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Abstract: Nash-Williams proved that the edges of a k-edge connected (undirected)

graph can be oriented such that the resulting directed graph is ⌊k
2
⌋-edge connected. A

long-standing goal in the area is to obtain analogous results for other types of connectiv-

ity, such as node connectivity, element connectivity, and hypergraph edge connectivity.

We focus on two special classes of graphs, namely, incidence graphs of projective planes

and (generalized) Halin graphs, and we prove some analogs of Nash-Williams’ result for

these classes.
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1 Introduction

A well-known result of Nash-Williams says that the edges of a k-edge connected (undirected) graph

can be oriented such that the resulting directed graph is ⌊k
2
⌋-edge connected [13, 2, 7]. This result

is now more than 50 years old, and there are several proofs known, e.g., using the splitting-off

technique, using submodular flows, etc.

A long-standing goal in the area is to extend Nash-Williams’ result to obtain analogous results

for other types of connectivity, such as node connectivity, element connectivity, and the edge

connectivity of hypergraphs. More precisely, there are a number of well-known conjectures in this

area.

1.1 Conjectures related to Nash-Williams’ Orientation Theorem

Thomassen [15] (1989) proposed a conjecture.

For all k, there exists a value f(k) such that all f(k)-connected graphs have a k-node connected

orientation.
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Frank [6] (1995) proposed a sharp version of this conjecture.

Let G = (V,E) be an undirected graph with |V | > k. Then G has a k-node connected orientation if

and only if for all S ⊆ V with |S| < k, G− S is 2(k − |S|)-edge connected.

Observe that Frank’s conjecture implies that Thomassen’s conjecture is valid with f(k) = 2k.

Jordán has proved that f(2) ≤ 18, thus settling the special case of Thomassen’s conjecture for

k = 2, see [10], and also see [1, 11].

Recently, Kiraly and Lau [12] formulated a sharp conjecture for the notion of element connec-

tivity of graphs: consider a graph G = (V,E) whose node set is partitioned into a set of terminals,

Y ⊆ V , and nonterminals (also called Steiner nodes); assume |Y | ≥ 2. By an element we mean

a nonterminal or an edge. The element connectivity of G is the minimum number of elements

whose deletion results in a graph that has at least two connected components that each have a

terminal; this number equals the minimum over all pairs of terminals s, t of the maximum number

of s, t-paths that are disjoint on the elements.

Kiraly and Lau [12] asked whether a k-element connected graph has an orientation that is

strongly ⌊k
2
⌋-element connected. (The strong element connectivity of a directed graph is given by

the smallest number of elements whose deletion results in a directed graph such that no strongly

connected component contains all of the terminals.)

Remark: Given a graph of node connectivity k, we can obtain a graph of element connectivity

≥ k by choosing any set of two or more nodes to be the set of terminals.

Now, consider a hypergraph H and its bipartite representation B(H), where V (H) forms one

part of the node bipartition of B(H) (one color class), and E(H) forms the other part. (For ease

of exposition, we may use B to denote B(H); also, we may refer to a member of E(H) as either

an edge or a hyperedge, and we use the term edge connectivity rather than hyperedge connectivity

for a hypergraph.) We take the set of terminals of B to be V (H), and the set of nonterminals

of B to be V (B) − V (H). It can be seen that the element connectivity of B corresponds to the

edge connectivity of H, that is, the minimum number of hyperedges whose deletion results in a

disconnected hypergraph. Thus, the orientation conjecture for element connectivity would imply

that the hyperedges of a k-edge connected hypergraph can be oriented such that the resulting

directed hypergraph is strongly ⌊k
2
⌋-edge connected. (An orientation of a hyperedge e = {v1, . . . , vi}

means that one or more (but not all) of its incident nodes are designated as tails, and the rest (at

least one) are designated as heads.) We mention that this conjecture holds for the special case

of 3-uniform hypergraphs; this follows from Nash-Williams’ strong orientation theorem applied to

the bipartite representation B, and the fact that B has ℓ edge disjoint paths between a pair of

terminals s, t iff it has ℓ element disjoint s, t-paths (since every nonterminal has degree ≤ 3).
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1.2 Smooth orientations

An orientation of a graph G is called smooth if the absolute value of the difference between the

indegree and the outdegree of every node is at most one, that is, |din(v)− dout(v)| ≤ 1, ∀v ∈ V (G).

