us suppose that the stageis controlled by player 2. We indicate witd}, the set of
pure stationary strategies in which the choice in staie restricted to the set. We note that the
restriction in statey does not affect player 1. Thus}, = F.

If it is possible to find optimal strategies for player 2 bothG} and in G\, then®;(I') =
D5 (TY) =1 (M y) for Lemmesb.

Otherwise, the uniform discount pure strategy of gdiye, for player 2 belongs either @) or to
Gl,. For example, let us suppose that the optimal discouneslyadh the stochastic ganig ,, for
player 2 is found iryY. Then we have

5 (ry) = P (Muy)
=) min, max, @, (f,q)

geG feF
< min, max, ®,(f,g)

ggGg( feF

= ()

The proof for the situation in which €S, is analogous. O

6 Algorithm description

Our task is to find an algorithm which allows to find the unifadiscount optimal strategies for both
players in a perfect information stochastic gamevhich coincide with the optimal strategies for
the long term average criterion for Theorem|5.1. Following lines of the algorithm of Raghavan
and Syed (2002) for optimal discount strategy, we propossgorithm suitable to the ordered field
F(R).

Letl be a zero-sum two-player stochastic game with perfectinébion.

Note that all the algebraic operations and the order signs-J are to be intended in the field
F(R).

Remark 1. Unlike Raghavan and Syed'’s solution, the algorififhdoes not require the strategy
search for player 1 to be lexicographic. Player 1, in factda in step 2 a classic Blackwell opti-
mization.

Remark 2. Obviously, the roles of player 1 and 2 can be swapped in therdllgn[23 For simplicity,
throughout the paper the player 1 will be assigned to step 2.

Remark 3. In step 3, once the statg s is found, the adjacent improvement involves the pivoting
of any of the non basic variablg X, a to which corresponds a reduced cogt G .a <i 0.

Now, we prove the appropriateness of the algorifPfin The proof is analogous to the one by
Raghavan and Syed (2002).

RR n° 7355



12 K. Avrachenkov & L. Cottatellucci & L. Maggi

Step 1 Choose randomly a stationary deterministic pure strageigy player 2.
Step 2 Find the Blackwell optimal strategy for player 1 in the MDI(g) by solving within the field
F(R) the following linear programming:
max 5 T2 Xsa(P)r(52.9)

SN sM(14p)8e — P(S]S8,0))Xsa(p) =1 1, S €S (8)
Xsa(p) >10, se€S acAs)

and compute the pure strateggs

Xsa(P)
(s

ZaTil) Xé,a(p)

where{x;,(p), Vs,a} is the solution of((B).

f(als) = Vse S ac Ai(9) 9)

Step 3 Find the minimurk such that ing, ¢ € {,+1,-..,%;+t,} there exists an adjacent improve-
mentg’ for player 2, with the help of the simplex tableau associatethe following linear
programming:

max — 581 53% Xsa(P)r (s .2)
SN SO ((14 p)dsy — p(Slsf.a)xsa(p) =1 L, S €S (10)
Xsa(P) >10, seS acAys)

where the entering variables a5 : g(als) =1, Vs}.
If no such improvement for player 2 is possible then go to dtemherwise sej:=g' and go
to step 2.

Step 4 Set(f*,g"):=(f,g) and stop. The strategiéfs, g*) are uniform discount and long term average
optimal in the stochastic ganfierespectively for player 1 and player 2.

INRIA
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Theorem 6.1. The algorithm stops in a finite time and the couple of strae(fi*, g*) are uniform
discount optimal in the stochastic garne

Proof. We assume that the overall number of actions

ty to
H= m(s)+ D Ma(Scity)
K=1 K=1
is finite.
Without loss of generality, let us reorder the states soithidie firstt; states player 1 has more than
one action and the secotydstates are controlled by player 2. Of coutse;t, <N.

We can proceed by induction @n Trivially it >2N, becausg@t=2N is equivalent to the situation
t1 =t,=0. In this case the algorithm finds the average optimal coofodérategies because it is the
only existing.

Now we suppose by induction that the algorithm fimdthout cycling(that is, all pure stationary
strategies are visited at most once) the couple of unifortima strategies when the number of
actions isti > 2N. We have to prove that the thesis is valid when the numbertafrecequal3r+1.

