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a b s t r a c t

In a landmark paper from1986, Kawaguchi and Kyan show that scheduling jobs according to ratiosweight
over processing time – also known as Smith’s rule – has a tight performance guarantee of (1 +

√
2)/2 ≈

1.207 for minimizing the weighted sum of completion times in parallel machine scheduling. We prove
the counterintuitive result that the performance guarantee of Smith’s rule is not better than 1.243 when
processing times are exponentially distributed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Minimizing the weighted sum of completion times on m par-
allel, identical machines is an archetypical problem in the theory
of scheduling. In this problem, we are given n jobs which have to
be processed non-preemptively on m machines. Each job j comes
with a processing time pj and a weight wj, and when Cj denotes
job j’s completion time in a given schedule, the goal is to com-
pute a schedule that minimizes the total weighted completion
time


j wjCj. In the classical 3-field notation for scheduling prob-

lems [5], the problem is denoted by P| |


wjCj. For a single ma-
chine, a simple exchange argument shows that scheduling the jobs
in order of non-increasing ratios wj/pj gives the optimal sched-
ule [15]. Greedily scheduling the jobs in this order on parallel ma-
chines is known asWSPT rule, weighted shortest processing times
first, or Smith’s rule. Onparallel identicalmachines,WSPT is known
to be a 1

2 (1 +
√
2)–approximation, and this bound is tight [8]. The

computational tractability of the problem was finally settled by
showing the existence of a PTAS [14], given that the problem is
strongly NP-complete ifm is part of the input [3,4].

In this paper, we consider the stochastic variant of the problem.
It is assumed that the processing time pj of a job j is not known in
advance. It becomes known upon completion of the job. Only the
distribution of the corresponding random variable Pj, or at least its
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expectation E

Pj


, is given beforehand. More specifically, we as-

sume that the processing times of jobs are governed by indepen-
dent, exponentially distributed random variables. That is to say,
each job comes with a parameter λj > 0, and the probability that
its processing time exceeds t equals

P

Pj > t


= e−λjt .

We denote this by writing Pj ∼ exp(λj). Exponentially distributed
processing times somehow represent the cream of stochastic
scheduling, in particular when juxtaposing stochastic and deter-
ministic scheduling: the exponential distribution is characterized
by the memoryless property, that is,

P

Pj > s + t|Pj > s


= P


Pj > t


.

So for any non-finished job it is irrelevant how much processing
it has already received. This is obviously a decisive difference to
deterministic scheduling models, and puts stochastic scheduling
apart. Next to that, the model with exponentially distributed pro-
cessing times is attractive because it makes the stochastic model
analytically tractable.

In the stochastic setting with the objective to minimize
E[


wjCj], the analogue of Smith’s rule is greedily scheduling the

jobs in order of non-increasing ratios wj/E

Pj


, also called WSEPT

(weighted shortest expected processing time first) [12]. For a sin-
glemachine, this is again optimal [13]. For parallel machines, it has
been shown that the WSEPT rule achieves a performance bound
of (2 − 1/m) within the class of all non-anticipatory stochastic
scheduling policies [11]. Here, the considered metric is the ex-
pected performance ofWSEPT relative to that of an (unknown) op-
timal non-anticipatory scheduling policy. We refer to [10] for the
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Fig. 1. Two different WSPT schedules, one with optimal objective value v∗ on the left, and one with suboptimal value v on the right, respectively.
precise definition on non-anticipatory stochastic scheduling poli-
cies. For the purpose of this paper, it suffices to know that non-
anticipatory stochastic scheduling policies are, at any given time
t , only allowed to use information that is available at that time t .
Obviously, this is also the case for WSEPT, as the distributions Pj,
thus particularly expected processing times E


Pj


are even avail-

able beforehand.
The major purpose of this paper is to establish the first lower

bound for the (2 − 1/m) performance guarantee of [11] for expo-
nentially distributed processing times. In fact, we are not aware of
any result in this direction. The only result known to us is an in-
stance showing that WSEPT can miss the optimum by a factor 3/2,
but then for arbitrary processing time distributions [16, Ex. 3.5.12].
Our main result is the following.

