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ABSTRACT. This paper studies an infinite-server queue in a Markov environment, that is, an infinite-
server queue with arrival rates and service times depending on the state of a Markovian background
process. Scaling the arrival rates λi by a factor N , tail probabilities are examined when letting N tend
to∞; non-standard large deviations results are obtained. An importance-sampling based estimation
algorithm is proposed, that is proven to be logarithmically efficient.
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1. INTRODUCTION

Infinite-server queues have found widespread use in various application domains, often as an ap-
proximation for many-server models. While their original motivation may stem from communica-
tion networks engineering, where the so-called Erlang model records the dynamics of the number
of calls in progress, applications in various other domains have been explored, such as road traffic
[14] and biology [12].
In the standard model, jobs arrive according to a Poisson process with rate λ, where their service
times form a sequence of independent and identically distributed (i.i.d.) random variables (dis-
tributed as a random variable B with finite first moment); the main result is that the stationary
number of jobs in the system obeys a Poisson distribution with mean λEB. In many practical
situations, however, the assumptions of a constant arrival rate and the jobs stemming from a sin-
gle distribution are not realistic. A model that allows the input process to exhibit some sort of
‘burstiness’ is the Markov-modulated infinite server queue. In this model, a finite-state irreducible
continuous-time Markov process (often referred to as the background process) modulates the input
process: if the background process is in state i, the arrival process is a Poisson process with rate,
say, λi, while the service times are distributed as a random variable, say, Bi.
The Markov-modulated infinite-server queue started to attract attention in recent years. The main
focus in the literature so far has been on characterizing (through the derivation of moments, or
even the full probability generating function) of the steady-state number of jobs in the system
[3, 5, 9, 11]. Interestingly, under an appropriate time-scaling [2, 8] in which the transitions of
the background process occur at a faster rate than the Poisson arrivals, we retrieve the Poisson
distribution for the steady-state number of jobs in the system.
Less attention is paid to characterizing the probability that the number of customers in the Markov-
modulated infinite-server queue attains some unusually high (or low) value. For the case that there
is no Markov modulation, large-deviations analyses have been performed. In e.g. [6, 7] rare-event
probabilities are considered for the stationary number of jobs in the system under renewal arrivals
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(that is, not necessarily Poisson arrivals). In [10, 13] the arrival rate λ is scaled by N , and sample-
path large-deviations results are derived for the transient of the number of jobs in the system.

The main contribution of the present paper is a large-deviations analysis of the number of jobs in
a Markov-modulated infinite server queue. We do so by scaling the arrival rates λi by N (that is,
the arrival rate while in state i becomes Nλi), but leaving the time-scale of the background process
unchanged.
After introducing our model in Section 2, Section 3 presents our main result: an expression for the
exponential decay rate (inN ) of the transient overflow probability, which is defined as the probability
that the transient of the number of jobs in the system, denoted by M (N)(t), exceeds Na, for a given
a larger than the limiting value of EM (N)(t)/N (which we call %t). Interestingly, under the scaling
proposed the decay rate of interest is affected by the arrival rates and service-time characteristics
only; the transition rates of the background process do not play a role. In addition, it turns out that
there is an a+ strictly larger than %t such that for a ∈ [%t, a+] there is subexponential decay (i.e., decay
rate equalling 0), while for a > a+ the transient overflow probability does decay exponentially.
Then, in Section 4 it is pointed out how to evaluate the decay rate under consideration. We further
explain the intuitive meaning of all quantities involved, in terms of the most likely way the rare
event occurs. As it turns out, the large-deviations based logarithmic asymptotics provide insight
into the order of magnitude of the transient overflow probability, but are too crude to provide an
accurate approximation. To remedy this, we propose in Section 5 an efficient importance-sampling
based simulation algorithm, which we prove to be logarithmically efficient.

2. MODEL DESCRIPTION

As mentioned above, this paper studies an infinite-server queue with Markov-modulated Poisson
arrivals and general service times. In full detail, the model is be described as follows.
Consider an irreducible continuous-time Markov process (J(t))t∈R on a finite state space {1, . . . , d},
with d ∈ N. Its rate matrix is given by (νij)

d
i,j=1, while π̂i denotes the invariant distribution of the

corresponding jump process. The time Ti spent in state i (often referred to as the transition time)
has an exponential distribution with mean 1/νi, where νi := −νii. Let

πi :=
π̂iETi∑d
j=1 π̂jETj

=
π̂i/νi∑d
j=1 π̂j/νj

denote the stationary probability that the background process is in state i, for i = 1, . . . , d. In other
words: the πi s are nonnegative numbers summing up to 1, such that

∑d
i=1 πiνij = 0.