If the graph G is Eulerian, then a smooth orientation satisfies din(v) = dout(v), ∀v ∈ V (G);

moreover, it can be seen that for every subset of the nodes W , the number of arcs leaving W is

equal to the number of arcs entering W . Therefore, every smooth orientation of a k-edge connected

Eulerian graph results in a directed graph that is ⌊k
2
⌋-edge connected. A smooth orientation of an

Eulerian graph can be found by orienting the edges of each connected component according to an

Euler tour.

1.3 Our results

To the best of our knowledge, Frank’s conjecture, as well as the orientation conjecture for element

connectivity (and the specialization for hypergraph edge connectivity), are beyond the reach of

current knowledge; it is possible that there exist counter-examples to some of these sharp conjec-

tures. Our goal is to focus on some families of graphs that contain graphs of connectivity k for all

(sufficiently large) k, and to study some of these sharp conjectures for these families.

We focus on two families of graphs, (i) the incidence graphs of (combinatorial) projective planes,

and (ii) the (generalized) Halin graphs.

The incidence graphs of projective planes are d-regular bipartite graphs. We study a special

case of the orientation conjecture for element connectivity on these graphs. Whenever we consider

a bipartite graph B in the context of element connectivity, then we assume that one part of the

node bipartition of B (one color class) is the set of terminals Y , and the other part (other color

class) is the set of nonterminals X; moreover, we denote B by B = (X,Y,E). Thus, our focus is on

the orientation conjecture for hypergraph edge connectivity. We show that there exists a smooth

orientation (of the incidence graphs of projective planes) that has the required strong element

connectivity. It may be possible to extend these results to other families of hypergraphs of interest

in algebraic graph theory [8]; perhaps, some new general techniques could be developed.

A (generalized) Halin graph of node connectivity k ≥ 3 is obtained by starting with a tree T

such that every internal node has degree ≥ k, then adding a cycle C on the leaves, and then adding

k − 3 copies of T that are disjoint on the internal nodes of T but have the leaf nodes in common,

see [9]. Let us denote the resulting graph by HG(k, T ). For example, we may take k = 3, and

T = K1,n (a star); then we see that HG(3, T ) is the wheel graph with n+ 1 nodes.

Given an orientation of an edge e = {v,w}, we use the term opposite orientation of e to mean

the orientation where the tail and the head are swapped.
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Consider an orientation of HG(k, T ) where the edges of the cycle C are oriented consistently (say,

all clockwise); moreover, consider any smooth orientation T̂ of T ; half of the copies of T (including

T ) get the same orientation as T̂ , and the remaining copies of T get the opposite orientation. (For

an integer j ≥ 0, we use the term half of j to mean ⌊ j
2
⌋.) We show that the resulting oriented

graph has the required node connectivity; thus, Frank’s conjecture holds for these graphs.

Our results emphasize an insight of Nash-Williams from more than 50 years ago: some smooth

orientations have surprisingly good properties.

2 Preliminaries

This section has some definitions, and a preliminary result on orienting a subclass of 4-element

connected bipartite graphs; the proof of this result illustrates a key tool for our result on the

incidence graphs of projective planes.

For a bipartite graph B = (X,Y,E) and a nonempty, proper subset U of the terminals Y , we

use Φ(U) ⊆ X to denote the set of those nonterminals that have a neighbor in U and a neighbor

in Y − U , and we call the nonterminals in Φ(U) the portals of U . Given an orientation of B and

a set of terminals U , ∅ 6= U ⊂ Y , we call x ∈ Φ(U) good (with respect to U) if one of the edges

between U and x is directed into x and one of the edges between Y − U and x is directed out of

x; a nonterminal in Φ(U) is called bad (w.r.t. U) if it is not good. A key observation is that a bad

portal x either

(i) has all edges between U and x directed out of x, or

(ii) has all edges between Y − U and x directed into x.

