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Abstract

We consider a finitely populated economy in which there are different types of agent,
each agent is of exactly one type, and profit is created by coalitions containing at most one
agent of each type (or side). The surplus of a so-called generalized multisided assignment
economy is defined as the maximum aggregate profit that can be attained by matching agents
into pairwise disjoint coalitions of the above kind. We present negative results that establish
that when the economy consists of more than two sides (i) agents on different sides may not
be complements, i.e., they do not necessarily reinforce each other’s influence on the surplus
and (ii) agents on the same side may not be substitutes, i.e., they do not necessarily interfere
with each other’s influence on the surplus. These findings are in marked contrast with the
results for two-sided assignment economies (Shapley, 1962). We propose novel notions for the
complementarity and the substitutability of disjoint subsets of agents and we find conditions
that ensure that the former are satisfied.
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1 Introduction

In a two-sided assignment economy (Shapley and Shubik, 1972),1 say a real estate market, there
are two types of agent, say buyers and sellers. While the former are interested in buying exactly
one house, the latter own exactly one house which they want to sell. Thus, profit is created by
pairs composed of a seller and a buyer, which as such are the only possible essential coalitions.2

The two-sided assignment model has been generalized in two directions. On the one hand, Owen
(1992) assumes that every agent has an outside option, and therefore singletons might also be
essential coalitions.3 On the other hand, Quint (1991) considers an economy in which there is
an arbitrary finite number of types of agents – e.g. buyers, sellers and suppliers – and the only
essential coalitions comprise exactly one agent of each type.4

In this paper we consider a model that combines both generalizations. A generalized multisided
assignment economy (henceforth, simply, assignment economy) models a finitely populated econ-
omy in which there are different types of agent (typically much fewer than the total number
of agents), each agent is of exactly one type, and profit is created by coalitions containing at
most one agent of each type (or side).5 Given such an economy, we can attach a non-negative
number to any partition of all the agents into coalitions of the above kind by summing the profits
associated with the latter. The maximum of any such value is the surplus of the economy, which
captures the potential profit that all the agents in the economy can jointly produce.6 When
profit is only created by coalitions containing exactly one agent from each side, we speak of a
classical multisided assignment economy.

Shapley (1962) studies the problem of new entrants in the framework of classical two-sided
assignment economies and proves two comparative statics results. He shows that by entering
into any such economy (i) two agents of different types reinforce each other’s influence on the
surplus and (ii) two agents of the same type interfere with each other’s influence on the surplus,
so agents of different types are complements and agents of the same type are substitutes.

We study the robustness of these two results in the framework of generalized multisided as-
1Shapley and Shubik (1972) are usually credited with developing the model of these economies, which are

typically referred to as assignment markets as opposed to assignment economies. It is worth mentioning, however,
that assignment models had been studied earlier in similar, related contexts (e.g., Shapley, 1955; Gale, 1960).

2An essential coalition creates a profit x > 0 and it cannot be properly partitioned so that the sum of the
profits associated with all elements of the partition is at least x.

3Owen (1992) uses assignment market with non-null reservation prices to refer to this model, which is also
analyzed in Toda (2005).

4Multisided assignment markets (economies) have also been analyzed in Stuart (1997), Sherstyuk (1999) and
Tejada and Rafels (2010), for example.

5The previous literature includes models in which essential coalitions might be of arbitrary and different sizes
(Kaneko and Wooders, 1982; Demange, 2009). Nevertheless, to the best of our knowledge, the model introduced
in this paper has never been analyzed before. We note that although our model bears some similarities with
partitioning games with replicas as considered by Kaneko and Wooders (1982), we do not consider that different
players of the same type can be replicas of each other.

6A subsequent problem, not addressed in the present paper, would be that of determining how to divide up
the surplus.
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signment economies with an arbitrary number of sides. We show that in classical multisided
assignment economies with more than two sides agents on different sides may not be comple-
ments and agents on the same side may not be substitutes. We propose novel notions that
capture the complementarity and the substitutability of disjoint subsets of agents for general-
ized multisided assignment economies. These definitions are natural generalizations of Shapley’s
(1962) notions for pairs of agents in classical two-sided assignment economies, i.e., two disjoint
subsets of agents that enter an economy are called subset-complements (resp. subset-substitutes)
if they reinforce (resp. interfere with) each other’s influence on the surplus. We find sufficient
conditions that ensure that, given a status quo assignment economy, the above notions are sat-
isfied for a given pair of subsets of agents that do not belong to the status quo economy.7 These
conditions require the existence of a recursively-defined finite sequence of elements consisting of
an assignment economy and two disjoint subsets of agents that do not belong to the economy,
and where, for each element of the sequence, the addition of the two subsets of agents into the as-
signment economy results in the assignment economy of the precedent element of the sequence.8

Additionally, we show that necessary conditions should involve different kinds of requirement.

The rest of the paper is organized as follows. In Section 2 the formal model and its main
concepts are introduced. Section 3 is devoted to a presentation of counterexamples that demon-
strate the lack of robustness of Shapley’s (1962) results when the assignment economy comprises
more than two sides. In Section 4 the notions for the complementarity-substitutability relation-
ships between disjoint subsets of agents are defined and discussed. In Section 5 two different
recursively-defined properties for pairs of subsets of agents are also defined. The main results
are contained in Section 6. Section 7 concludes.