While the process (J(t))t∈R, often referred to as the background process or modulating process, is in
state i, jobs arrive according to a Poisson process with rate λi ≥ 0. The service times are assumed to
be i.i.d. samples distributed as a random variableBi if the job was generated when the background
process was in state i. The usual independence assumptions apply. We exclude the case that all
λi s as well as the distributions of the Bi s coincide (as otherwise the queue is just an ordinary
M/G/∞).

3. LARGE DEVIATIONS

The main goal of the paper is to study the tail asymptotics of the number of jobs in the system at
time t, given the system starts off empty at time 0. We do this by scaling the arrival rates by N ,
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that is, we scale λi 7→ Nλi; at the same time we leave the timescale of the background process
unchanged.

3.1. Transient overflow probability. The first objective is to study the logarithmic asymptotics of
‘transient overflow probabilities’ of the type

P
(
M (N)(t) > Na

)
,

for a larger than the limiting value of EM (N)(t)/N , as well the corresponding ‘transient underflow
probabilities’. For the moment we assume that the background process is in equilibrium at time 0,
that is, the probability that the background process’ initial state is i equals πi; the proof, however,
will reveal that the initial distribution does not have any impact on the logarithmic asymptotics
under consideration. The first observation [2] is thatM (N)(t) has a Poisson distribution with a ran-
dom parameter that depends on the evolution of the background process. This random parameter
equals

N

∫ t

0

λJ(s)P
(
BJ(s) > t− s

)
ds.

We found earlier [2] that EM (N)(t) = N%t, with

%t :=
d∑
i=1

πiλi

∫ t

0

P(Bi > s)ds.

We identify an a+ (a−, respectively) such that for all a < a+ (a > a−) the exponential decay rate
of the above transient overflow (underflow) probability equals 0; the striking feature, however, is
that a+ is strictly larger than a− (unless all λi as well as all the distributions of the Bi match).
In the following we omit, for notational convenience, the dependency on t of functions and vari-
ables. Let P (N)(f) denote a Poisson random variable with mean Nκ(f), where

κ(f) :=
∫ t

0

gs(f(s))ds, gs(i) := λiP(Bi > t− s),

and F := {f : [0, t] 7→ {1, . . . , d}}. Combining the above, we can write, in self-evident notation,

P
(
M (N)(t) > Na

)
=
∫
f∈F

P
(
P (N)(f) > Na

)
P(J(·) ∈ df(·)).

Define
f+(s) := arg max

i∈{1,...,d}
gs(i), f−(s) := arg min

i∈{1,...,d}
gs(i),

and
d(f) := a− κ(f)− a log

a

κ(f)
.

Let for the moment the service times Bi be exponentially distributed with parameter µi ∈ (0,∞);
below we comment on the case of more general service times.

Theorem 1. For a ≥ a+ := κ(f+),

lim
N→∞

1
N

log P
(
M (N)(t) > Na

)
= d(f+).

For a ≤ a− := κ(f−),

lim
N→∞

1
N

log P
(
M (N)(t) < Na

)
= d(f−).

We focus in the proof on the case that a ≥ a+; the case a ≤ a− works analogously.
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FIGURE 1. Graphical explanation of the nomenclature used in this section. (Left
panel) The functions gs(i) for 3 different values of i for exponentially distributed
Bi. (Right panel) Blow-up confirms that each pair of functions gs(i) has at most 1
intersection point and shows the gs maximizing function f+ (+++) with jump times
t+ and minimizing function f− (- - -) with jump time t−.

Lemma 1. Both f+(·) and f−(·) are piecewise constant functions, taking values in {1, . . . , d}, that jump
at most d− 1 times in [0, t].

Proof. This is an immediate consequence of the fact that there is just at most a single s for which
the functions

λie
−µi(t−s) and λje

−µj(t−s)

match (unless all λi and all µi coincide, but this we ruled out). See Figure 1 for an illustration in
the case Bi is exponentially distributed. 2

We are now in the position to prove Thm. 1.