If t,=0, then again there is nothing to prove, because, as we shavsedtior 4, the step 1 of
our algorithm finds the Blackwell optimal polidy for player 1 in the MDH 1(Q).

If t2 >0, then we focus on the stasgt, = S;, which is the last examined by our algorithm.
The actions available in statg areAy(s;) =X Ua, whereX={a;...8_1,81...an} andn > 2
by hypothesis. By induction hypothesis, we suppose thaalterithm finds the uniform discount
optimal strategies for both players in the gaijewithout cycling. Since no uniform improvements
are possible iy by definition of uniform optimal strategies, then the algfom looks for an uniform
adjacent improvemerf, whereg'(aj|s;) =1. There are now two possibilities.

If the uniform optimal strategy for player 2 found il is also optimal i, then the algorithm
terminates because still no adjacent improvements aréagp@$sr player 2 ing.

Otherwise, any uniform optimal strategy for player 2 inl" includes the actiom; and the
algorithm necessarily finds an adjacent improvement irestafor Theoren{ 5.8 and it finds by
induction hypothesis the uniform discount optimal strasgn the gamcﬁtan. So we have

®p (1) =1 Min{Pp (), Pp(T5,)} =1 Pp(TG,)

where the second equality holds because otherwise the alptnategies of § would be uniform
optimal in the gamé& for Lemmd5.b. Again thanks to Lemrabk.5, we can assert tieatiform
discount optimal strategig$*, g*) found inl"} are optimal also foF , becauseb, (f*,g*) =@} (),
which is the uniform discount value of the game.

Moreover, the algorithm terminates because for Theérem® ighprovements are available to both
players.

We gave a constructive proof of the fact that the algorithsspa through a path of pure strate-
gies, it never cycles and it finds the uniform discount optistieategies for both players. Since the
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overall number of actions is finite, then also the cardigaiit pure strategies is finite; hence, the
algorithm must terminate in a finite time and the strate¢fieg™) are uniform discount optimal, and
for Theoreni 5.1 they are long term average optimal as well. O

6.1 Computing the optimality range factor

The algorithm presented in sectibh 6 suggests a way to digterfme range of discount factor in
which the long term average optimal strateg(fsg*) are also optimal in the discounted game.
Before, we report the analogous result to Lenima 5.3 whenigitedint factor is fixed (see Raghavan
and Syed, 2002).

Lemma 6.2. LetT be a perfect information stochastic game ghd [0;1). The pure stationary
strategie(f*,g*) are B-discount optimal if and only if no uniform adjacent impravents are pos-
sible for both players in thg-discounted stochastic garie

Let us define witl{ (f, ), wheref, € F (R), the set of positive roots df, such that(% lp—u <0, Vue
{(fp). Now we are ready to state the following Lemma.

Lemma 6.3. Let C be the set of the reduced costs associated to the twoaptbleaux obtained
at the step 2 and 3 of the last iteration of the algorifRfand

pr= mCinZ(c), ceC.

Thenﬁ* = (1+p*) Lis the smallest value such that the stratedigsg*) are B-discount optimal
in the game™, VB € [B;1).

Proof. The existence of sucp* is guaranteed by Theordm b.1. For all the value of the interes
factorp € (0;p*], the reduced costs are positive, hence no adjacent impensrare possible for
both players. So, for Lemnia®.2 they are discounted optithag.> p* andp* < «, then at least
one reduced cost is negative, hence at least an adjacemverpent is possible ar(@*,g*) are not
B-discount optimal, wher = (1+p) L. O

6.2 Round-off errors sensitivity

The role of the first non-null coefficients of the polynomiésimerator and denominator) of the
tableaux obtained throughout the algorithm unfolding seesial: they determine the positiveness
of the elements of the tableaux themselves in the figl®). This knowledge is fundamental to
choose the most suitable pivot elements.
The reader can easily understand that the algorithm is \iggnsitive to the round-off errors that
affect the null coefficients.

If the data of the problem (rewards and transition probtaddlifor each strategy) are rational,
then it is possible to work in the exact arithmetic and suatomreniences are completely avoided.
In fact, if all the input data are rational, they will stayicatal after the algorithm execution.

