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CHARACTERIZATION THEOREM ON LOSSES IN GIX/GIY /1/n

QUEUES

VYACHESLAV M. ABRAMOV,
SWINBURNE UNIVERSITY OF TECHNOLOGY

Abstract. In this paper, we prove a characterization theorem on the number
of losses during a busy period in GIX/GIY /1/n queueing systems, in which
the interarrival time distribution belongs to the class NWUE.

1. Introduction

There are several papers that study the properties of losses from queues during
their busy periods. In [1] and then in [8] and [10], it was proved that in M/GI/1/n
queueing systems, in which the expectations of interarrival and service times are
equal, the expected number of losses during their busy periods is equal to 1 for
all n. In [3], this result was extended for MX/GI/1/n queues. In [2] and [4]
some stochastic inequalities connecting the number of losses during busy periods in
M/GI/1/n and GI/M/1/n queues and the number of offspring in Galton-Watson
branching processes were obtained, and in [10], for GI/GI/1/n queueing systems in
which interarrival time distribution belongs to the class NBUE or NWUE, simple
inequalities for the expected number of losses during a busy period were obtained.
Peköz, Righter and Xia [7] gave a characterization of the number of losses during
a busy period of GI/M/1/n queueing systems. They proved that if the expected
number of losses during a busy period is equal to 1 for all n, then arrivals must be
Poisson.

In the present paper, we prove a characterization theorem for the expected num-
ber of losses during a busy period for the class of GIX/GIY /1/n queueing systems,
in which interarrival time distribution belongs to the class NWUE.

Recall that the probability distribution function of a random variable ξ is said
to belong to the class NBUE if for any x ≥ 0 the inequality E{ξ − x|ξ > x} ≤ Eξ
holds. If the opposite inequality holds, i.e. E{ξ−x|ξ > x} ≥ Eξ, then the probability
distribution function of a random variable ξ is said to belong to the class NWUE.

The queueing system GIX/GIY /1/n, where the symbols X and Y denote an
arrival batch and, respectively, service batch, is characterized by parameter n and
four (control) sequences {τi, Xi, χi, Yi} of random variables (i = 1, 2, . . .), each of
which consists of independently and identically distributed random variables, and
these sequences are independent of each other (e.g. see [5]). Let A(x) = P{τi ≤ x}
denote the interarrival time probability distribution function, a =

∫
∞

0
xdA(x) < ∞,

and let B(x) = P{χi ≤ x} denote the service time probability distribution function,
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b =
∫
∞

0
xdB(x) < ∞. The random variables X1, X2,. . . denote consecutive masses

of arriving units or, in known terminology, their batch sizes; but here they are
assumed to be positive real-valued random variables rather than integer-valued. In
turn, the random variables Y1, Y2,. . . denote consecutive service masses or service
batches, which are also assumed to be positive real-valued random variables. The
ith service batch Yi characterizes the quantity that can be processed during the ith
service time given that the necessary quantity is available in the system immediately
before the ith service. Both X1 and Y1 are assumed to have finite expectations. In
addition, the capacity of the system n is assumed to be a positive real number in
general.

The queueing systems with real-valued batch arrival and service, as well as with
real-valued capacity are not traditional. They can be motivated, however, in in-
dustrial applications, where units can be lorries with sand or soil arriving in and
departing from a storage station. In usual queueing formulations, where the ran-
dom variables Xi and Yi are integer-valued, they are characterized as batches of
arrived and served customers. The main result of the present paper, Theorem 1.1,
is new even in the particular case when Xi = Yi = 1 and n is integer.

Theorem 1.1. Let ML denote the total mass lost during a busy period. Assume
that the probability distribution function A(x) belongs to the class NWUE. Then the
equality EML = EX1 holds for all positive real n if and only if arrivals are Poisson,
the random variable Y1 takes a single value d, the probability distribution function
of X1 is lattice with span d, and EX1 = ad

b .

This theorem is true for full and partial rejection policies, work-conserving dis-
ciplines and can be adapted to different models considered, for instance, in [10].
The characterization theorem is a necessary and sufficient condition that includes
the case of the Poisson arrivals. However, if arrivals are not Poisson but belong to
the practically important class NWUE, then in the case where 1

aEX1 ≥ 1
bEY1, i.e.

in the case where the total mass of arrivals per unit time is not smaller than the
total mass of service per unit time, we have the simple inequality given by Lemma
2.1 that is used to prove Theorem 1.1.

2. Proof of the main result

We start from the following lemma.

Lemma 2.1. Assume that the length of a busy period has a finite mean, and that the
probability distribution function A(x) belongs to the class NWUE. If 1

aEX1 ≥ 1
bEY1

and P{X1 ≤ n} > 0, then for any nontrivial random variable Y1 (i.e. taking at
least two positive values) we have EML > EX1.