Proof of Thm. 1. As indicated above, we concentrate on the transient overflow probability; the tran-
sient underflow probability can be dealt with analogously. We start by proving the lower bound.
Define the jump epochs in [0, t] corresponding to f+(·), resulting from Lemma 1, by t+1 , . . . , t

+
k ,

with k < d. Introduce the following set of functions that are ‘close to’ f+:

Fδ :=

f ∈ F : f(s) = f+(s) for all s ∈ [0, t] \
k⋃
j=1

(t+j − δ, t
+
j + δ)

 ;

choose δ > 0 sufficiently small that the intervals (t+j − δ, t
+
j + δ) do not overlap nor cover times 0

and t. Obviously,

P
(
M (N)(t) > Na

)
≥
(

min
f∈Fδ

P
(
P (N)(f) > Na

))
P(J(·) ∈ Fδ).
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Notice that P(J(·) ∈ Fδ) is strictly positive (use that the background process is irreducible), and in
addition independent of N . As a consequence,

lim inf
N→∞

1
N

log P
(
M (N)(t) > Na

)
≥ lim inf

N→∞

1
N

log
(

min
f∈Fδ

P
(
P (N)(f) > Na

))
.

Then observe that , due to Stirling’s factorial approximation, if a ≥ κ(f), for any ε > 0 and N large
enough,

P
(
P (N)(f) ≥ Na

)
=

∑
k≥Na

e−Nκ(f) (Nκ(f))k

k!

≥ e−Nκ(f) (Nκ(f))dNae

dNae!

≥ eNd(f) 1− ε√
2πNa

.

Choose an arbitrary f ∈ Fδ. Then, with λ+ := maxi λi, using the definition of the set Fδ ,

|κ(f)− κ(f+) | ≤

∣∣∣∣∣∣
k∑
j=1

∫ t+j +δ

t+j −δ

(
gs(f(s))− gs(f+(s))

)
ds

∣∣∣∣∣∣ ≤ k · 2δ · λ+,

which goes to 0 as δ ↓ 0. As a consequence, also | d(f) − d(f+) | vanishes as δ ↓ 0. From this, we
conclude that for a ≥ κ(f+),

lim inf
N→∞

1
N

log P
(
M (N)(t) > Na

)
≥ d(f+).

The corresponding upper bound is less involved. Note that if a > a+, then for all f ∈ F we have
that EP (N)(f) ≤ Na. Then observe the trivial inequality

P
(
M (N)(t) > Na

)
≤ max

f∈F
P
(
P (N)(f) > Na

)
.

Based on the Chernoff bound [4], we have

P
(
P (N)(f) > Na

)
≤ eNd(f).

Combining the above, we obtain

lim sup
N→∞

1
N

log P
(
M (N)(t) > Na

)
≤ max

f∈F
d(f).

As κ(f+) maximizes κ(f), and d(f) is increasing in κ(f) (for κ(f) ≤ a), we observe that

lim sup
N→∞

1
N

log P
(
M (N)(t) > Na

)
≤ d(f+).

This proves the upper bound. 2

Corollary 1. For all a ∈ [a−, a+],

lim
N→∞

1
N

log P
(
M (N)(t) > Na

)
= lim
N→∞

1
N

log P
(
M (N)(t) < Na

)
= 0.

Remark 1. From the proof of Thm. 1 it becomes immediately clear that for a < a+ the transient
overflow probability P

(
M (N)(t) > Na

)
can be bounded from below, uniformly inN , by a constant.

Likewise, for a > a−, the transient underflow probability P
(
M (N)(t) < Na

)
can be bounded from

below, uniformly in N by a constant.
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Remark 2. We now comment on extending the result for exponential service times to more general
distributions. It is readily verified that the claim remains true as long as the distributions of the
Bis (for i = 1, . . . , d) are such that Lemma 1 applies, that is, that f+(·) and f−(·) jump only finitely
often. For example, in the case of the Bi having a ‘shifted Pareto’ distribution, that is

P(Bi > s) = (s+ 1)−αi ,

for αi > 0 (in addition assuming that not all of them identical), the claim of Thm. 1 applies as well,
as it does for all standard distributions.