INRIA
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Table 1: Immediate rewards and transition probabilities for eacty@l, state and strat-

egy.

| (sa) | r | pils) | p(ls) | pssls) | p(sals) | p(ssls)
@ 1) 5] 0o | o | 0 | o | 1
|@2|4] o | o | 02 | 0 | o8

PL1 @313 o | o | 06 | o | o4
@) | 6] 0 | o0 | | o | o1
l@2|1] 1 | o | o | 0o | o
|@3]0] o | o | o1 ]| 0 | o0
TGO 4] 0 | 0 | 09 | o1
| @22 01 | o0 | | o | o

P2 "33 (0| 03 | 0 | 02 | 05 | O
| @2 o | o1 | 06 | 03 | 0
| 42| 2] 02 | 0 | 04 | 04 | O
|@3[3] o | o | o0 | 09 | o1
"5 |0 0 | 01 | 02 | 03 | 04

Instead, if the data are irrational, a simple way to circunttbe round-off errors is to fix a
tolerance value, and set to O all the polynomial coefficients of the tablealtamed throughout
the algorithm whose absolute value is smaller than

7 Anexample

Here we present a run of our algoritf#@, where the input data are taken from Raghavan and Syed
(2002). There are 5 states, the first two are controlled byepla and states 3 and 4 are for player
2; in the final state both players have no action choice. Thmediate rewards and the probability
transitions for every couple (state,action) for both ptaysre shown in tablg 1.

We choose the initial strategg(@z|ss) = 1,9(as|s4) = 1) for player 2. We report the optimum
tableau obtained by player 1 at the end of step 2 of the finsttit:n of our algorithm (tabl4) and the
tableau of player 2 after the firstimprovement at step 3H)aknalogously, the tableal 6 and 7 are
associated to the second and last iteration of our algorithismknown (see Hordijk et al. 1985) that
all the elements of simplex tableaux have a common denooirgtbred in the top left-hand box.
The last column of each tableau contains the numerator ofdloe of the basic variables, which are
listed in the first column. The last row indicates the nunaraf the reduced costs.

The optimum long term average strategy for player *ig&u|s1) = 1, f*(az|s2) = 1, and for
player 2 isg*(az|sz) = 19" (au|ss) = 1.

RR n° 7355
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By computing the first positiv_e root of the reduced costs efttho last optimal taEIeaux we find
that the strategie€*,g*) are alsg3-discount optimal for all the discount factfre [B*; 1), where
B ~0.74458.

Note that the optimal strategies differ from the ones of Ragh and Syed (2002), in which the
discount factor is set t0.999. We suspect that this is due to some clerical errors.

8 A lower complexity algorithm

Let I be a zero-sum two-player stochastic game with perfect méion. Consider the following
algorithm: This is essentially a best reponse algorithrwhirch at each step each player alternatively

Step 1 Choose a stationary pure stratagyfor player 2. Sek:=0.
Step 2 Find the Blackwell optimal stratedy for player 1 in the MDH 1(gk).

Step 3 If gk is Blackwell optimal inl",(fy), then set(f*,g*) := (fx,0x) and stop. Otherwise, find the
Blackwell optimal strateggy 1 for player 2 in the MDH »(fy), setk:=k+ 1 and go to step
2.

looks for his own Blackwell optimal strategy.

Obviously, if the above algorithm stopd;,g*) forms a couple of uniform discount and long term
average optimal strategies, since they are both Blackvptiinal in the respective MDP$,1(g*)
andlo(f*).

The proof that the algorithi@@ never cycles is still an open problem. It is quite naturalryoto
prove thai®, (fi11, k1) <1 Pp(fi, k), butitis not difficult to find a counterexample.

Raghavan and Syed (2002) conjecture as follows:

Conjecture 8.1. Let " be a two-player zero-sum stochastic game with perfect mnddion and
a = (f,g) acouple of pure stationary strategies for the 2 players.dary discount factg8 € [0; 1),
there are no sequences, ay, ..., dx such thawﬁ(ak) = (DE(ao), whereaq; is an adjacent improve-

ment with respect ta;_; in the B-discounted stochastic garfifor only one player for any 0.
If Conjecturd 8.11 were valid, then we could conclude thatalyarithm?3 terminates in finite
time.