Proof. Let NA denote the total number of arrivals during a busy cycle (that is, total
number of arrivals during a busy period plus the unit that starts the busy period),
and let NS denote the total number of service completions during the busy period.
Denoting by MA the total mass of arrivals during a busy cycle, and, respectively,
by MS the total mass of served units during a busy period. Using Wald’s identity,
we have:

EMA = EX1ENA,(2.1)

aENA = bENS + EI,(2.2)
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where I in Equation (2.2) denotes the length of idle time. Since A(x) belongs to
the class NWUE, then EI ≥ a (see [9], p.482). Hence, from (2.2) we have

(2.3) aENA − a ≥ bENS.

Note, that for MS we cannot use Wald’s identity directly in order to show that
EMS ≤ EY1ENS. In order to prove this inequality, we introduce the sequence of
random variables S1, S2,. . . that characterizes real masses of service or, in other
words, real batch sizes of service satisfying the properties E{Sj|NS = j} ≤ EY1

while E{Si|NS = j} = EY1 for i < j (1 ≤ i < j). Apparently S1, S2,. . . are
not independent random variables. So, additional properties of the sequence S1,
S2,. . . are needed in order to establish the inequality for EMS.

Let mi denote the workload of the system immediately before the service of the
ith unit starts. Then, given {m1 = x1, m2 = x2, . . .} (xi ≤ n for all i), the sequence
S1, S2,. . . is conditionally independent. Hence, under the condition {m1 = x1,
m2 = x2, . . .} for the sequence of conditionally independent random variables S1,
S2,. . . one can use the following theorem by Kolmogorov and Prohorov [6].

Lemma 2.2. (Kolmogorov and Prohorov [6].) Let ξ1, ξ2,. . . be independent random
variables, and let ν be an integer random variable such that the event {ν = k} is
independent of ξk+1, ξk+2,. . . . Assume that Eξk = vk, E|ξk| = uk and the series∑

∞

k=1 P{ν ≥ k}uk converges. Then,

E

ν∑

i=1

ξi =

∞∑

k=1

P{ν = k}

k∑

i=1

vi.

Note, that the condition
∑

∞

k=1 P{ν ≥ k}uk < ∞ of Lemma 2.2 is satisfied,
because ENS < ∞ and ESk ≤ n for all k. Hence, by the total expectation formula
we have ESj ≤ EY1, and consequently by Lemma 2.2 and the total expectation
formula we arrive at EMS ≤ ENSEY1. We show below, that in fact we have the
strict inequality EMS < ENSEY1.

Indeed, the fact that the probability distribution function A(x) belongs to the
class NWUE implies that A(x) = 1−A(x) > 0 for any x. Hence, taking into account
that Y1 takes at least two different positive values, one can conclude that there exists
the value j0 such that E{Sj0 |NS = j0} < EY1, and consequently ESj0 < EY1. This
implies

(2.4) EMS < ENSEY1.

Now (2.1), (2.3) and (2.4) and the equality EML = EMA−EMS allows us to obtain
the inequality EML > EX1. �

Remark 2.3. In the formulation of the Lemma 2.1 we assumed that the length
of a busy period has a finite mean. This assumption is technically important in
order to use Wald’s identity. Note, that the assumption that the interarrival time
distribution belongs to the class NWUE implies A(x) = 1 − A(x) > 0 for any x,
which consequently enables us to conclude that a busy period always exists (i.e.
finite) with probability 1. If the expectation of the busy period length is infinite,
then the expected number of losses during a busy period is infinite as well, and
hence the statement of Lemma 2.1 in this case remains true.
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Proof of Theorem 1.1. Note first that if 1
aEX1 < 1

bEY1, then EML vanishes as

n → ∞ due to the law of large numbers. Hence, the only case 1
aEX1 ≥ 1

bEY1 is
available, and this is the assumption in Lemma 2.1.

Hence, the problem reduces to a minimization problem for EML in the set of the
possible values. More specifically, the problem is to find the infimum of EML subject
to the constraints given by (2.1), (2.3), (2.4) and the inequality 1

aEX1 ≥ 1
bEY1.

Then, the statement of this theorem follows if and only if along with (2.1) we also
have aENA − a = bENS, EMS = ENSEY1 and 1

aEX1 = 1
bEY1. The first equality

follows if and only if arrivals are Poisson, and the second one follows if and only
if Y1 takes a single value d, and the probability distribution function of X1 is
lattice with span d. Then, the system of three equations together with the equality
EX1 = ad

b (which in turn is a consequence of 1
aEX1 = 1

bEY1) yields the desired
result EML = EX1.
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