Remark 3. Observe that the exponential decay rate of the transient overflow and underflow prob-
abilities is fully determined by the arrival rates λi and the distributions of the service times Bi. In
other words, the Markovian background process (with rates νij) does not have any impact, which
may look counterintuitive at first sight. The reason for this effect is reflected in the above proof,
and can be further understood as follows. The most likely scenario is such that (i) the Markov
chain J(·) essentially mimics the function f+(·) (or f−(·)), while (ii) being in any of the states an
unusually high number of jobs is generated, and an unusually low number of jobs leaves. Then
observe that aspect (i) is not affected by the value N , while aspect (ii) is. As a result, the transition
rates νij do not appear in the asymptotics, while the arrival and departure rates do affect the decay
rate.
Evidently, this ‘insensitivity property’ does not apply if the background process were scaled by N
as well (that is, if the transition rates νij were replaced by Nνij). This scaling is substantially more
complicated, and beyond the scope of the current work.

3.2. Stationary overflow probability. The above arguments can be used to analyze the stationary
overflow probability as well. In this case, it is used that the stationary number of users in the
system has a Poisson distribution with random mean [3]. This random parameter equals

N

∫ 0

−∞
λJ(s)P

(
BJ(s) > −s

)
ds.

We focus on the case of exponentially distributed service times, but the result can be extended to
more general random variables, analogously to the transient overflow probability.
To this end, we now use F := {f : (−∞, 0] 7→ {1, . . . , d}}. Define gs(i) := λie

µis, for s ≤ 0, and
again

f+(s) := arg max
i∈{1,...,d}

gs(i).

It is easily checked that the counterpart of Lemma 1 applies: f+(·) jumps at most d − 1 times in
(−∞, 0]; define the jump epochs t+1 , . . . , t

+
k , with k < d. Let P (N)(f) be a Poisson random variable

with mean Nκ(f), where

κ(f) :=
∫ 0

−∞
gs(i)ds.

We define

Fδ,T :=

f ∈ F : f(s) = f+(s) for all s ∈ [−T, 0] \
k⋃
j=1

(t+j − δ, t
+
j + δ)

 .

Let M (N) be the stationary number of jobs in the system. Based on the above, we evidently have

P
(
M (N) > Na

)
=
∫
f∈F

P
(
P (N)(f) > Na

)
P(J(·) ∈ df(·)).
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This identity can then be used to establish an upper and lower bound. The upper bound is as in
the transient case. Regarding the lower bound, realize that, for any f ∈ Fδ,T ,

|κ(f)− κ(f+) | ≤

∣∣∣∣∣∣
k∑
j=1

∫ tj+δ

tj−δ

(
gs(f(s))− gs(f+(s))

)
ds

∣∣∣∣∣∣+ 2
∫ T

−∞
max

i∈{1,...,d}
gs(i)ds,

which vanishes as δ ↓ 0 and T → −∞; the rest of the lower bound works as in the transient case.
We have thus proved the following result; f−(·) is defined in the obvious way.

Proposition 1. For a ≥ a+ := κ(f+),

lim
N→∞

1
N

log P
(
M (N) > Na

)
= d(f+).

For a ≤ a− := κ(f−),

lim
N→∞

1
N

log P
(
M (N) < Na

)
= d(f−).

Example 1. We now consider the case of d = 2. Without loss of generality, we can restrict ourselves
to two situations: (i) λ1 ≥ λ2 and µ1 ≤ µ2, and (ii) λ1 ≥ λ2 and µ1 > µ2. In case (i) overflow is
essentially caused by staying relatively long in state 1; it follows that

κ(f+) =
λ1

µ1
.

In case (ii) the background process jumps from state 2 to state 1 at time

t+1 =
log(λ1/λ2)
µ2 − µ1

< 0.

It requires a bit of standard calculus to verify that

κ(f+) =
λ1

µ1
+ λ

µ2
µ2−µ1
1 λ

− µ1
µ2−µ1

2

(
1
µ2
− 1
µ1

)
.

4. COMPUTATIONAL ISSUES AND NUMERICAL EXAMPLES

In this section we focus on the computational issues related to the results of the previous section;
for ease we just consider just the transient overflow probability, for a larger than κ(f+).

Finding f+(·). It is straightforward to compute t+1 up to t+k , as follows. Focusing on the (exponen-
tial) case that P(Bi > t− s) = e−µi(t−s), it is clear that

i0 := f+(0) = arg max
i∈{1,...,d}

λie
−µit.

Then compute the intersections sj of gs(i0) and gs(j) (for j 6= i0):

sj = t− log λi0 − log λj
µi0 − µj

.

