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Abstract

The assignment game [6] is a model for a two-sided market where there is

an exchange of indivisible goods for money and buyers or sellers demand

or supply exactly one unit of the good. We give a procedure to compute

the nucleolus of any assignment game, based on the distribution of equal

amounts to the agents, until the game is reduced to less agents.

Keywords: Assignment game, core, nucleolus

1. Introduction

The main solution concept in cooperative game theory is the core. Its

importance relies on the fact that any proposal of allocation within the core

has certain stability since no subgroup of players can do better by splitting

off. In case the core is large we can select an allocation in it. For assignment
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games, the core is always nonempty, and other well-known solutions, such as

the Shapley value [5] are not usually in the core. The nucleolus [4] occupies

a central position inside it, and has outstanding normative properties. In

this paper we study how to compute the nucleolus of the assignment game,

by giving the players in an egalitarian way certain amounts following a well-

defined pace.

Assignment games were introduced by Shapley and Shubik [6] and de-

scribe bilateral markets, formed by a set of buyers, a set of sellers, and for

every buyer and seller, a non-negative real number which is the potential

profit obtained by them if they trade. The worth of any coalition is defined

as the maximum profit obtained by matching buyers to sellers within the

coalition, and an optimal matching of the market gives the maximum profit

that the agents can obtain.

The core is defined as the set of allocations of the worth of the grand

coalition such that no subcoalition can further improve upon. The nucleolus

[4] is the unique core element that lexicographically minimizes the vector

of non-increasingly ordered excesses of coalitions. For assignment games

Solymosi and Raghavan [7] provide an algorithm that computes the nucleolus

of an arbitrary assignment game. Recently Llerena and Núñez [1] have

characterized the nucleolus of a square assignment game from a geometric

point of view, using the fact that the nucleolus is the midpoint for some

specific segments inside the core. We use this geometric characterization to

give a procedure to compute the nucleolus of an arbitrary square assignment

game.
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2. Preliminaries

An assignment market (M,M ′, A) is defined to be two disjoint finite sets:

M, the set of buyers, and M ′, the set of sellers and a nonnegative matrix

A = (aij)i∈M,j∈M ′ which represents the profit obtained by each mixed-pair

(i, j) ∈ M ×M ′. To distinguish the j-th seller from the j-th buyer we will

write the former as j′ when needed. Let us assume there are |M | = m buyers

and |M ′| = m′ sellers. The assignment market is called square whenever

|M | = |M ′| .

A matching µ ⊆ M ×M ′ between M and M ′ is a bijection from M0 ⊆

M to M ′0 ⊆ M ′ such that |M0| = |M ′0| = min {|M | , |M ′|} . We write

(i, j) ∈ µ as well as j = µ (i) or i = µ−1 (j). If for some buyer i ∈ M

there is no j ∈ M ′ such that (i, j) ∈ µ we say that i is unmatched by

µ and similarly for sellers. The set of all matchings from M to M ′ is

represented by M (M,M ′) . A matching µ ∈ M (M,M ′) is optimal for

(M,M ′, A) if
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij for any µ′ ∈ M (M,M ′) . We de-

note by M∗A (M,M ′) the set of all optimal matchings. [6] associate any

assignment market with a game in coalitional form (M ∪M ′, wA) called the

assignment game where the worth of a coalition formed by S ⊆ M and

T ⊆ M ′ is wA (S ∪ T ) = max
µ∈M(S,T )

∑
(i,j)∈µ aij , and any coalition formed

only by buyers or only by sellers gets zero.

The core of the assignment game, C(wA), is defined as those allocations

(u, v) ∈ RM × RM ′ satisfying u (M) + v (M ′) = wA (M ∪M ′) and u (S) +

v (T ) ≥ wA (S ∪ T ) for all S ⊆ M and T ⊆ M ′ where u (S) =
∑

i∈S ui,

v (T ) =
∑

j∈T vj , u (∅) = 0 and v (∅) = 0. It is always nonempty.