Theorem 1. When scheduling jobs with exponentially distributed
processing times on parallel, identical machines in order to minimize
E[


wjCj], the performance guarantee of Smith’s rule is no better

than α with α > 1.243.

To obtain our result, we carefully adapt and analyse the worst-
case instance of [8]. Note that the originality of this result lies in the
fact that 1.243 > 1

2 (1+
√
2) ≈ 1.207.Hence, stochastic scheduling

with exponentially distributed processing times has worse worst-
case instances than deterministic scheduling. This resultmay seem
counterintuitive, as Pinedo correctly claims the following.

‘‘It is intuitively acceptable that a deterministic problemmay be
NP-hard while its counterpart with exponentially distributed
processing times allows for a very simple policy to be opti-
mal’’ [12].

An example for this intuition is given by the problem to min-
imize the makespan on parallel identical machines: while the
problem is NP-hard in deterministic scheduling, the version with
exponentially distributed processing times is solved optimally by
the LEPT policy (longest expected processing times first) [17]. For
the minsum objective considered in this paper, the picture is as
follows. For unit weights where wj = 1, the SPT rule is optimal for
minimizing


j Cj in the deterministic setting [12], and also SEPT

(shortest expected processing time first) is optimal for minimizing
E[


j Cj ]when processing times are exponentially distributed [1].

For exponentially distributed processing times and weights that
are agreeable in the sense that there exists an ordering such that
w1 ≥ · · · ≥ wn and w1λ1 ≥ · · · ≥ wnλn, scheduling the jobs in
order 1, 2, . . . , n is optimal [7], while the corresponding determin-
istic problem is NP-hard, and in particular, WSPT is not optimal.

That is to say, there are examples where the stochastic version
with exponentially distributed processing times is computation-
ally easier than the deterministic version of the same problem,
under the realm of minimizing expected performance. Our result
shows that with arbitrary weights, the situation is different. Next
to this qualitatively new insight, our analysis also sheds light on
phenomena in stochastic schedulingwhich are interesting on their
own.

The paper is organized as follows. In Section 2,we briefly review
and visualize the worst-case instance presented in [8]. We explain
the intuition behind the stochastified instance of [8] in Section 3.
Then we derive four technical lemmas about scheduling jobs with
exponentially distributed processing times, and finally prove the
claimed lower bound for the performance of Smith’s rule. Finally,
Section 4 contains our conclusions.

2. Recap of the Kawaguchi and Kyan instance

We briefly summarize the instance from [8] that achieves the
bound (1 +

√
2)/2 for deterministic scheduling, as the instance

we propose is a stochastic variant thereof.
Let n be the number of jobs and m the number of machines.

Denote the processing time of job j by pj and its weight by wj. The
(deterministic) instance is then given by

m = h + ⌊(1 +
√
2)h⌋

n = mk + h
pj = wj = 1/k for 1 ≤ j ≤ mk

pj = wj = 1 +
√
2 for mk + 1 ≤ j ≤ mk + h.

Here, h denotes an integer, and k is an integer that can be di-
vided by ⌊(1 +

√
2)h⌋. Notice that wj/pj = 1 for all jobs j. This

means that any list schedule is in fact a WSPT schedule. Let us re-
fer to the first mk jobs as short jobs, and the remaining h jobs as
long jobs.

Let v∗ be the total weighted completion time of a schedule
where the long jobs are processed first, and v be the total weighted
completion time of a schedule inwhich all short jobs are processed
first. Fig. 1 depicts these two schedules. The schedule on the left of
Fig. 1 has objective value v∗. Here the last jobs of length 1/k finish
at time 1 + h/⌊(1 +

√
2)h⌋ ≈ 1.4 (for large values of h and k). The

schedule on the right of Fig. 1 has value v, and it finishes the last
jobs of length 1/k exactly at time 1. In Fig. 1 we used h = 5 and k =

32. It can be verified (see [8]) that v = (1+
√
2)(2+

√
2)h+(m/2)

(1 + 1/k) and v∗
= (1 +

√
2)2h + (m/2)(m/⌊(1 +

√
2)h⌋ + 1/k).

The ratio v/v∗ then tends to (1 +
√
2)/2 as h → ∞ and k → ∞.