2 The Generalized Multisided Assignment Economy

A generalized m-sided assignment economy (N1, ..., Nm; A) consists of m ≥ 2 finite sets (called
types or sides) of agents N1, . . . , Nm and a mapping

A :
⋃

∅6=K⊆M


∏

k∈K

Nk


 −→ R+, (1)

where M = {1, . . . , m} denotes the set of types and R+ is the set of non-negative real num-
bers. Note that A assigns a non-negative number to any nonempty coalition composed of at
most one agent of each type.9 We assume that N1 ⊆ Ω1, . . . , Nm ⊆ Ωm.10 The nonempty
finite sets Ω1, . . . , Ωm contain all potential agents of each type and they are pairwise dis-
joint. An arbitrary agent in Nk is denoted by ik. Let N = ∪k∈M Nk, Ω = ∪k∈M Ωk and

7Note that as we are only concerned with an economy’s surplus, our approach here in this paper is positive
rather than normative. This contrasts with the approach adopted in most papers regarding assignment economies.

8See Definitions 3, 4, 5 and 6 in Section 5 for a detailed description of the conditions.
9When m = 2 the model reduces to the one considered by Owen (1992).

10Note that some of the sets N1, . . . , Nm might be the empty set.
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T (N1, . . . , Nm) = ∪∅6=K⊆M

(∏
k∈K Nk

)
. An arbitrary element in T (N1, . . . , Nm) is denoted by

E and called a tuple. With some abuse of notation and language, we use indistinctly a tuple
and the set composed of all agents in the tuple. We assume that the mapping A is obtained
from a (potential) mapping that assigns a non-negative number to each tuple comprising at
most one (potential) agent of each type. We refer to the particular case in which A(E) = 0
whenever E does not contain exactly one agent of each type as a classical m-sided assignment
economy (henceforth, simply, classical assignment economy).11 Notice that in the latter case,
the mapping A introduced in Eq. (1) can be cast as an array A = (aE)E∈

∏
k∈M

Nk . A match-
ing among N1, ..., Nm is a finite collection of tuples, µ = {Er}t

r=1 ⊆ T (N1, . . . , Nm), so that
any agent belongs to exactly one of the tuples E1, ..., Et. Different agents are matched together
under µ if they belong to the same tuple of µ. In this latter case we also say that they are
partners under µ. We denote by M(N1, ..., Nm) the set of all matchings among N1, ..., Nm. A
matching µ is optimal for an assignment economy (N1, ..., Nm; A) if it maximizes ∑E∈µ A(E)
within M(N1, ..., Nm), where the summation over the empty set is assumed to be zero. We
denote by M∗(N1, ..., Nm; A) the set of all optimal matchings of (N1, ..., Nm; A). The surplus
of an assignment economy (N1, ..., Nm; A) is

S(N1, ..., Nm; A) =
∑

E∈µ∗
A(E) for all µ∗ ∈ M∗(N1, ..., Nm; A).

In this paper we are interested in assessing when two disjoint sets of newcomers reinforce or
interfere with each other’s influence on the surplus of an economy. To analyze the so-called
entry problem,12 we consider at all times a status quo assignment economy P = (N1, ..., Nm; A)
as the initial situation and denote by S its surplus. Given a set T ⊆ Ω \ N , we denote by ST

the surplus of the economy that results from the entry of all the agents in T into the status quo
economy. Similarly, given a set T ⊆ N , we denote by ST the surplus of the economy that results
from the exit of all the agents in T from the status quo economy. Likewise, we respectively
denote by AT and AT the mappings that define the corresponding economies, which are, in
turn, denoted by P T and PT .

For classical two-sided assignment economies we have the following result.

Theorem 1 (Shapley, 1962)
Let (N1, N2; A) be a status quo classical two-sided assignment economy. Then,

(a)
(
S{i1} − S

)
+
(
S{i2} − S

)
≤ S{i1,i2} − S, where i1 ∈ Ω1 \ N1 and i2 ∈ Ω2 \ N2.

(b)
(
S{ik} − S

)
+
(
S{jk} − S

)
≥ S{ik,jk} − S, where ik, jk ∈ Ωk \ Nk and k ∈ {1, 2}.

11This case reduces to the model considered by Quint (1991).
12Note that the exit problem, i.e., the effect that two disjoint subsets of agents leaving the economy have on its

surplus, depending on whether they leave simultaneously or separately is symmetric; therefore, we focus only on
the entry problem.
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That is, agents of different types are complements, since the increase in the surplus is (weakly)
higher when two agents of different types, i1 ∈ Ω1 \ N1 and i2 ∈ Ω2 \ N2, enter the economy at
the same time, S{i1,i2} − S, than when they do so separately,

(
S{i1} − S

)
+
(
S{i2} − S

)
. The

second statement shows that agents of the same type are substitutes.

3 Some Counterexamples

In an arbitrary generalized multisided assignment economy no profit is derived directly from the
cooperation of two agents on the same side, whereas agents on different sides can potentially
combine with each other and directly create some profit. We might therefore expect agents of
different types to be complements and agents of the same type to be substitutes w.r.t. their
reinforcement of/interference with the surplus of the economy. Nevertheless, the two examples
below show that this expectation is false in assignment economies with at least three sides, even
if they are classical.

Example 1
Consider the classical three-sided assignment economy with potential sets of agents Ω1 =
{11, 21}, Ω2 = {12, 22}, and Ω3 = {13, 23, 33} defined by the array A, which is displayed as
follows:

12 22 12 22 12 22

11
21

(
1
3

7
1

) (
3
0

1
1

) (
0
0

0
10

)
.

13 23 33

We consider two different status quo economies.