Given an orientation of B and a set of terminals U , ∅ 6= U ⊂ Y , let Φout(U) ⊆ Φ(U) denote the set

of good portals (w.r.t. U); similarly, define Φin(U) to be the set of portals v such that there exists

a dipath of length two from Y − U to U that contains v.

For subsets U,W of nodes we use δ(U,W ) to denote the set of (undirected) edges with one end

in U and one end in W ; if U or W is a singleton set, say {v}, then we simplify the notation and

use δ(v,W ) or δ(U, v). Similarly, for an oriented (or, directed) graph, we use δ̂(U,W ) to denote the

set of arcs with tails in U and heads in W .

Proposition 1 Let B = (X,Y,E) be an Eulerian 4-element connected bipartite graph such that

every nonterminal node (node in X) has degree 4. Let B̂ be any smooth orientation of B. Then B̂

is strongly 2-element connected.
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Proof: The proof is by contradiction. Suppose the result fails to hold. Then, it can be seen that

there exists a nonempty, proper subset U of Y such that Φout(U) has size ≤ 1, that is, U has ≤ 1

good portal and has ≥ 3 bad portals. Now, consider the set W of nodes obtained from Y − U by

adding every bad portal of U of type (i), and every nonterminal x ∈ X that is not adjacent to U ;

in other words, W = (Y − U)
⋃
{x ∈ Φ(U) : δ̂(U, x) = ∅}

⋃
{x ∈ X : δ(U, x) = ∅}. Clearly,

the number of arcs leaving W is equal to the number of arcs entering W . Each bad portal of U

contributes at least one arc leaving W , hence, there are ≥ 3 arcs leaving W . Each of the arcs

entering W must have a good portal of U as a tail, hence, there are ≤ 2 arcs entering W (since

there is ≤ 1 good portal, and each portal has outdegree 2 in a smooth orientation). This gives the

desired contradiction.

3 Incidence graphs of projective planes

This section focuses on the incidence graphs of projective planes. These are regular bipartite

graphs, and the node connectivity equals the degree. If we take the set of terminals to be one set

of the node bipartition, then the element connectivity equals the degree. We show that a smooth

orientation of the bipartite graph has the required strong element connectivity (of half the degree).

A combinatorial projective plane is a set of points and lines, together with an incidence relation

between points and lines that satisfies the following properties:

1. Given any two distinct points, there is exactly one line incident with both of them.

2. Given any two distinct lines, there is exactly one point incident with both of them.

3. There exist four points such that no line is incident with more than two of them. (This is

used to exclude some degenerate cases.)

We denote the unique line incident to points p and q by ℓp,q. A projective plane has an associated

positive integer N ≥ 2 called the order of the plane; the number of points is N2+N+1, the number

of lines is N2+N+1, each point is incident to N+1 lines, and each line is incident to N+1 points.

(For each prime power pj, there exists a projective plane of order pj.) Let B be the bipartite graph

that has a node for each point, a node for each line, and an edge between (the node of) a point

and (the node of) a line iff the point and the line are incident in the projective plane. We refer to

the nodes of B as points or lines. Thus B is the incidence graph of the projective plane. Clearly,

B is a d-regular graph with d = N + 1. When discussing the element connectivity of B, we take

the points of B to be the terminals; thus, the lines of B are the nonterminals.

The next result is well known, see [3], for example.

5



Proposition 2 Let B be the incidence graph of a projective plane of order N . Then B has node

connectivity d = N + 1.

It follows from the previous result that the element connectivity of B (with the points as

terminals) is equal to the degree d.

The main result of this section shows that the orientation conjecture for element connectivity

holds for the incidence graphs of projective planes. If the order N is odd, then the incidence graph

is Eulerian, and any smooth orientation suffices. Otherwise, we obtain a suitable orientation by

removing (the edge set of) a perfect matching, choosing any smooth orientation of the remaining

Eulerian graph, and choosing arbitrary orientations for the edges of the perfect matching; recall

that a d-regular bipartite graph with d ≥ 1 has a perfect matching, see [2].