3. The stochastic Kawaguchi and Kyan instance

We find it particularly instructive to consider the stochastic
analogue of the instance presented by Kawaguchi and Kyan [8],
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Fig. 2. Schedule with value v∗: all long jobs start at time 0, yet some of these
machines are expected to become available for processing short jobs.

even though other instancesmight lead to comparable results. That
said, we keep all parameters the same as in Section 2, except that
the processing times of long jobs will be Pj ∼ exp(1/(1 +

√
2)),

and the processing times of short jobs will be Pj ∼ exp(k). So the
expected processing times of long and short jobs are identical to
the deterministic processing times in theworst case example in [8].

The crucial insight when stochastifying the instance by
Kawaguchi and Kyan is the following. The non-optimal schedule
with value v is essentially identical to the expected situation in
stochastic scheduling. However, we will argue that the optimal
schedule with value v∗ will have a significantly different expected
realization with exponentially distributed processing times. We
start by sketching the main differences between the determinis-
tic schedules and the expected stochastic schedules in Section 3.1.
Then in Section 3.2 we derive some technical lemmas about the
behaviour of jobs with exponentially distributed processing times,
and finish the analysis in Section 3.3.

3.1. Intuition of the analysis

Suppose we start all long jobs first and greedily fill up the
remaining machines with short jobs. As we will formally prove in
Lemma 1, we expect the ith long job to finish at time

ti =

i
j=1

1 +
√
2

h − j + 1
.

For a given finite number of machines, the schedule will look like
depicted in Fig. 2. The crucial point is that the average expected
time thatmachines finish processing short jobswill be smaller than
in the deterministic case. This happens because many long jobs
finish much earlier, and the late finishing of few long jobs does
not matter for the short jobs. Hence, the overall contribution of the
short jobs will decrease when compared to the deterministic case,
while the contribution of long jobs remains exactly the same.

Suppose on the other hand that we first start all short jobs. The
set of short jobs is not likely to produce the ideal rectangle as it did
in the deterministic case. However, the gap between the time the
first machine runs out of short jobs and the time the last machine
runs out of short jobs can bemade arbitrarily small, by letting k, the
inverse of the expected processing time of short jobs, be large. In
this situation, the expected cost of the schedule is almost the same
as the cost in the deterministic case. This is illustrated in Fig. 3.

In other words, in the stochastic setting the performance
guarantee of WSEPT deteriorates because the expected value for
the optimal policy (long jobs first) decreases in comparison to the
deterministic case, while the expected value for the suboptimal
policy (short jobs first) remains almost the same.

3.2. Preliminaries for memoryless jobs

In order to formalize the idea from Section 3.1, we first state
some technical observationswhich are needed later in the analysis.
Fig. 3. Schedule with value v: long jobs scheduled only after short jobs, yet
expected to start at almost equal times.

Here, λ is an arbitrary positive parameter. We denote by

Hn :=

n
i=1

1
i

the nth harmonic number, where we define H0 := 0. The first
lemma gives an estimate on expected job completion times for
parallel jobs with Pj ∼ exp(λ).

Lemma 1. When scheduling in parallel h ≤ m jobs on m machines
with i.i.d. exponential processing times Pj ∼ exp(λ), the expected
number of machines that are idle at a given time t, denoted m(t), is
bounded as follows,

m(t) ≥ (m − h) + ⌊(1 − e−λt)h ⌋.

Proof. The first completion time is distributed as the minimum of
h independent exp(λ)distributions. This is an exp(hλ)distribution,
hence it is expected at time t1 =

1
hλ . After the first job completion,

we have h − 1 jobs remaining. Since the exponential distribution
is memoryless, the next completion is expected a time 1

(h−1)λ later,
so t2 =

1
hλ +

1
(h−1)λ . By continuing this argument we find that the

ith job completion is expected at time

ti =

i
j=1

1
(h − j + 1)λ

=
1
λ

h
j=h−i+1

1
j

=
1
λ

(Hh − Hh−i). (1)

Wenowuse thatHi−ln(i) is positive andmonotonically decreasing
in i [9]. Hence we may conclude that

ti ≤
1
λ

(ln(h) − ln(h − i)) =
1
λ

ln


h
h − i


,

which yields

i ≥ (1 − e−λti)h. (2)