8.1 Complexity

In our first algorithni?3, player 1 faces at each step an MDP optimization problemerfigid of
rational functions with real coefficients, which is solvalxh polynomial time. Player 2, instead, is
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involved in a lexicographic search throughout the algamitinfolding, whose complexity is at worst
exponential in time.

Player 2 lexicographically expands his search of his optinstrategy, and at thieth iteration
the two players find the solution of a subgafmevhich monotonically tends to the entire stochastic
gamerl .

Analogously to what Raghavan and Syed (2002) remark, we gsertahat the efficiency of our
algorithn{?3is mostly due to the fact that most of the actions dominatljovther actions. In other
words, it occurs very often that the optimum actane A(s), s€ S, found in an iteratiok such that
A(s) C Tk, is optimum also irf’, and consequently remains the same in all the remainirgtioes.
This exponentially reduces the policy space in which theritlgm needs to search.

Remark 4. As discussed in secti@h 6, in the algoritBfplayers’ roles are interchangeble. Since
most of the actions dominate totally other actions, we ssiggeassign the step 2 of the algorithm
to the player whose total number of available actions is tgea

Differently from Raghavan and Syed (2002), the search fayg 1 does not need to be lexico-
graphic, and player 1 is left totally free to optimize the MBfat he faces at each iteration of the
algorithm in the most efficient way.

Let us compare in terms of number of pivoting the followingealgorithms:

M1: Algorithm[?7 in which in step 2 player 1 pivots with respect to the vamgalith the minimum
reduced cost until he finds his own Blackwell optimal strgteg

M,: Algorithm[?73 in which in step 2 player 1 pursues a lexicographic seargbtipg iteratively
with respect to thdirst non-basic variable with a negative (in the fi¢ldR)) reduced cost.
This method is analogous to the one shown by Raghavan and(2¢84), but in the field
F(R).

M3:  Algorithm[23

The results are shown in tablek 2 ddd 3. The simulations waméed out on 10000 randomly
generated stochastic games with 4 states, 2 for player 1 émdptayer 2. In each state 5 actions
are available for the controlling player.

Table 2: Average number of pivotings for the 3 methods.

n. pivoting
M1 40.59
My 41.87
M3 24.93

It is evident that the algorithrivlz is much faster than the other two, but unfortunately its con-
vergence is not proven yet. However, in our numerical expenit with 10000 randomly generated
stochastic games, it never cycles. The difference betWw&eandM is due to the more efficient
simplex method used by player 1lify.
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Table 3: Mj > Mj when, fixing the game, the number of pivotingdnis strictly smaller

than the number of pivoting ;.

> (%) Mz My M3
M1 - 52.85 | 18.57
My 42.18 - 15.26
M3 80.05 | 82.75 -

Table 4: Optimum tableau for player 1 at the first iteration.

0.0184-0.6580+ X1,2 X1,3 X2,1 X2.3
3.07p%+5.130%+
3.7p%+p°
X1.1 0.0198+ 0.0234+ 0.0288+ 0.0297+ 0.087+1.707p+
0.6698+ 0.69340+ 0.7468+ 0.7527+ 4.42p%+3.8p%+
3.06p%+5.11p%+ | 3.04p%+5.07p%+ | 2.41802%+2.7p3%+ 241302+ p*
3.7p%+p° 3.7p%+p5 o4 2.6903+p4
X2.2 0.0018+0.0220+ | 0.0054+0.0660+ 0.027+0.7560+ 0.0279+0.767p+ 0.0594p+
0.04202+0.0203 0.12602+-0.06p° 3.1492%+ 3.17p%+5.130%+ 2.75p%+2.8p3+
5.1203+3.7p%+ 3.70%+1p° ot
1p°
X3.1 —0.0840— —0.2520— 0.018+0.1960+ 0.018+0.1540— 0.1+1.36p+
0.40202-0.5p3— | 1.206p%2—1.5p3— 0.15802—0.02p3 0.04302— 3.07p%+2.90%+
0.20% 0.6p* 0.27p3-0.1p* p*
X4.1 0.054+0.1740+ 0.162+-0.5220+ 0.27+0.51p+ 0.297+0.597p+ 1.41+4.51p+
0.1802+0.0603 0.540%+0.1803 0.21p2-0.0303 0.3p2 6p2+3.903+1p*
X5,1 0.018+0.2380+ 0.054+0.714p+ 0.09+1.07p+ 0.099+1.189+ 0.41+4.01p+
0.6402+0.620%+ | 1.920%+1.86p3+ | 1.77p%+0.690%— 2.090%+p3 6.802+4.20%+p*
0.2p% 0.6p* 0.1p4
0.1908+ 0.5544+ 0.909+3.3730+ 1.1034+ 4.924+30.7090+
1.2838+ 317540+ 0.22902— 7.7329+ 7477502+
3.8910%+ 7.94502+ 1452503~ 2267852+ 88.2903+
7.02803%+ 12.884p3+ 25.790%— 34.08903+ 50.3p%+11p°
7.530%+4.3p%+ 13.76p*+8.2p5%+ 18.5p5—5p° 26.54p%+9.5p5+
1p8 2p% 1p8
References
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Table 5: Optimum tableau for player 2 at the first iteration.