Given an optimal matching µ ∈M∗A (M,M ′) , the core of the assignment

game can be easily described as the set of non-negative payoff vectors (u, v) ∈
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RM+ × RM ′+ such that

ui + vj ≥ aij for all i ∈M, j ∈M ′, (1)

ui + vj = aij for all (i, j) ∈ µ, (2)

and all agents unmatched by µ get a null payoff.

Now we define the nucleolus of an assignment game, taking into ac-

count that its core is always nonempty. Given an allocation in the core,

x ∈ C(wA), define for each coalition S ⊆ M ∪M ′ its excess as e (S, x) :=

wA (S) −
∑

i∈S xi. As it is known (see [7]) that the only coalitions that

matter are the individual and mixed-pair ones, define the vector θ (x) of ex-

cesses of individual and mixed-pair coalitions arranged in a non-increasing

order. Then the nucleolus of the game (M ∪M ′, wA) is the unique alloca-

tion ν (wA) ∈ C(wA) which minimizes θ (x) with respect to the lexicographic

order over the set of core allocations. The lexicographic order ≥lex on Rd, is

defined in the following way: x ≥lex y, where x, y ∈ Rd, if x = y or if there

exists 1 ≤ t ≤ d such that xk = yk for all 1 ≤ k < t and xt > yt.

Llerena and Núñez [1] characterize the nucleolus of a square assignment

game from a geometric point of view. The nucleolus is the unique core

allocation that is the midpoint of some well-defined segments inside the

core. To be precise they define the maximum transfer from a coalition to

another coalition. Given any square assignment market (M,M ′, A) , and two

arbitrary coalitions of the same cardinality ∅ 6= S ⊆ M, and ∅ 6= T ⊆ M ′,

with |S| = |T | they define:

δAS,T (u, v) := min
i∈S,j∈M ′\T

{ui, ui + vj − aij} , (3)

δAT,S (u, v) := min
j∈T,i∈M\S

{vj , ui + vj − aij} , (4)
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for any core allocation (u, v) ∈ C (wA).

It is easy to see that expression (3) represents the largest amount that

can be transferred from players in S to players in T with respect to the core

allocation (u, v) while remaining in the core, that is,

δAS,T (u, v) = max
{
ε ≥ 0 |

(
u− ε1S , v + ε1T

)
∈ C (wA)

}
,

where 1S and 1T represent the characteristic vectors (for S ⊆ {1, . . . , n} , 1S ∈

Rn is such that 1Si = 1, if i ∈ S, and zero otherwise) associated with coalition

S ⊆M and T ⊆M ′, respectively.

Llerena and Núñez [1] prove that the nucleolus of a square assignment

market is characterized as the unique core allocation (u, v) ∈ C(wA) such

that

δAS,T (u, v) = δAT,S (u, v) (5)

for any ∅ 6= S ⊆M and ∅ 6= T ⊆M ′ with |S| = |T |. Notice that if T 6= µ(S)

for some µ ∈ M∗A (M,M ′) , then δAS,T (u, v) = δAT,S (u, v) = 0. Then, for this

characterization we only check the case T = µ(S) for all optimal matchings.

This is called the bisection property.

3. The procedure to compute the nucleolus of the assignment

game

In this section we give a procedure to compute the nucleolus of an ar-

bitrary assignment game. The main idea is to distribute some “dividends”

to the players in such a way that we retain an assignment market, whose

nucleolus gives the remaining worth to the agents. In it, we lower the entries

in the matrix, until at least one optimal entry of some optimal matching is
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set to zero. Players involved in these entries will not receive any more div-

idends. In this way we associate a new game with, at least, one player less

on each side.

If the assignment market is not square, we can add dummy players, i.e.

null rows or columns, and compute its nucleolus. These players get zero at

any core allocation, and in [3] is discussed that making the matrix square

does not modify the nucleolus of the assignment game, if we drop at the end

the null payoff to the added dummy agents. Therefore our procedure also

applies to non-square assignment games.