Example 1.A: N1 = {11}, N2 = {12}, N1 = {13}

It is an easy exercise to check that S = 1, S{21} = 3, S{22} = 7, S{23} = 3, S{21,22} = 7, S{21,23} =
3, S{22,23} = 7, and S{21,22,23} = 7, so

(
S{21} − S

)
+
(
S{22} − S

)
> S{21,22} − S,

(
S{21} − S

)
+
(
S{23} − S

)
> S{21,23} − S,

(
S{22} − S

)
+
(
S{23} − S

)
> S{22,23} − S,

(
S{21} − S

)
+
(
S{22,23} − S

)
> S{21,22,23} − S,

(
S{22} − S

)
+
(
S{21,23} − S

)
> S{21,22,23} − S,

(
S{23} − S

)
+
(
S{21,22} − S

)
> S{21,22,23} − S, and

(
S{21} − S

)
+
(
S{22} − S

)
+
(
S{23} − S

)
> S{21,22,23} − S.
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That is, there is no way in which agents 21, 22, 23 can combine with each other so as to reinforce
each other’s influence on the surplus, at least in absolute terms.13

Example 1.B: N1 = {11, 21}, N2 = {12, 22}, N3 = {13}

In this case it can be easily checked that S = 7, S{23} = 7, S{33} = 11, and S{23,33} = 13, so
(
S{23} − S

)
+
(
S{33} − S

)
< S{23,33} − S.

That is, agents 23 and 33 are not substitutes although they are agents of the same type.14

The failure in general of Theorem 1 when arbitrary multisided assignment economies are con-
sidered, as illustrated above by means of Examples 1.A and 1.B, raises two challenges: first,
identifying appropriate notions for the complementarity and substitutability of agents – or,
more generally, subsets of agents – in a multisided assignment economy; and, second, given the
identification of such notions, seeking necessary and sufficient conditions that ensure that the
former hold. We address these two issues in the following two sections respectively.

4 Novel Notions of Complements and Substitutes

In this section, novel definitions are proposed for the complementarity and substitutability of
two disjoint subsets of agents in the context of arbitrary assignment economies.

Definition 1
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅. We
say that T 1 and T 2 are subset-complements w.r.t. P if

(
ST 1 − S

)
+
(
ST 2 − S

)
≤ ST 1∪T 2 − S. (2)

Definition 2
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅. We
say that T 1 and T 2 are subset-substitutes w.r.t. P if

(
ST 1 − S

)
+
(
ST 2 − S

)
≥ ST 1∪T 2 − S. (3)

The interpretation of Definitions 1 and 2 parallels Shapley’s (1962) interpretation of complements
and substitutes, with the modification that in our case subsets of agents are involved instead of

13Notice that what ensures that agents 22 and 23 are not complements is that the “complementarity” effect of
introducing these agents jointly to the status quo is diminished because of the existence of the first type of agents.
This prevents us from simultaneously selecting a(11,22,13) = 7 and a(11,12,23) = 3.

14This is possible since the “substitution effect” of introducing agents 23 and 33 to the status quo is offset by
a complementarity effect between the same agents due to the existence of agents in N1.
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just agents.15 When there is no possible cause for confusion, we omit the reference to the status
quo assignment economy P in both definitions. Theorem 1 in Section 2 shows that, in the case
of classical two-sided assignment economies, for the verification as to whether two singletons T 1

and T 2 are subset-complements or subset-substitutes (w.r.t. any P ) it is enough to determine
whether the two agents are of the same type or not.16 This simple verification, however, fails to
hold in general for assignment economies with at least three sides, even if they are classical.

5 Sufficient Recursively-defined Conditions

When a subset of incoming agents enters an assignment economy, the surplus of the economy
weakly increases. There are potentially different optimal matchings that support the new surplus
and, for each of them, the incoming agents might be matched with different partners of the status
quo economy. When two disjoint subsets of incoming agents enter the economy, however, it is
not clear whether they reinforce each other’s influence on the surplus or not, i.e., they may be
either subset-complements or subset-substitutes. In this section we present certain conditions
that restrict the matching possibilities for the incoming agents, but we do not impose bounds
on the increase in the surplus due to their entry. Moreover, we consider conditions that impose
requirements not only as to whom the incoming agents are matched with, but also as to whom
these potential partners (all being agents of the status quo economy) are matched with in the
economy obtained from the status quo by removing these latter agents, and so and so forth.

The aforementioned conditions (a fuller understanding of which is provided below) are intended
to capture the very essence of the dynamics of a recursive entry problem in an assignment
economy17 as they impose the existence of a certain finite sequence, say {T 1

k , T 2
k , Pk}k≥1, where

(i) each element of the sequence consists of two disjoint subsets of agents, T 1
k and T 2

k , together
with an assignment economy, Pk, which does not contain any of the former agents such that (ii)
each assignment economy is obtained from the assignment economy in the antecedent element
in the sequence by removing from the latter all the agents of the subsets of the current element
in the sequence, i.e., T 1

k ∩ T 2
k = ∅ and Pk+1 = (Pk)T 1

k+1∪T 2
k+1

.18

Before formally presenting the aforementioned conditions, it is convenient at this juncture to
15More general definitions in which more than two pairwise disjoint subsets of agents are involved could be

introduced and the main results of the paper could likewise be adapted to this more general framework. However,
this would mean further complicating the notation. Since the contribution of the paper would be essentially the
same, we opted to maintain the definitions for just two disjoint sets.

16Note that T 1 and T 2 may be subset-complements and subset-substitutes w.r.t. P at the same time if Eqs. (2)
and (3) hold simultaneously. It might also be that T 1 and T 2 are subset-complements (resp. subset-substitutes)
w.r.t. P but they are not subset-complements (resp. subset-substitutes) w.r.t. P ′ 6= P .