0.2884-2.3080+ X3,1 X33 X4,3 X4,2
6.0402+7.320%+
4.3p%+p°
X11 —0.0576- —0.1404- —0.0036+ —0.0432- 1.11+4.54p+
0.04160+ 0.59040— 0.09640+ 0.24720— 6.830%+4.4p%+
0.2460%+ 0.9302-0.680%— 0.26p%+0.160° 0.544p2— 104
0.330%+0.1p* 0.2p% 0.54p3-0.2p*
X2.1 —0.0576- —0.054-0.1520— —0.0036+ 0.0144+0.1520+ 0.6624-2.850+
0.2080— 0.15p2—0.0503 0.0560+ 0.35602+ 4.68p%+3.5p%+
0.254p2-0.1p3 0.2160%+ 0.320%+0.1p* p*
0.26p%+0.1p*
X3.2 1.0880-+ 1.1360+ 0.3680+ 0.1920+ 1.6+4.920+
458402+ 4.4160%+ 1.4040%+1.6p%+ | 0.60802+0.6p3+ | 6.5p%+4.1p%+p*
6.760%+4.3p%+ 6.36p%+4.1p%+ 0.6p% 0.2p%
1p° 1p°
X4.1 —0.432-2.4420— | —0.306-1.4660— | 0.018+0.6580+ 0.216+1.9560+ 1.41+4.51p+
4.38p2-3.27p3— 2.46p2—1.8p3— 3.07p%+5.1303+ 5.502+6.96p3+ 6p2+3.9p3+p*
0.90% 0.5p% 3.7p%+p° 4.2p%4p°
X5,1 —0.144-0.214p— | —0.234-05940— | —0.054-0.134p— | —0.072-0.2920— 2.33+7.530+
0.24p2-0.27p3— 0.56p2—0.2p3 0.35p2-0.37p3— 0.42p2-0.2p3 8.902+4.7p3+
0.1p* 0.1p* 104
2.3616+ 1.368+5.1320+ 0.8496+ 0.3456+ —12232-
1471760+ 4.65202— 518360+ 1.74960+ 56.6420—
35.1320%+ 478203~ 11.9902%+ 3.6320%+ 10824p2—
4352603+ 11.87p%—8.2p5— 15.09603+ 4.1280%+2.6p%+ 10533p3—
30.65p%+ 208 1164p%+5.2p%+ | 0.7p5+2.3008&— 515p%—10p°
11.90°+20° 108 0060°
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Table 6: Optimum tableau for player 1 at the second iteration.