Note thatm(ti) = (m−h)+i, for i = 1, . . . , h, by definition. Hence,
(2) yields

m(ti) ≥ (m − h) + (1 − e−λti)h (3)

for i = 1, 2, . . . , h. Together with the fact that m(t) is integer
valued, (3) yields

m(t) ≥ (m − h) + ⌊(1 − e−tλ)h ⌋

for all t ≥ 0. �

Note that the last job is expected to finish at time Θ(log h)/λ.
Nevertheless, the average expected completion time of the jobs is
1/λ; see also Fig. 2 for an illustration.

Lemma 2. Let s ≤ t and consider k(t − s) jobs with i.i.d. processing
times Pj ∼ exp(k) and weights wj = 1/k, scheduled on a single
machine from time s on. Then for all ε > 0 there exists k large enough
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so that

E


j

wjCj


≤

 t

s
x dx + ε.

Proof. Assuming w.l.o.g. that 1
k |(t − s), we have expected job

completion times at times s+1/k, s+2/k,. . . , s+k(t−s)/k = t .We
therefore calculate rather straightforwardly that E


j wjCj


=

1
2 (t

2
− s2) +

1
2k (t − s), so for k ≥

t−s
2ε the claim is true. �

The next lemma is concerned with the expected total weighted
completion time of short jobs that succeed a set of long jobs.

Lemma 3. Suppose we first schedule h i.i.d. long jobs with processing
times Pj ∼ exp(λ) on m machines, where h ≤ m. We then greedily
schedule m k i.i.d. short jobs, with processing times Pj ∼ exp(k) and
weightswj = 1/k, where k is large. Let vshort be the expectedweighted
sum of completion times of the short jobs. Then for k large enough,

vshort ≤

 T ′

0
f (t) t dt

where f (t) := (m − h) + (1 − e−λt)h − 1 and T ′ is defined so that T ′

0 f (t) dt = m.

Proof. First, define T as the average expectedmachine completion
time for machines that process short jobs. We know that when
scheduling the short jobs greedily, the schedule is expected to look
like illustrated in Fig. 2.

We analyse a scheduling policy π that is inferior to greedy
scheduling, that is, it yields an expected value for the total
weighted completion times of short jobs vπ

short ≥ vshort . The proof
then follows by verifying the claimed upper bound for vπ

short .
We define π as follows. Let [i] be the ith machine that becomes

available to execute short jobs, t[i] be the expected time for that
to happen, and for simplicity of notation assume that i = [i]. We
know that ti = 0 for i = 1, . . . ,m−h, and tm−h+i =

i−1
ℓ=0 1/((h−

ℓ)λ) for i = 1, . . . , h. Policy π schedules fixed sets of jobs per
machine, in the order in which they become available. More pre-
cisely, on machine i, we schedule a fixed set Ji of k(T − ti) short
jobs. By definition of T as the average expected machine comple-
tion time for machines that process short jobs, we will have run
out of short jobs for all machines iwith ti > T . For these machines,
we therefore redefine ti = T . Policy π is indeed inferior in con-
trast to greedy scheduling, as it lacks the load balancing towards
the end of the schedule. That is, there is positive probability that a
machine is left idle although othermachines have yet unscheduled
jobs, which cannot happen when scheduling the short jobs greed-
ily. Yet note that, by definition, the expected machine completion
times equal T for all machines that process short jobs.

By Lemma 2, we know that under π it holds for the short jobs
on machine i that
j∈Ji

wjCj ≤

 T

ti
t dt + εi,

for any εi > 0. Nowwe sum over all machines, wherewe let εi = 0
for all machines i that become available while there are no more
short jobs. We get

vπ
short ≤

m
i=1

 T

ti
t dt + εi =

 T

0
m(t)t dt + ε, (4)

wherem(t) is defined as the expected number of machines at time
t that are available for processing short jobs, and ε :=


i εi.