17See Section 7 for an interpretation of the entry problem from the perspective of economics.
18The recursive nature of the conditions captures the evolution of a society over time, with new groups of

immigrants joining at different junctures. In the light of Theorems 2 and 3 in Section 6, when the “waves of
immigrants” satisfy the conditions of the paper regarding who from the “old” society they are matched with, we
can properly speak about complements and substitutes in generalized multi-sided assignment economies. Needless
to say, such an interpretation requires further development, but this fails outside the scope of the present paper.
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introduce further notation so as to facilitate making reference to the subset of agents that
are matched with agents of a given subset of agents in a given optimal matching of a certain
assignment economy. First, given a subset of incoming agents, T ⊆ Ω \ N , we denote by
IT (µ) ⊆ N the subset of agents in N that are matched under µ ∈ M∗(P T ) together with agents
in T , i.e.,

IT (µ) = {j ∈ N : ∃i ∈ T such that {i, j} ⊆ E for some E ∈ µ} .

Note that IT (µ) might be the empty set and that IT (µ) might differ from IT (µ′) for µ′ ∈
M∗(P T ), with µ′ 6= µ. Second, given two disjoint subsets of incoming agents, T, S ⊆ Ω \ N such
that T ∩ S = ∅, we denote by IT,S(µ) ⊆ N ∪ S the subset of agents in N ∪ S that are matched
under µ ∈ M∗(P T ∪S) together with agents in T , i.e.,

IT,S(µ) = {j ∈ N ∪ S : ∃i ∈ T such that {i, j} ⊆ E for some E ∈ µ} .

Note that IT,S(µ) might be the empty set and that IT,S(µ) might be different than IT,S(µ′) for
µ′ ∈ M∗(P T ∪S), with µ′ 6= µ. Moreover, IT,S(µ) \ N 6= ∅ if and only if IS,T (µ) \ N 6= ∅.

5.1 Complementarity

We present a first recursively-defined condition for a given pair of disjoint subsets of agents that
do not belong to the status quo economy. This is subsequently shown to be sufficient for these
subsets to be subset-complements – see Theorem 2 in Section 6. On top of the existence of the
aforementioned sequence, {T 1

k , T 2
k , Pk}k≥1, this condition requires that, for l ∈ {1, 2}, T l

k+1 is
composed of all the agents that are partners with agents in T l

k under an optimal matching of the
assignment economy (Pk)T l

k . We now formally introduce all the required definitions. We start
with the base case.

Definition 3
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅.
We say that T 1 and T 2 are unlinked of degree 0 w.r.t. P if there exist µ1 ∈ M∗(P T 1) and
µ2 ∈ M∗(P T 2) such that IT 1(µ1) ∩ IT 2(µ2) = ∅.

We note that T k, with k ∈ {1, 2}, might be the empty set, in which case IT k(µk) = ∅ and
the above condition is immediately satisfied. When IT 1(µ1) 6= ∅ and IT 2(µ2) 6= ∅, Definition 3
requires that there are at least two optimal matchings of the economies P T 1 and P T 2 , µ1 and
µ2 respectively, under which the sets of partners of T 1 and T 2 are disjoint.

Suppose now that, under the same conditions as in Definition 3, we have defined what it means
that T 1 and T 2 are unlinked of degree t − 1 w.r.t. P , with t a positive integer.

Definition 4
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅. We
say that T 1 and T 2 are unlinked of degree t w.r.t. P if they are unlinked of degree 0 w.r.t. P
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and there exist µ1 ∈ M∗(P T 1) and µ2 ∈ M∗(P T 2) such that IT 1(µ1) and IT 2(µ2) are unlinked
of degree t − 1 w.r.t. P

IT 1 (µ1)∪IT 2 (µ2).

It is an easy exercise to check that, in a two-sided assignment economy (classical or otherwise),
two singletons containing agents from different sides of the economy are always unlinked of
any degree with respect to any status quo assignment economy. We stress that Definition 4
requires the existence of a chain of pairs of subsets of agents together with a chain of assignment
economies, so that each pair is unlinked of degree 0 w.r.t. the corresponding economy. In
particular, notice that as soon as one subset of one of these pairs of subsets is empty, no further
checking is required.

5.2 Substitutability

We present a second recursively-defined condition for a given pair of disjoint subsets of agents
that do not belong to the status quo economy. This is subsequently shown to be sufficient for
these subsets to be subset-substitutes – see Theorem 3 in Section 6. On top of the existence of the
sequence {T 1

k , T 2
k , Pk}k≥1, this condition requires now that T l

k+1 is composed of all the agents that
are partners with agents in T l

k under an optimal matching of the assignment economy (Pk)T 1
k ∪T 2

k ,
for l ∈ {1, 2}. Notice that the only difference between this and the condition for complementarity
is that here we consider the interaction between T 1

k and T 2
k regarding the partners with which

agents in those two subsets are optimally matched. We now formally introduce all the required
definitions. As above, we start with the base case.

Definition 5
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅. We
say that T 1 and T 2 are pairwise unlinked of degree 0 w.r.t. P if there exists µ ∈ M∗(P T 1∪T 2)
such that IT 1,T 2(µ) \ N = ∅.