0.2884-2.3080+ X1,2 X1,3 X2,1 X2,3
6.04p%+7.3203+
4.3p%+p°
X1.1 0.306+2.3240+ 0.3424-2.3560+ 0.4068+ 0.4158+ 1.11+4.54p+
6.0180%+7.3p%+ 5.974p%+ 2.1148+ 2.12280+ 6.830%+4.4p%+
4.3p%+p5 7.26p%+4.3p%+ 4.00802+3.3p%+ 3.997p%+ p*
p° o* 3.2903+p%
X2.2 0.018+0.0580+ 0.054+0.1740+ 0.378+2.4780+ 0.387+2.507p+ 0.662+2.850+
0.0602+0.020°3 0.1802+0.06p° 6.11p%+7.31p%+ | 6.14p%+7.320%+ 4.680°+3.5p%+
4.3p%+p° 4.3p%4p° p*
X3.1 —0.24p—0.6602— | —0.720—1.9802— | 0.288+0.4360+ 0.288+0.3160— 1.6+4.920+
0.62p3-0.2p* 1.86p3-0.6p* 0.12802-0.0203 0.2020%— 6.502+4.1p3+p*
0.3303-0.1p*
X4.1 0.054+0.1740+ 0.162+-0.5220+ 0.27+0.51p+ 0.297+0.597p+ 1.41+4.51p+
0.1802+0.0603 0.540%+0.1803 0.21p2-0.0303 0.3p2 6p2+3.9p3+p*
X5,1 0.126+0.5860+ 0.378+1.7580+ 0.63+2.090+ 0.693+2.3830+ 2.33+7.530+
p2+0.7403+ 3p242.22p3+ 2.1902+0.6303— 2.6902+p3 8.902+4.7p3+p*
0.2p% 0.6p* 0.1p4
0.504+2.8180+ 1.224+5.8580+ 1.8+2.8960— 3.636+18.5830+ 12232+
7.3440%+ 13.684p%+ 8.31802— 41.2680°+ 56.6420+
111503+ 20.090%+ 29.62403— 49.431p3+ 1082402+
10.020%+4.90%+ | 1844p*+9.4p%+ 36.71p%— 3221p%+ 10533p3+
p® 2p8 215p%—5p® 10.1p°%+p8 515p%+10p°
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Table 7: Optimum tableau for player 2 at the second iteration.

0.2884-2.3080+ X3,1 X33 X422 X4,3
6.0402+7.320%+
4.3p%+p°
X11 —0.0576- —0.1404- —0.0432- —0.0036+ 1.11+4.54p+
0.04160+ 0.59040— 0.24720— 0.09640+ 6.830%+4.4p%+
0.2460%+ 0.9302-0.680%— 0.54402— 0.26p2+0.1603 o
0.330%+0.1p* 0.2p% 0.54p3-0.2p*
X2.1 —0.0576- —0.054-0.1520— | 0.0144+0.1520+ —0.0036+ 0.6624-2.850+
0.2080— 0.15p2—0.0503 0.35602+ 0.0560+ 4.68p%+3.5p%+
0.254p2-0.1p3 0.320%+0.1p* 0.21602+ p*
0.26p%+0.1p*
X3.2 1.0880-+ 1.1360+ 0.1920+ 0.3680-+ 1.6+4.920+
458402+ 4.4160%+ 0.6080%+0.6p%+ | 1.4040%+1.6p3+ | 6.5p°+4.1p%+p*
6.760%+4.3p%+ 6.36p%+4.1p%+ 0.2p% 0.6p%
p® p®
X4.1 —0.432-2.4420— | —0.306-1.4660— | 0.216+1.9560-+ 0.018+0.6580+ 1.41+4.51p+
4.38p2-3.27p3— 2.46p2—1.8p3— 5.502+6.960°+ 3.07p%+5.130%+ 6p2+3.9p3+p*
0.90% 0.5p% 4.2p%4p5 3.7p%+p°
X5,1 —0.144-0.214p— | —0.234-05940— | —0.072-0.2920— | —0.054-0.134p— 2.33+7.530+
0.24p2-0.27p3— 0.56p2—0.2p3 0.42p2-0.2p3 0.3502-0.37p%— | 8.90%+4.7p%+p*
0.1p* 0.1p%
2.3616+ 1.368+5.1320+ 0.3456+ 0.8496+ —12232-
1471760+ 4.65202— 1.74960+ 518360+ 56.6420—
35.1320%+ 478203~ 3.6320%+ 11.9902+ 10824p2—
4352603+ 11.87p%-8.2p5— | 4.12803+2.6p%+ 15.09603+ 10533p3—
30.65p%+ 208 0.7p° 11.64p%+5.2p5+ 515p%—10p°
11.90°+20° p®
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