Pick the smallest positive one among these. If there is no positive intersection, or if the smallest
positive intersection is larger than t, we are done (and f+(s) = i0 for all s ∈ [0, t]); otherwise f+(·)
jumps at t+1 := min sj , from i0 to i1 := arg min sj (where the minimum is taken over all j 6= i0).
Then we search for the smallest intersection larger than t+1 of gs(i1) with gs(j) (with j 6= i0, i1), etc.
This procedure is then repeated until t is reached. The shifted Pareto case mentioned above works
completely analogously, with the intersection of the gs(i) and gs(j) given by

t+ 1−
(
λi
λj

)(αi−αj)−1

.
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6

-

a− a+ a3 6

3

FIGURE 2. Decay rate of the transient overflow and underflow probability
for the example in Section 4. Black line corresponds to overflow proba-
bility − limN→∞N−1 log P

(
M (N)(t) > Na

)
, gray line to underflow probability

− limN→∞N−1 log P
(
M (N)(t) < Na

)
.

Computing the decay rates. Again we focus on the decay rate of the transient overflow probability.
Put t+0 := 0 and t+k+1 := t. Then it is evident that

κ(f+) =
k∑
`=0

∫ t+`+1

t+`

λi`P(Bi` > t− s)ds.

In the exponential case, this can be rewritten to

κ(f+) =
k∑
`=0

λi`
µi`

(
e−µi` (t−t

+
`+1) − e−µi` (t−t

+
` )
)
.

In the shifted Pareto case, we have

κ(f+) =
k∑
`=0

λi`
αi` − 1

(
(t− t+`+1 + 1)−αi`+1 − (t− t+` + 1)−αi`+1

)
.

Example. Consider the case of d = 2 in which the Bis (for i = 1, 2) are sampled from exponential
distributions (with means 1/µ1 and 1/µ2, respectively). In this example we take λ1 = e, λ2 = e2,
µ1 = 1, µ2 = 2, and t = 2. It is readily verified that k = 1, i0 = 1, i1 = 2, and t+1 = 1. As a result

a+ = κ(f+) = e(e−1 − e−2) +
e2

2
(
1− e−2

)
=
e2

2
+

1
2
− 1
e
≈ 3.8266.

It means that the most likely scenario of overflow is that the modulating Markov chain starts in
state 1 at time 0, and jumps to state 2 around time 1 (to stay there until t = 2).
In order to make sure that M (N)(t) is large, it pays off to spend time in states with (i) a high
arrival rate, (ii) a low departure rate. A priori it is not clear how this would work out in the above
example, as the state with the high (low, respectively) arrival rate is also the state with the high
(low) departure rate. Naı̈vely, one could have thought that the most likely scenario would be to
stay in the state i that maximizes the ‘load’ λi/µi (this would have been state 2), but apparently it
is more likely that state 2 is entered only at time 1. To support this claim, with f{i}(·) denoting the
path that stays in state i during the entire interval [0, t],

κ(f{1}) = e− 1
e

= 2.3504, κ(f{2}) =
1
2

(
e2 − 1

e2

)
= 3.6269,
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N a = 4.0 a = 4.2 a = 4.4 a = 4.6 a = 4.8 a = 5.0

30 0.09263 0.11754 0.16085 0.20579 0.25822 0.31742
60 0.05538 0.07807 0.11332 0.15285 0.20024 0.25522
90 0.04130 0.06248 0.09418 0.13184 0.17650 0.23001

120 0.03417 0.05425 0.08374 0.12006 0.16396 0.21623
150 0.02938 0.04918 0.07648 0.11213 0.15590 0.20777

−d(f+) 0.00387 0.01765 0.04096 0.07336 0.11446 0.16390

TABLE 1. −N−1 log P
(
M (N)(t) > Na

)
for different a and N ; ν12 = ν21 = 1.

which are both lower than κ(f+) — this means that staying in state 1, or staying in state 2, the
entire interval [0, t] is less likely to cause overflow than jumping from 1 to 2 at time 1.
An elementary calculation reveals that f−(·) jumps from state 2 tot state 1 at time t−1 = 1, leading
to

a− = κ(f−) = e− 1
2e2
− 1

2
= 2.1506.

Recall that the above calculations are not affected by the values of the transition rates ν12 and ν21.
In Fig. 2 the resulting decay rates are shown.

5. IMPORTANCE SAMPLING

One could naı̈vely argue that our theory suggests the use of the approximation, for a > a+,

P
(
M (N)(t) > Na

)
≈ eNd(f

+).