Notice that from IT 1,T 2(µ) \ N = ∅ it follows that IT 1,T 2(µ) ∩ IT 2,T 1(µ) = ∅. We also note that
T k, with k 6= l ∈ {1, 2}, might be the empty set, in which case IT k,T l(µ) = ∅ and the above
condition is immediately satisfied. When IT 1,T 2(µ) 6= ∅ and IT 2,T 1(µ) 6= ∅, Definition 5 requires
that there is at least one optimal matching of the economy P T 1∪T 2 , µ, under which no two
agents, one of T 1 and one of T 2, are matched together.

Suppose that, under the same conditions as in Definition 5, we have defined what it means that
T 1 and T 2 are pairwise unlinked of degree t − 1 w.r.t. P , with t a positive integer.

Definition 6
Let P be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such that T 1 ∩ T 2 = ∅.
We say that T 1 and T 2 are pairwise unlinked of degree t w.r.t. P if they are pairwise unlinked
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of degree 0 w.r.t. P and there exist µ ∈ M∗(P T 1∪T 2) such that IT 1,T 2(µ) and IT 2,T 1(µ) are
pairwise unlinked of degree t − 1 w.r.t. PIT 1,T 2 (µ)∪IT 2,T 1 (µ).

We stress that, since IT 1,T 2(µ) ∩ IT 2,T 1(µ) 6= ∅ implies that IT 1,T 2(µ) \ N 6= ∅, if T 1 and T 2 are
pairwise unlinked of degree t ≥ 0 w.r.t. P , it is necessarily the case that IT 1,T 2(µ) and IT 2,T 1(µ)
are disjoint. It is an easy exercise to check that, in a two-sided assignment economy (classical
or otherwise), two singletons containing agents from the same side of the economy are always
pairwise unlinked of any degree with respect to any status quo assignment economy. We stress
that Definition 6 requires the existence of a chain of pairs of subsets of agents together with
a chain of assignment economies, so that each pair is pairwise unlinked of degree 0 w.r.t. the
corresponding economy. In particular, notice once again that as soon as one subset of one of
these pairs of subsets is empty, no further checking is required.

6 Main Results

We are now in a position to present and discuss the two main positive results of the paper, which
identify sufficient conditions for the complementarity and substitutability of two disjoint subsets
of agents. Moreover, these results are coupled with examples that show that necessary condi-
tions should involve requirements that differ from those presented, even for classical assignment
economies.

6.1 Complementarity

We present the main result concerning the complementarity of subsets of agents in an assignment
economy, the proof of which can be found in the Appendix.

Theorem 2
Let P = (N1, . . . , Nm; A) be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such
that T 1 ∩ T 2 = ∅. Then, if T 1 and T 2 are unlinked of any degree w.r.t. P , they are subset-
complements w.r.t. P .

We make some remarks regarding the above result. First, Theorem 2 implies Part (a) of Theorem
1. Second, if T 1 and T 2 are not unlinked w.r.t. P , they might not be subset-complements, as
Example 1 shows if we consider N1 = {11}, N2 = {12}, N3 = {13} and we take T 1 = {21} and
T 2 = {22, 23}. Notice that in this case, IT 1(µ1) ∩ IT 2(µ2) = {13}, given µ1 ∈ M∗(P T 1) and
µ2 ∈ M∗(P T 2) the unique optimal matchings of the corresponding economies. Third, Eq. (2)
might hold even when T 1 and T 2 are not unlinked w.r.t. P . Indeed, consider a classical three-
sided assignment economy with N1 = {11}, N2 = {12}, N3 = {13} and consider a potential
array A defined by a(21,22,23) = 2, a(21,12,13) = a(11,22,13) = 1 and aE = 0 otherwise. Then,
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Eq. (2) holds if we take T 1 = {21} and T 2 = {22, 23}, although IT 1(µ1) ∩ IT 2(µ2) = {13},
given µ1 ∈ M∗(P T 1) and µ2 ∈ M∗(P T 2) the unique optimal matchings of the corresponding
economies. Hence the condition stated in Theorem 2 is only sufficient for Eq. (2) to hold. It is
therefore natural to inquire about the nature of the conditions that are necessary. We do so in
Lemma 1 below, the proof of which can be found in the Appendix.

A property regarding a finite family of sets is said to be set-like if it only specifies (i) if some of
the sets are empty or nonempty, or (ii) if some of the sets are related to each other w.r.t. strict
inclusion, equality or nonempty intersection. Notice that Definitions 3 and 5 specify set-like
properties involving sets such as T 1, T 2, IT 1(µ1), IT 2(µ2), IT 1,T 2(µ) \ N , and IT 2,T 1(µ) \ N .

Lemma 1
There is no set-like property involving T 1, T 2, IT 1(µ1), IT 2(µ2), IT 1,T 2(µ) \ N, IT 2,T 1(µ) \ N that
is a necessary condition for Eq. (2) to hold for each status quo assignment economy P and each
T 1, T 2 ⊆ Ω \ N , where µ1 ∈ M∗(P T 1), µ2 ∈ M∗(P T 2) and µ ∈ M∗(P T 1∪T 2).

We note that Lemma 1 holds even if we restrict our attention to classical assignment economies.

6.2 Substitutability

The main result concerning the substitutability of agents in an assignment economy is now
stated, and proved in the Appendix.

Theorem 3
Let P = (N1, . . . , Nm; A) be a status quo assignment economy and let T 1, T 2 ⊆ Ω \ N such
that T 1 ∩ T 2 = ∅. Then, if T 1 and T 2 are pairwise unlinked of any degree w.r.t. P , they are
subset-substitutes w.r.t. P .