Theorem 3 Let B = (X,Y,E) be the incidence graph of a projective plane of order N ≥ 2,

let d = N + 1 denote the degree, and let each point be a terminal. If d is even, then let B̂ be

any smooth orientation of B. Otherwise, let B̂ be the smooth orientation that results by first

removing a perfect matching M from B, then fixing a smooth orientation of the remaining graph

B − M = (X,Y,E − M), and then fixing arbitrary orientations for the edges of M . The strong

element connectivity of B̂ is ⌊d
2
⌋.

Proof: The proof is by contradiction, and builds on the proof of Proposition 1.

Let k denote ⌊d
2
⌋ = ⌊N+1

2
⌋, the required strong element connectivity. Thus k = N+1

2
if N

is odd, and k = N
2

if N is even. If d = N + 1 is even, then we focus on the graph B and the

oriented graph B̃ = B̂. Otherwise (d is odd), we focus on the graph B − M and the oriented

graph B̃ = B̂ −M . Thus, if d is odd, then we focus on the graph obtained from B by removing

the perfect matching M , and on any smooth orientation of this graph; all of our terms (adjacency,

neighbor, portal, etc.) are w.r.t. B −M rather than B. In either case, the unoriented version of B̃

is regular; let deg(B̃) denote the degree of any node; observe that deg(B̃) = 2k, and moreover, B̃

has din(v) = k = dout(v), ∀v ∈ V (B).

Suppose the result fails to hold. Then, it can be seen that there exists a nonempty, proper

subset U of Y such that Φout(U) has size ≤ k − 1, that is, U has ≤ k − 1 good portals.

First, observe that |U | ≥ k. To see this, assume that |U | < k; consider any point u ∈ U and

k of its out-neighbors x1, . . . , xk (these exist since dout(u) = k); each of these nonterminals xi has

dout(xi) = k, hence, it has an out-neighbor in Y − U ; thus, each xi is a good portal of U , so

Φout(U) has size ≥ k. In other words, if |Φout(U)| < k, then |U | ≥ k. Similarly, it can be seen that

|Y − U | ≥ k.
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Let q denote |X − Φ(U)|, the number of Steiner nodes that are not portals. Since the number

of good portals is ≤ k − 1, the number of bad portals is ≥ |X| − (k − 1)− q.

Using the same argument as in the proof of Proposition 1, we consider the set W = (Y −

U)
⋃
{x ∈ Φ(U) : δ̂(U, x) = ∅}

⋃
{x ∈ X : δ(U, x) = ∅}. Each bad portal of U contributes at

least one arc leaving W , each good portal of U contributes ≤ k arcs entering W , and there are no

other arcs entering W . This gives ≥ |X| − (k− 1)− q arcs leaving W , and ≤ k(k− 1) arcs entering

W . The number of arcs leaving W is equal to the number of arcs entering W , since deg(B̃) is even

and the orientation is smooth. Hence, we have k(k − 1) ≥ |X| − (k − 1)− q, or q ≥ |X| − (k2 − 1).

For any set of terminals Y ′ ⊆ Y , let Γ(Y ′) denote the set of nonterminals adjacent to Y ′ (both

portals and non-portals).

We have two cases; either (i) Γ(U) = X or Γ(Y −U) = X, or (ii) Γ(U) 6= X and Γ(Y −U) 6= X.

Consider the first case. We focus on the subcase where Γ(U) = X; the other subcase (Γ(Y −U) =

X) is similar and we omit the details. Observe that we always have q = 2|X|− |Γ(U)|− |Γ(Y −U)|.

Combining this with our lower bound on q, we have q = |X| − |Γ(Y − U)| ≥ |X| − (k2 − 1),

hence, k2 − 1 ≥ |Γ(Y − U)|. Moreover, Y − U contains a subset S of size k and Γ(S) has size

≥ |S|deg(B̃)−

(
|S|

2

)
= k(2k)−

(
k

2

)
= 2k2−

k(k − 1)

2
= k(3k+1)/2, hence, we have |Γ(Y −U)| ≥

k(3k + 1)/2. This gives a contradiction, namely, k2 − 1 ≥ k(3k + 1)/2, or 0 ≥ k2 + k + 2.