The procedure we are going to present is based on two propositions.

The first proposition is a direct consequence of the fact that the nucleolus

of assignment games satisfies an adapted reduced game property [2]. It is

stated without proof, because if one entry of some optimal matching is zero,

agents optimally assigned get zero at all points of the core, and thus in the

nucleolus.

Proposition 3.1. Let A ∈ M+
m be a square matrix and let µ ∈M∗A (M,M ′)

be an optimal matching such that ak µ(k) = 0 for some k ∈M. Then, matrix

A′ ∈ M+
m−1 defined by:

a′ij = max{0, aij − ai µ(k) − akj} for i ∈M \ {k} and j ∈M ′ \ {µ(k)},

satisfies:

νi(wA) =νi(wA′) + ai µ(k) for i ∈M \ {k},

νj(wA) =νj(wA′) + akj for j ∈M ′ \ {µ(k)}, and

νk(wA) =νµ(k)(wA) = 0.

The second proposition states that decreasing all the entries in the as-

signment matrix following a determined pace, we could simplify the compu-
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tation of the nucleolus. The decreasing rate of the matrix entries depends

on whether they are part of an optimal matching or not. If they belong

to optimal matching, the decreasing rate is twice the one corresponding to

the entries that do not belong to an optimal matching. Once an entry has

dropped to zero, it stays to zero.

To this end, we need some notation. Given a square assignment ma-

trix A ∈ M+
m we define the set of all entries that belong to some optimal

matching,

HA =
{

(i, j) ∈M ×M ′ | (i, j) belongs to some optimal matching in A
}
.

Consider now the minimum entry in matrix A that is in some optimal

matching, and define

αA := min
{aij

2
| (i, j) ∈ HA

}
. (6)

On the other hand, for t ≥ 0, we introduce the following matrix At. Its

entries are defined as:

atij =

 max{0, aij − 2t} for (i, j) ∈ HA,

max{0, aij − t} for (i, j) /∈ HA.
(7)

These entries atij are non-increasing functions of t, and for t = 0, A0 = A.

Now for each non-optimal matching, µ ∈M (M,M ′)\M∗A (M,M ′) , consider

the following equation, in t ≥ 0 :

fAµ (t) = wA(M ∪M ′)− 2mt−
∑

(i,j)∈µ

atij = 0, (8)

and denote tAµ ≥ 0 its unique solution. To see that this solution exists and

is unique, note that since µ is not optimal, we have that fAµ (0) > 0 be-

cause wA(M ∪M ′) >
∑

(i,j)∈µ aij ; at t = ∞ the left-hand side is negative;
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and function fAµ (t) is continuous, concave and piecewise linear with nega-

tive slope. Notice that if tAµ ≤ αA we know that we will find at least two

matchings in At
A
µ with the same worth. Then define

βA := min
{
tAµ | µ ∈M

(
M,M ′

)
\M∗A

(
M,M ′

)}
. (9)

Now we are in a position to state our second proposition.

Proposition 3.2. Let A ∈ M+
m be a square matrix and let αA and βA as in

(6) and (9) Then, for each ε ≤ min{αA, βA}, matrix Aε ∈ M+
m defined by

(7) satisfies:

νi(wA) =νi(wAε) + ε for i ∈M,

νj(wA) =νj(wAε) + ε for j ∈M ′.

Proof. Let ν(wAε) = (u, v) be the nucleolus of the game wAε . We must prove

that (u′, v′) = (u, v) + ε(1M , 1M
′
) is the nucleolus of wA.

Notice first that if µ∗ ∈M∗A (M,M ′) is an optimal matching for A then

it is an optimal matching for Aε. To see it, notice that since ε ≤ αA, we have∑
(i,j)∈µ∗ a

ε
ij = wA(M ∪M ′)−2mε and since ε ≤ βA, wA(M ∪M ′)−2mε ≥∑

(i,j)∈µ a
ε
ij for all µ ∈M (M,M ′) \M∗A (M,M ′) .