Now f (t) = (m − h) + (1 − e−λt)h − 1, and Lemma 1 yields
m(t) > f (t) for all t ≥ 0. The functions f (t) andm(t) are illustrated
Fig. 4. Illustration of functionsm(t), f (t), and values T and T ′ .

in Fig. 4. By definition of T ′ we havem =
 T
0 m(t) dt =

 T ′

0 f (t) dt ,
which implies that the two grey areas in Fig. 4 are equal in size.
Also note thatm(t) − f (t) is nonnegative for all t ≥ 0. Therefore, T

0
(m(t) − f (t))t dt < T

 T

0
(m(t) − f (t)) dt

= T
 T ′

T
f (t) dt

<

 T ′

T
f (t)t dt.

Here, the first inequality follows fromm(t)− f (t) ≥ 0, the equality
from

 T
0 m(t) dt =

 T ′

0 f (t) dt , and the last inequality from f (T ) ≥

0 and f being monotone non-decreasing. We conclude from the
previous inequalities that there exists some constant η > 0 so that T

0
m(t)t dt + η ≤

 T ′

0
f (t)t dt. (5)

Therefore, by choosing ε ≤ η, we may conclude from (4) and (5),
that

vπ
short ≤

 T

0
m(t) t dt + ε ≤

 T ′

0
f (t) t dt. �

Intuitively, the expression
 T ′

0 f (t)t dt equals the totalweighted
completion time for infinitesimally short jobs with total expected
processing m, scheduled on ‘‘machines’’ with availability f (t). As
m(t) ≥ f (t), the actual availability of machines for short jobs is
higher. We bound the contribution of the jobs that are processed
in the light grey area of Fig. 4 by the contribution they would have
if they were processed in the dark grey area.

Finally, the next lemma makes a statement about the machine
completion times when scheduling a block of (short) jobs, as
illustrated in Fig. 3.

Lemma 4. Suppose we schedule mk i.i.d. short jobs with processing
times Pj ∼ exp(k) greedily onmmachines. Then the average expected
machine completion time equals 1, and for any δ > 0 there exists k
large enough such that the earliest expected machine completion time
is at time t ≥ 1 − δ.

Proof. The claim about the average expected machine completion
time is clear, because the total expected processing is m. For the
second claim, consider the first time, say t , that amachine runs out
of jobs.We know from Lemma1 that the lastmachine that runs out
of jobs is expected to be at time t +

m−1
i=1

1
i k . For m large enough,

we have
m−1

i=1
1
i k ≤

1
k [ln(m) + γ ]. Here

γ := lim
i→∞

(Hi − ln i) ≈ 0.57721

denotes the Euler–Mascheroni constant [2]. Of course, the average
expected machine completion time must be less than the last
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expected machine completion time. Therefore, we have 1 ≤ t +m−1
i=1

1
ik ≤ t +

1
k [ln(m)+γ ]. If we now let k ≥ (ln(m)+γ )/δ, we

get 1 ≤ t + δ. �

3.3. Lower bound on performance of Smith’s rule

Let v∗ denote the expected objective value E


j wj Cj

for the

policy that first schedules all long jobs. Similarly, let v denote the
expected objective value for the policy that starts long jobs only
when there is no short job left to be scheduled. Both policies are
WSEPT, hence the ratio v/v∗ is a lower bound for the approxima-
tion ratio of Smith’s rule in stochastic machine schedulingwith ex-
ponentially distributed processing times. We choose h sufficiently
large, and k, a multiple of ⌊(1 +

√
2)h⌋, we may choose arbitrarily

large in comparison to h (i.e., k ≫ h). In fact, we can choose these
two parameters in such a way that all our technical lemmas from
Section 3.2 do apply.

The optimal policy, v∗. We split v∗ up into the contribution of
long jobs v∗

long and the contribution of short jobs v∗

short . So

v∗
= v∗

long + v∗

short .

The value v∗

long : We start all h long jobs at time 0. Their expected
completion time is 1+

√
2 each. Hence the contribution of the long

jobs is simply given by

v∗

long = h(1 +
√
2)2, (6)

which is the same as in the deterministic case.
The value v∗

short : Just like in the proof of Lemma 3 denote by
m(t) the expected number of machines at time t that is available
for processing short jobs, and T be the average expected machine
completion time for machines that process short jobs. We now use
Lemma 3 where

f (t) = (m − h) + (1 − e−t/(1+
√
2))h − 1.