Now, consider the second case. In this case, there exist two nonterminals x′, x′′ such that all of

the neighbors of x′ are in U and all of the neighbors of x′′ are in Y − U . Then d = N + 1 is odd,

k = N
2
, and B̃ has been obtained from B by removing a perfect matching. This holds because any

two lines of a projective plane have a point in common; in other words, x′ and x′′ have a common

neighbor in B; but x′ and x′′ have disjoint neighborhoods in (the unoriented version of) B̃; in other

words, B̃ is an orientation of B − M (not of B), hence, the degree d = N + 1 is odd. Next, we

claim that q ≤ 4N . We have |Γ(U)| ≥ N2 − N + 1, because x′ has deg(B̃) = N neighbors in U ,

each of these points has deg(B̃) = N neighbors in X, and x′ is the only common neighbor (for

any two of these N points). Then the number of nonterminals that have all neighbors in Y − U

is |X − Γ(U)| ≤ |X| − (N2 − N + 1) = 2N . Similarly, the number of nonterminals that have all

neighbors in U is |X − Γ(Y − U)| ≤ |X| − (N2 − N + 1) = 2N . Hence, we have q ≤ 4N ; our

claim is proved. Combining this with our lower bound on q, we have 4N ≥ q ≥ |X| − (k2 − 1) =

(N2+N +1)− (N
2

4
−1) = 3N2

4
+N +2. This implies, 3N2−12N +8 ≤ 0. The quadratic has roots

2±
√
12

3
≈ 0.8452, 3.1548, hence, we have N ≤ 3 (otherwise, the quadratic is positive). Recall that

d = N + 1 is odd, hence, we cannot have N = 3. Thus we have N = 2 and d = 3. Then, it can be

seen that B̂ is strongly connected; alternatively, Nash-Williams’ theorem gives an orientation that

is strongly connected (a 3-edge connected graph has an orientation that is strongly connected).
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Thus our assumption fails to hold; in other words, every nonempty, proper subset U of the

terminals has |Φout(U)| ≥ k; similarly, each such set U has |Φin(U)| ≥ k.

4 Halin graphs

This section has a proof of our claim that the specified smooth orientation of Halin graphs (given

in Section 1.3) achieves the desired node connectivity.

Let G be a directed graph. A set of nodes S ⊆ V (G) is said to be k-node connected if there

exist k openly disjoint v,w-dipaths, for every ordered pair of nodes v,w ∈ S, v 6= w. A k-fan from

a node z of G to a set of k or more nodes U ⊆ V (G)−{z} means a set of k dipaths such that each

of these dipaths starts at z and ends at a node of U , and moreover, z is the only node that occurs

in two or more of these dipaths. Similarly, a reverse k-fan from U to z means a set of k dipaths

from U to z such that z is the only node that occurs in two or more of these dipaths.

Our proof uses the following standard method for verifying that a given directed graph G is

k-node connected, see [4, 5]. First, we pick a set S∗ ⊆ V (G) of k or more nodes. Then we verify

that S∗ is k-node connected. Finally, for each of the remaining nodes z, we verify that there exists

a k-fan from z to S∗ and there exists a reverse k-fan from S∗ to z. See Even [4] and Even and

Tarjan [5] for a proof of correctness and further details.

Proposition 4 (Even) Let G be a directed graph, and let S∗ be a set of nodes with |S∗| ≥ k such

that S∗ is k-node connected. Moreover, for each node z ∈ V (G) − S∗, suppose that there exist a

k-fan from z to S∗ and a reverse k-fan from S∗ to z. Then G is k-node connected.

Given an arc e = vw of a directed graph, we say that a node x 6= v is reachable from e if there

exists a v, x-dipath that starts with the arc e. We also use the following simple fact.

Fact 5 Let F̂ be a smooth orientation of a tree F , and let e be an arc of F̂ . Then at least one leaf

node of F is reachable from e in F̂ .

Let H be an undirected Halin graph HG(k′, T ), where k′ ≥ 3 and T is a tree such that each

internal node has degree ≥ k′. Let k = ⌊k
′

2
⌋; thus, k′ = 2k or k′ = 2k + 1. Let L denote the set of

leaf nodes of T , and let C denote the cycle of H on L. Let Ĥ denote a smooth orientation of H

that satisfies the conditions in Section 1.3. Let the associated smooth orientation of T be denoted

by T̂ . Moreover, let Ĉ denote the orientation of C given by Ĥ. In the rest of this section, the term

leaf node (non-leaf node) means a leaf node (non-leaf node) of T .