We make some remarks regarding the above theorem. First, Theorem 3 implies Part (b) of
Theorem 1. Second, if T 1 and T 2 are not pairwise unlinked w.r.t. P , the inequality in Eq.
(3) might not hold, as Example 1 shows by taking N1 = N2 = ∅, N3 = {13}, T 1 = {11, 12},
and T 2 = {21, 22}. Notice that in this case, IT 1,T 2(µ) \ N = {22}, IT 2,T 1(µ) \ N = {11}, where
µ ∈ M∗(P T 1∪T 2) is the only optimal matching of P T 1∪T 2 . Moreover, S = 0, ST 1 = ST 2 = 1, and
ST 1∪T 2 = 7. Third, Eq. (3) might hold even when T 1 and T 2 are not pairwise unlinked w.r.t. P .
To verify this, let us consider a classical three-sided assignment economy with N1 = {11}, N2 =
{21, 22}, N3 = {13}, T 1 = {21, 23}, T 2 = {33} and potential array A defined by a(11,12,13) = 1,
a(11,22,23) = a(21,12,33) = 2 and aE = 0 otherwise. It can be checked that IT 1,T 2(µ)\N = {33} 6= ∅,
but ST 1∪T 2 = 4, ST 1 = 2, ST 2 = 1, and S = 1, so Eq. (3) holds.

As in the case of complementarity, we investigate how necessary set-like conditions for Eq. (3)
to hold should look like by means of the result below, the proof of which is contained in the
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Appendix.

Lemma 2
There is no set-like property involving T 1, T 2, IT 1(µ1), IT 2(µ2), IT 1,T 2(µ) \ N, IT 2,T 1(µ) \ N that
is a necessary condition for Eq. (3) to hold for each status quo assignment economy P and each
T 1, T 2 ⊆ Ω \ N , where µ1 ∈ M∗(P T 1), µ2 ∈ M∗(P T 2) and µ ∈ M∗(P T 1∪T 2).

We note that Lemma 2 holds even if we restrict our attention to classical assignment economies.

7 Concluding Remarks

To any generalized multisided assignment economy (N1, . . . , Nm; A) we can associate a coop-
erative game (N, ωA),19 called a generalized multisided assignment game, which is defined as
the superadditive cover of A.20 It is well known that, unlike arbitrary multisided assignment
games, two-sided assignment games always have a nonempty core.21 Mo (1989) considers the
core, C(ωA), of the assignment game associated with a classical two-sided assignment economy
(N1, N2; A), and regards it as the set of possible equilibrium payoffs of an economy that com-
prises two sectors. Mo analyzes the impact on the core due to the entry of new agents. According
to his results, the projection of C(ωA) into agent i’s payoffs, denoted by Ci(ωA), (i) “weakly
increases” when an agent from the other side joins the economy and (ii) “weakly decreases”
when an agent from the same side joins the economy, reinforcing the notions of complements
and substitutes used by Shapley (1962).

If the two-sided assignment game were to be used as a model for immigration within the frame-
work of an assignment economy, as Mo himself proposes, an increase in the supply of one type of
agent – those that correspond to one side of the economy – would (weakly) hurt the interests of
the agents of the same type that were already in the economy, whereas it would (weakly) benefit
the interests of the agents on the other side. A very rough and preliminary implication of this
result from the perspective of economics would be that immigration is good for the economy
as a whole, but specifically damages those agents that face greater competition as a result of
immigration.

Mo’s approach is innovative since it does not impose the usual requirement of a single equilib-
rium. Instead, he compares sets of equilibria. Yet, the fact that there are only two sectors in the
economy proves to be crucial to his results. Indeed, consider Example 1 with Mo’s interpretation

19A cooperative game is a pair (N, v), where N is the set of agents and v assigns a number to each coalition of
agents, with v(∅) = 0.

20In the case of a classical assignment economy, the associated game is considered by Quint (1991). We stress
that a generalized m-sided assignment game is not in general strategically equivalent to a classical m-sided
assignment game, provided that m > 2.

21The core, C(v), of a cooperative game (N, v) is the set of efficient allocations that cannot be improved upon
by any coalition on its own, i.e., C(v) = {x ∈ RN :

∑
i∈N

xi = v(N) and
∑

i∈S
xi ≥ v(S) for all S ( N}.
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in mind. It can be seen that22

Case 1: N1 = {11} , N2 = {12, 22} , N3 = {13} C22(ωA) = [0, 6] ≻w [0, 4] = C22(ωA21 ),

Case 2: N1 = {11, 21} , N2 = {12, 22} , N3 = {13, 23} C22(ωA) = {0} ≺w [0, 3] = C22(ωA33 ).

In Case 1, agent 22 ∈ N2 is weakly worse off after the entry of 21 ∈ Ω1 \ N1, whereas, in Case
2, agent 23 ∈ N3 is weakly better off due to the entry of agent 33 ∈ Ω3 \ N3. These two simple
examples show that we cannot unambiguously predict the sign of the gain/loss of identifiable
participants in a decentralized economy consisting of more than two sectors when new agents
enter that economy.

To sum up, this paper calls into question the extension of Shapley’s (1962) results by presenting
examples that show that in multisided assignment economies agents of the same type may not be
substitutes, while agents of different types may not be complements. A fuller understanding of
the features of the interaction between agents in economies that are not two-sided would therefore
seem necessary. To the best of our knowledge, the present paper is the first to initiate such an
attempt with regard to the complementarities and substitutabilities of agents by (i) considering
a new class of economy in which agents are grouped by type and profit is created by coalitions
containing at most one agent of each type, (ii) proposing novel definitions of complementarity
and substitutability for subsets of agents in the context of this class of economies, (iii) identifying
certain sufficient conditions that ensure that two disjoint sets are complements or substitutes,
and (iv) showing that necessary conditions should involve other types of requirement.