Following the proof of Lemma 3, we need to compute a value T ′
≥

T large enough so that
 T ′

0 f (t) dt ≥ m. We have not attempted
to solve this analytically, but one can check numerically that for
m = h + ⌊(1 +

√
2)h⌋ and h → ∞,

T ′
= 1.2933 (7)

suffices to process the short jobs when machine availabilities are
governed by function f (t) rather than the true value m(t). Then
v∗

short , the expected weighted sum of completion times for all mk
short jobs, can be bounded using Lemma 3. We thus find, for h and
k sufficiently large,

v∗

short ≤

 T ′

0
f (t)t dt. (8)

With (7) and (8) we can calculate

v∗

short ≤ 2.266h − 0.836. (9)

Combining (6) and (9) gives

v∗
= v∗

long + v∗

short ≤ (1 +
√
2)2h + 2.266h − 0.836. (10)

The worst case policy, v. Now we switch to the case where we
first schedule all the short jobs. Again split the objective value into
the two parts contributed by the short and long jobs, respectively,

v = vshort + vlong .

The value vshort : We have m machines working on mk jobs with
processing times Pj ∼ exp(k). According to Lemma 4, on average
a machine is expected to finish with these jobs at time 1, and for
any δ > 0, we can find k large enough so that no machine is
expected to finish before time 1 − δ. Hence, the average expected
completion time of the set of short jobs on each machine is at least
(1− δ)/2. Therefore, for any ε > 0, there is k large enough so that,
by choosing ε = mδ,

vshort ≥ m/2 − ε/2. (11)

The value vlong : Remember that the schedule is expected to look
like depicted in Fig. 3. Using Lemma 4 again, we know that long
jobs are expected to start no earlier than 1 − δ, for any δ > 0. So
by assuming they all start at this time, we get a lower bound for
their completion times. If all long jobs start at 1 − δ, the average
expected completion time is 2 − δ +

√
2. Multiplying this by the

weight and summing over all h long jobs, for any ε > 0 there is k
large enough so that

vlong ≥ (2 +
√
2) (1 +

√
2)h − ε/2, (12)

by choosing δ = ε/(2h(1+
√
2)). With (11) and (12) we now have

v = vshort + vlong ≥ m/2 + (2 +
√
2) (1 +

√
2)h − ε. (13)

The performance bound. Finally, let α be the approximation ratio
of Smith’s rule for exponentially distributed processing times. Then

α ≥
v

v∗
.

Remember that m = h + ⌊(1 +
√
2)h⌋. Now for carefully chosen

k ≫ h, and taking h → ∞, Eqs. (10) and (13) give

v

v∗
≥

m/2 + (2 +
√
2) (1 +

√
2)h − ε

(1 +
√
2)2h + 2.266h − 0.836

> 1.229.

Sowe conclude thatα > 1.229. Note that this is strictly larger than
the approximation ratio for WSPT in the deterministic case, which
is ≈1.207.

Optimizing the parameters. What remains to be done is to opti-
mize over the parameters of the instance to improve the obtained
lower bound. To that end, recall that the considered instance has
h long jobs and m = h + ⌊(1 +

√
2)h⌋ ≈ 3.4h machines, and

long jobs have processing times Pj ∼ exp( 1
1+

√
2
) ≈ exp(0.41).

However, these parameters are optimized for the deterministic in-
stance. Taking slightlymore long jobs, namely by lettingm = 2.3h,
with somewhat shorter processing times, namely Pj ∼ exp(0.56),
we obtain a ratio of at least 1.2436,which finally proves Theorem1.

4. Conclusion

The numerical calculations have been performed using Math-
ematica. We also found instances (not discussed in this paper) –
with comparable building blocks and features – where WSPT is
always optimal for the deterministic case, whileWSEPT is not nec-
essarily optimal for the stochastic counterpart with exponentially
distributed processing times. In conclusion, improvements in the
ratio 1.243 might be possible. Yet, the upper bound (2 − 1/m)
seems out of reach. This leaves the question to improve the upper
bound on the performance guarantee for WSEPT; in that respect,
it is interesting to note that the analysis of [11] does not explicitly
exploit the exponential distribution; it is valid in more generality.
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