The main result of this section follows easily from the next result; a proof is given later.
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Proposition 6 In the directed graph Ĥ, the set L is k-node connected.

Theorem 7 The directed graph Ĥ (the specified smooth orientation of a Halin graph) is k-node

connected.

Proof: Our proof follows easily from Proposition 6. Let z be any node in V (H) − L, that is, z is

a non-leaf node of one of the copies of T . The smooth orientation has at least k = ⌊k
′

2
⌋ arcs with

tail z, since T has ≥ k′ edges incident to z. Then, by Fact 5, there is a k-fan from z to L, since a

leaf node is reachable from each of the arcs outgoing from z, and moreover, dipaths that start with

distinct arcs outgoing from z have no nodes in common except z. Similarly, there is a reverse k-fan

from L to z. Hence, by Proposition 4, Ĥ is k-node connected.

Finally, we give the deferred proof.

Proof of Proposition 6: Consider any two nodes s, t ∈ L. Our goal is to show that Ĥ has k openly

disjoint s, t-dipaths. By Menger’s Theorem, this holds iff there exists an s, t-dipath in the directed

graph obtained from Ĥ by removing any set of nodes Q of size ≤ k − 1, where Q ⊆ V (H)− {s, t}.

If either Q is empty or Q consists of non-leaf nodes, then Ĥ − Q contains the oriented cycle Ĉ

which contains an s, t-dipath.

Otherwise, Q has at least one leaf node, hence, k ≥ 2 and k′ ≥ 4. Moreover, Q has ≤ k − 2

non-leaf nodes. Then there exists a copy of the smooth orientation T̂ of T that contains no non-leaf

node of Q, because we have k′− 2 copies of the tree T (including T ), and we have ≥ k− 1 = ⌊k
′−2

2
⌋

copies of T̂ . Similarly, there exists a copy of the opposite orientation of T̂ , call it T̃ , that contains

no non-leaf node of Q. (In what follows, we also use T̂ and T̃ to denote these two copies of T .) Let

T̂
⋃

T̃ denote the directed graph formed by the union of T̂ and T̃ . We claim that removing any set

of nodes R ⊂ L of size ≤ k − 1 from T̂
⋃

T̃ results in a directed graph that is strongly connected.

Clearly, the proposition follows from this claim.

Let us use primes to distinguish between the two copies of a node in the two copies of T , e.g.,

if v is a node in T̃ , then v′ denotes the copy of v in T̂ . (If v ∈ L, then v′ = v.) For a non-leaf node

v, observe that T̂
⋃

T̃ has k openly disjoint v, v′-dipaths; this holds because T̂ contains a k-fan

from v to L, and T̃ contains the opposite orientation of this k-fan. Hence, v and v′ are in the same

strongly connected component of T̂
⋃

T̃ − R, because this directed graph has a v, v′-dipath and a

v′, v-dipath.

Finally, consider a pair of adjacent nodes v,w of T − R, and consider any copy of v and any

copy of w in T̂
⋃

T̃ − R. Observe that T̂
⋃

T̃ − R has a v,w-dipath. To see this, assume w.l.o.g.

that both v and w are in T̂ ; if the edge {v,w} of T is oriented from v to w in T̂ , then we are done;

otherwise, note that T̂
⋃

T̃ − R contains a v, v′-dipath, the arc (v′, w′), and a w′, w-dipath, hence,
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it has a v,w-dipath.

It follows that T̂
⋃

T̃ −R is strongly connected, because T −R is connected.

The above theorem has an immediate corollary for element connectivity.

Corollary 8 Consider a k-element connected graph H that is obtained from a subdivision of a

Halin graph HG(k, T ) by choosing the set of terminals to be any subset (of size ≥ 2) of the set of

nodes of degree ≥ k. Then H has a smooth orientation that is strongly ⌊k
2
⌋-element connected.
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