Fix one optimal matching µ ∈ M∗A (M,M ′) , and notice that (u′, v′) ∈

C(wA) since for each (i, j) ∈M×M ′ we have u′i+v
′
j = ui+vj+2ε ≥ aεij+2ε ≥

aij and if (i, j) ∈ µ we have the equality. Now let ∅ 6= S ⊆M be a coalition

of buyers. We compute δAS,µ(S) (u′, v′) = min
i∈S,j∈M ′\µ(S)

{
u′i, u

′
i + v′j − aij

}
,

and we distinguish two cases:

(a) if there exists i ∈ S and j ∈ M ′ \ µ(S) such that (i, j) ∈ HA we have

δAS,µ(S) (u′, v′) = 0, and δAµ(S),S (u′, v′) = 0,
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(b) if for all i ∈ S and j ∈M ′ \ µ(S) we have (i, j) /∈ HA we deduce

δAS,µ(S)
(
u′, v′

)
= min

i∈S,j∈M ′\µ(S)
{ui + ε, ui + vj + 2ε− aij}

= ε+ min
i∈S,j∈M ′\µ(S)

{ui, ui + vj − (aij − ε)} (10)

Notice now that, if aij > ε, we have aij − ε = aεij , and if aij ≤ ε, we

have aεij = 0 and ui + vj − (aij − ε) ≥ ui + vj ≥ ui, and thus we can

substitute in (10) expression ui + vj − (aij − ε) by ui + vj − aεij , and

we obtain:

δAS,µ(S)
(
u′, v′

)
= ε+ min

i∈S,j∈M ′\µ(S)

{
ui, ui + vj − aεij

}
= ε+ δA

ε

S,µ(S) (u, v) .

A similar argument proves that δAµ(S),S (u′, v′) = ε+ δA
ε

µ(S),S (u, v) , and since

(u, v) is the nucleolus of the game wAε , we know that δA
ε

S,µ(S) (u, v) = δA
ε

µ(S),S (u, v) .

Therefore it is clear that by (5) we have finished the proof.

Remark 3.1. Notice that, by applying Proposition 3.2, any optimal match-

ing for A remains optimal for Aε for ε ≤ min{αA, βA}. Therefore in each

step, for ε = min{αA, βA}, either we obtain at least one entry of an optimal

matching equal to zero, and/or at least one more optimal matching.

Remark 3.2. If αA < βA we obtain, for ε = αA, that at least one entry in

the optimal matching has been dropped to zero. If αA > βA we obtain, for

ε = βA, that at least we have another optimal matching.

The iterated application of Proposition 3.1 and Proposition 3.2 increases

the number of optimal matchings and/or reduces the number of players. In

a finite number of steps we finish the procedure.

We will illustrate the application of the procedure to the non-square

example in [7].
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Example 3.1 (Section 7 in [7]). Consider the following assignment market:

M = {1, 2, 3, 4} and M ′ = {1′, 2′, 3′, 4′, 5′}, and matrix

A =


6 7 4 5 9

4 3 7 8 3

0 1 3 6 4

2 2 5 7 8

 .

In the first place, we add a dummy buyer, buyer 5, whose row is filled

with zeroes. The optimal matching is denoted in boldface and by the boxes

around the entries.

Therefore, the square matrix that we begin with is the following one:

A[0] =



6 7 4 5 9

4 3 7 8 3

0 1 3 6 4

2 2 5 7 8

0 0 0 0 0


.

Step 1: Since there is one entry equal to zero in one optimal matching,

a51 = 0, we apply Proposition 3.1, and players 5 and 1’ leave the market.