As we know from the proof of Thm. 1, however, the decay rate d(f+) essentially follows from the
most likely way the background process J(·) behaves to trigger the event thatM (N)(t) exceedsNa.
As a result, the above approximation eNd(f

+) is likely to overestimate the transient overflow prob-
ability. Put differently, it is expected that N−1 log P

(
M (N)(t) > Na

)
converges slowly to d(f+).

To obtain a reliable numerical approximation, we propose to use an efficient simulation-based
approach. A direct simulation would be time-consuming due to the rarity of the event under
consideration. The idea is therefore to rely on importance sampling — sample under alternative
probability measure Q rather than the actual probability measure P, and then correct the simulation
output by weighing it with appropriate likelihood ratios. The choice of our alternative measure
Q guarantees favorable variance properties of the resulting estimator; in particular, we can prove
that it is logarithmically efficient [1].
The proposed algorithm works as follows. Sample the path J(·) of the background process be-
tween 0 and t under the normal measure (which we could denote by P). If it has the realization
f(·), we sample the random variable M (N)(t) not from a Poisson distribution with mean Nκ(f)
(which would have been the case under the original measure P), but rather from a Poisson distri-
bution with mean Na. As a consequence, the event under consideration is not rare anymore (it
has roughly probability 1

2 under Q). If the Poisson random variable has the value k, it is trivial to
verify that the corresponding likelihood ratio LN equals

LN =
dP
dQ

= eNa−Nκ(f)

(
κ(f)
a

)k
.
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N a = 4.0 a = 4.2 a = 4.4 a = 4.6 a = 4.8 a = 5.0

30 0.11809 0.14424 0.18873 0.23462 0.28732 0.34763
60 0.06897 0.09233 0.12774 0.16840 0.21602 0.27130
90 0.05111 0.07260 0.10447 0.14242 0.18855 0.24159

120 0.04145 0.06180 0.09172 0.12847 0.17313 0.22543
150 0.03549 0.05557 0.08340 0.11947 0.16345 0.21518

−d(f+) 0.00387 0.01765 0.04096 0.07336 0.11446 0.16390

TABLE 2. −N−1 log P
(
M (N)(t) > Na

)
for different a and N ; ν12 = 1 and ν21 = 2.

We thus obtain, with I denoting the event that the number of jobs at time t exceedsNa and writing
L̄N := LNI , that

EQ(L̄N ) = P
(
M (N)(t) > Na

)
.

As a consequence, by replicating the above experiment multiple times, we can unbiasedly estimate
the probability of our interest by the sample mean of independent realizations of L̄N .
We now study the variance performance of our estimator, showing that it is logarithmically effi-
cient. It is immediate that, as variances are nonnegative, the decay rate of EQL̄

2
N is larger than or

equal to twice the decay rate of EQL̄N , which equals 2d(f+). Now we show that this lower bound
is actually achieved, and that our estimator therefore has certain optimality properties. To this end,
observe that, using that κ(f) ≤ a for all f ∈ F , and relying on the definition of f+(·),

EQL̄
2
N = EQL

2
NI ≤

∫
f∈F

e2Na−2Nκ(f)

(
κ(f)
a

)2Na

P(J(·) ∈ df(·))

=
∫
f∈F

e2Nd(f)P(J(·) ∈ df(·))

≤ e2Nd(f
+)

∫
f∈F

P(J(·) ∈ df(·)) = e2Nd(f
+).

Now standard arguments [1] show that the proposed procedure is logarithmically efficient.

Proposition 2. The proposed algorithm is logarithmically efficient.

We end this paper by reporting on a number of simulation experiments. In all these experiments,
we generated ‘good’ estimates (that is, with 95% confidence, and the width of the confidence in-
terval below 10% of the estimate) well within a second on a standard PC. In the first experiment,
we took the parameters of the numerical example of Section 4.
Table 1 confirms the slow of convergence of N−1 log P

(
M (N)(t) > Na

)
to d(f+), the deviation is

large in particular in scenarios in which the event of interest is still relatively likely (a close to a+,
that is). This supports the use of our importance sampling algorithm, rather than relying on the
(very crude) approximation exp(Nd(f+)).
In Table 2 we give results for the case that the value of ν21 is changed into 2. Our theory says
that this does not affect the decay rate of the transient overflow probability. The simulation output
confirms the convergence of N−1 log P

(
M (N)(t) > Na

)
to its limiting value.
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