Appendix

Proof of Theorem 2.

Let us consider that Ω1, . . . , Ωm are given. We note that, when either IT 1(µ1) = ∅ or IT 2(µ2) = ∅,
Eq. (2) holds. Indeed, assume w.l.o.g. that IT 1(µ1) = ∅. Then,

ST 1 + ST 2 = S +
∑

l

A(El) + ST 2 ≤ S + ST 1∪T 2
,

where ∪lEl ⊆ T 1.23 Therefore, we henceforth assume that IT 1(µ1) 6= ∅ and IT 2(µ2) 6= ∅. The
rest of the proof consists of showing that Eq. (2) holds by a “lexicographic induction”24 on the
non-decreasingly ordered vector containing the number of agents of each side

λ = λ(P ) =
(
|Nk1 |, . . . , |Nkm |

)
∈ Zm

+ , with {k1, . . . , km} = M and |Nk1 | ≤ . . . ≤ |Nkm |. (4)
22 Let ≥ denote the componentwise order Rk. A set A ⊂ Rk weakly dominates another set B ⊂ Rk (we write

A ≻w B) if for all y ∈ B there is x ∈ A such that x ≥ y and A 6= B.
23Note that it might be that ∪lUl = ∅ and hence S = ST 1 . Analogous remarks are needed in other parts of

this proof and the proof of Theorem 3.
24We say that y = (yi)i∈MZm

+ is lexicographically larger than z = (zi)i∈MZm
+ , and write z <lex y, if there exists

k ∈ {1, . . . , m} such that yk > zk, and yt = zt for all t ∈ {1, . . . , k − 1}. We write z ≤lex y if either z <lex y or
z = y.

13



When λ = ~0, Eq. (2) trivially holds because T 1 and T 2 are disjoint. Next, let t ∈ Zm
+ , with

~0 <lex t, and suppose that

Theorem 2 holds if ~0 ≤lex λ <lex t. (5)

Let P be such that λ = t and assume that Eq. (2) does not hold, i.e., there are T 1, T 2 ⊆ Ω \ N

such that (
ST 1 − S

)
+
(
ST 2 − S

)
> ST 1∪T 2 − S. (6)

Since T 1 and T 2 are unlinked of degree 0 w.r.t. P , there exist µ1 ∈ M∗(P T 1) and µ2 ∈ M∗(P T 2)
such that

S
IT 1 (µ1) +

∑

l

A
(
H1

l , H1
l

)
= ST 1

,

S
IT 2 (µ2) +

∑

l

A
(
H2

l , H2
l

)
= ST 2

,

ST 1∪T 2 ≥ S
IT 1 (µ1)∪IT 2 (µ2) +

∑

l

A
(
H1

l , H1
l

)
+
∑

l

A
(
H2

l , H2
l

)
,

where, for k ∈ {1, 2}, we have ∪lH
k
l ⊆ T k, ∪lH

k
l = IT k(µk), and IT 1(µ1) ∩ IT 2(µ2) = ∅. Let

denote P̃ = P
IT 1 (µ1)∪IT 2 (µ2) and S̃ = S(P̃ ). Then, by summing the above three inequalities and

the inequality in Eq. (6) it follows that

S̃IT 1 (µ1) − S̃ + S̃IT 2 (µ2) − S̃ > S̃IT 1 (µ1)∪IT 2 (µ2) − S̃,

which contradicts the induction hypothesis in (5). Indeed, on the one hand, since IT 1(µ1) 6= ∅
and IT 2(µ2) 6= ∅, it follows that

λ(P̃ ) <lex λ(P ) = t.

On the other hand, since T 1 and T 2 are unlinked of any degree w.r.t. P , IT 1(µ1) and IT 2(µ2)
are unlinked of any degree w.r.t. P̃ . ✷

Proof of Lemma 1. Since the result of the lemma is negative, it will suffice to focus our atten-
tion on classical assignment economies.25 Note that in general it holds that IT 1(µ1), IT 2(µ2) ⊆
N , on the one hand, and T 1, T 2 ⊆ Ω\N , IT 1,T 2(µ)\N ⊆ T 2, IT 2,T 1(µ)\N ⊆ T 1, and T 1∩T 2 = ∅,
on the other hand. Hence, it is sufficient to check set-like properties separately regarding (i)
IT 1(µ1) and IT 2(µ2), (ii) IT 2,T 1(µ) \ N and T 1 and (iii) IT 1,T 2(µ) \ N and T 2.26

Let N1 = {11}, N2 = {12}, N3 = {13}, T 1 = {21} and T 2 = {22, 23}, and consider a potential
array A. The only set-like possibilities regarding T 1, T 2, IT 1,T 2(µ) \ N and IT 2,T 1(µ) \ N are:
(i) IT 2,T 1(µ) \ N = T 1 and IT 1,T 2(µ) \ N = T 2, (ii) IT 2,T 1(µ) \ N = T 1 and IT 1,T 2(µ) \ N ( T 2,
and (iii) IT 2,T 1(µ) \ N = ∅ and IT 1,T 2(µ) \ N = ∅.

25To facilitate the reading of the proof we do not specify which economies the different matchings are optimal
from. It can be verified that in all cases they are well defined.