The new assignment market is M = {1, 2, 3, 4} and M ′ = {2′, 3′, 4′, 5′}

and its matrix is:

A[1] =


1 0 0 3

0 3 4 0

1 3 6 4

0 3 5 6

 .

Recall that a
[1]
ij = max{0, aij − ai1 − a5j}, for i = 1, 2, 3, 4 and j = 2, 3, 4, 5.
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Step 2: Since there is no entry equal to zero in some optimal matching, we

apply Proposition 3.2, and we distribute the players ε = 1
2 which is exactly

one half of the minimum entry in the unique optimal matching. In fact, in

this case βA
[1]

= 1 and min{αA[1]
, βA

[1]} = 1
2 . The new assignment market

is M = {1, 2, 3, 4} and M ′ = {2′, 3′, 4′, 5′} and its matrix is:

A[2] =


0 0 0 21

2

0 2 31
2 0

1
2 21

2 5 31
2

0 21
2 41

2 5

 .

Notice that the optimal entries reduce their worth by 2 ε = 2 1
2 = 1, whilst

the non-optimal entries reduce their worth by ε = 1
2 .

Step 3: Since there is one entry equal to zero in one optimal matching, we

apply Proposition 3.1, and players 1 and 2’ leave the market.

The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′} and

its matrix is:

A[3] =


2 31

2 0

2 41
2

1
2

21
2 41

2 21
2

 .

Step 4: Since there is no entry equal to zero in some optimal matching, we

apply Proposition 3.2, and we must compute the limits in the statement of

the proposition. In this case αA
[3]

= 1 and βA
[3]

= 1
2 . Players receive 1

2 and

we obtain another optimal matching.

The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′} and

its matrix is:

A[4] =


1 3 0

11
2 31

2 0

2 4 11
2

 .
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Notice that this matrix has two optimal matchings.

Step 5: Since there is no entry equal to zero in some optimal matching, we

apply Proposition 3.2, obtaining αA
[4]

= 1
2 and βA

[4]
= 1

6 . Therefore we dis-

tribute 1
6 to the players and we obtain several additional optimal matchings.

The new assignment market is M = {2, 3, 4} and M ′ = {3′, 4′, 5′} and

its matrix is:

A[5] =


2
3 22

3 0

11
6 31

6 0

15
6 35

6 11
6

 .

Notice that we have obtained a new matrix with four optimal matchings.

Step 6: Since there is one entry equal to zero in one optimal matching, we

apply Proposition 3.1, and players 2 and 5’ leave the market.

The new assignment market is M = {3, 4} and M ′ = {3′, 4′} and its

matrix is:

A[6] =

 1
2

1
2

0 0

 .

Step 7: Since there are two entries equal to zero, one in each optimal

matching, we apply Proposition 3.1, and all remaining players leave the

market.

In Table 3.1, we can see the payments to the agents in each step of the

procedure. The sum of payments for each agent gives the nucleolus of game

wA[0] . The fact that a player is removed and leaves the market is denoted by

a box.

Since buyer 5 is a dummy player, which has been added at the beginning

of the process to make square the original matrix, we can state the nucleolus
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Table 1: The computation of the nucleolus of Example 3.1

Player 1 2 3 4 5 1’ 2’ 3’ 4’ 5’

Step 1 6 4 0 2 0 0 0 0 0 0

Step 2 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Step 3 0 0 1
2 0 0 0 0 21

2

Step 4 1
2

1
2

1
2

1
2

1
2

1
2

Step 5 1
6

1
6

1
6

1
6

1
6

1
6

Step 6 0 0 7
6

2
3 22

3 0

Step 7 1
2 0 0 0

TOTAL 61
2 51

6 21
6 41

3 0 0 1
2 15

6 35
6 32

3

of the original example. The nucleolus is:

ν(wA) =

(
6

1

2
, 5

1

6
, 2

1

6
, 4

1

3
; 0,

1

2
, 1

5

6
, 3

5

6
, 3

2

3

)
.
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