26The same comment applies for the proof of Lemma 2.
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First, by arbitrarily increasingly a(21,22,23) (resp. a(21,22,13)), Eq. (2) holds regardless of IT 1(µ1)
and IT 2(µ2) being empty or not and their relation w.r.t. inclusion. Moreover, it holds that
IT 2,T 1(µ) \ N = T 1 and IT 1,T 2(µ) \ N = T 2 (resp. IT 1,T 2(µ) \ N ( T 2). Second, by arbitrar-
ily and simultaneously increasing a(21,12,13) and a(11,22,23), Eq. (2) holds and IT 2,T 1(µ) \ N =
IT 1,T 2(µ) \ N = ∅. Moreover, by appropriately choosing the remaining entries – but maintain-
ing {(21, 12, 13), (11, 22, 23)} as the unique optimal matching of P T 1∪T 2 – all possible set-like
properties regarding IT 1(µ1) and IT 2(µ2) can arise. ✷

Proof of Theorem 3.

Let us consider that Ω1, . . . , Ωm are given. As in the proof of Theorem 2, we note that, when
either IT 1,T 2(µ) = ∅ or IT 2,T 1(µ) = ∅, Eq. (3) holds. Indeed, assume w.l.o.g. that IT 1,T 2(µ) = ∅.
Then,

ST 1∪T 2 + S = ST 2 +
∑

l

A(El) + S ≤ ST 1 + ST 2
,

where ∅ ⊆ ∪lEl ⊆ T 1. Therefore, we henceforth assume that IT 1,T 2(µ) 6= ∅ and IT 2,T 1(µ) 6= ∅.
The rest of the proof consists of showing that Eq. (3) holds by a “lexicographic induction” on
λ, as defined in Eq. (4). When λ = ~0, Eq. (3) holds since T 1 and T 2 are pairwise unlinked of
degree 0 w.r.t. P , so IT 1,T 2(µ) = ∅. Next, let t ∈ Zm

+ , with ~0 <lex t, and suppose that

Theorem 3 holds if ~0 ≤lex λ <lex t. (7)

Let P be such that λ = t and assume that Eq. (3) does not hold, i.e., there are T 1, T 2 ⊆ Ω \ N

such that (
ST 1 − S

)
+
(
ST 2 − S

)
< ST 1∪T 2 − S. (8)

Since T 1 and T 2 are pairwise unlinked of degree 0 w.r.t. P , there exists µ ∈ M∗(P T 1 ∪ P T 2)
such that

ST 1∪T 2 = SIT 1,T 2 (µ)∪IT 2,T 1 (µ) +
∑

l

A
(
H1

l , H1
l

)
+
∑

l

A
(
H2

l , H2
l

)
,

SIT 1,T 2 (µ) +
∑

l

A
(
H1

l , H1
l

)
≤ ST 1

,

SIT 2,T 1 (µ) +
∑

l

A
(
H2

l , H2
l

)
≤ ST 2

,

where, for k 6= l ∈ {1, 2}, we have ∪lH
k
l ⊆ T k, ∪lH

k
l = IT k,T l(µ), and IT k,T l(µ) \ N = ∅. Let

denote P̃ = PIT 1,T 2 (µ)∪IT 2,T 1 (µ) and S̃ = S(P̃ ). Then, by summing the above three inequalities
and the inequality in Eq. (8) it follows that

S̃IT 1,T 2 (µ) − S̃ + S̃IT 2,T 1 (µ) − S̃ < S̃IT 1,T 2 (µ)∪IT 2,T 1 (µ) − S̃,

which contradicts the induction hypothesis in (7). Indeed, on the one hand, since IT 1,T 2(µ) 6= ∅
and IT 2,T 1(µ) 6= ∅, it follows that

λ(P̃ ) <lex λ(P ) = t.
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On the other hand, since T 1 and T 2 are pairwise unlinked of any degree w.r.t. P , IT 1,T 2(µ) and
IT 2,T 1(µ) are pairwise unlinked of any degree w.r.t. P̃ . ✷

Proof of Lemma 2.

Since the result of the lemma is negative, it will suffice to focus our attention to classical as-
signment economies.27 Let N1 = {11, 21}, N2 = N3 = ∅, T 1 = {12, 13} and T 2 = {22, 23}, and
consider a potential array A with all entries strictly positive. On the one hand, the only possi-
bilities regarding IT 1(µ1) and IT 2(µ2) are: (i) IT 1(µ1) = IT 2(µ2) and (ii) IT 1(µ1) ∩ IT 2(µ2) = ∅
and the sets IT 1(µ1) and IT 2(µ2) are singletons. On the other hand, the only possibilities re-
garding IT 1,T 2(µ) \ N and IT 2,T 1(µ) \ N are w.l.o.g.: (i) IT 2,T 1(µ) \ N = ∅ and IT 1,T 2(µ) \ N = ∅
and (ii) IT 2,T 1(µ) \ N = T 1 and IT 1,T 2(µ) \ N = T 2.

Let α > β > 0. First, assume that a(11,12,13) = a(11,22,23) = α and a(21,12,13) = a(21,22,23) = β.
Notice that IT 1(µ1) = IT 2(µ2) = {11}. Moreover, by appropriately choosing the remaining
entries all possible set-like properties regarding IT 1,T 2(µ)\N and IT 2,T 1(µ)\N can arise. Second,
let a(11,12,13) = a(21,22,23) = α and a(21,12,13) = a(11,22,23) = β. Notice that IT 1(µ1) = {11} and
IT 2(µ2) = {21}, so IT 1(µ1) ∩ IT 2(µ2) = ∅. As in the previous case, by appropriately choosing
the remaining entries all possible set-like properties regarding IT 1,T 2(µ) \ N and IT 2,T 1(µ) \ N

can arise.

✷
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