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Abstract

We consider semi-infinite linear programs with countably many constraints
indexed by the natural numbers. When the constraint space is the vector
space of all real valued sequences, we show that the finite support (Haar)
dual is equivalent to the algebraic Lagrangian dual of the linear program.
This settles a question left open by Anderson and Nash [2]. This result
implies that if there is a duality gap between the primal linear program and
its finite support dual, then this duality gap cannot be closed by considering
the larger space of dual variables that define the algebraic Lagrangian dual.
However, if the constraint space corresponds to certain subspaces of all real-
valued sequences, there may be a strictly positive duality gap with the finite
support dual, but a zero duality gap with the algebraic Lagrangian dual.
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1. Introduction

We begin with a brief review of notation and basic definitions for semi-
infinite linear programs. Let Y be a vector space. The algebraic dual of Y is
the set of linear functionals with domain Y and is denoted by Y ′. Let ψ ∈ Y ′.
The evaluation of ψ at y is denoted by 〈y, ψ〉; that is, 〈y, ψ〉 = ψ(y). We
emphasize that the theory presented here deals with algebraic dual spaces and
not topological dual spaces. Discussion of how our work relates to topological
duals appears in Remarks 2.2 and 2.3.

Email addresses: basu.amitabh@jhu.edu (Amitabh Basu),
kmartin@chicagobooth.edu (Kipp Martin), chris.ryan@chicagobooth.edu
(Christopher Thomas Ryan)

Preprint submitted to Operations Research Letters July 30, 2018

http://arxiv.org/abs/1304.3832v2


Let P be a convex cone in Y . A convex cone P is pointed if and only if
P ∩ −P = {0}. In the rest of the paper all convex cones are assumed to be
pointed. A pointed convex cone P in Y defines a vector space ordering �P

of Y , with y �P y
′ if y − y′ ∈ P . The algebraic dual cone of P is

P ′ = {ψ ∈ Y ′ : 〈y, ψ〉 ≥ 0 for all y ∈ P} .

Elements of P ′ are called positive linear functionals on Y (see for instance,
page 17 of [9]). Let A : X → Y be a linear mapping from vector space X
to vector space Y . The algebraic adjoint A′ : Y ′ → X ′ is a linear operator
defined by A′(ψ) = ψ ◦ A and satisfies 〈x,A′(ψ)〉 = 〈A(x), ψ〉 where ψ ∈ Y ′

and x ∈ X . Using this notation, define the primal conic optimization problem

infx∈X 〈x, φ〉
s.t. A(x) �P b

(ConLP)

where b ∈ Y and φ is a linear functional on X .
Now define the standard algebraic Lagrangian dual for (ConLP).

sup
ψ∈P ′

inf
x∈X

{〈x, φ〉 + 〈b−A(x), ψ〉} = sup
ψ∈P ′

inf
x∈X

{

〈x, φ〉 + 〈b, ψ〉 − 〈A(x), ψ〉
}

= sup
ψ∈P ′

{

〈b, ψ〉 + inf
x∈X

{〈x, φ〉 − 〈A(x), ψ〉}
}

= sup
ψ∈P ′

{

〈b, ψ〉 + inf
x∈X

{〈x, φ〉 − 〈x,A′(ψ)〉}
}

= sup
ψ∈P ′

{

〈b, ψ〉 + inf
x∈X

〈x, φ−A′(ψ)〉
}

.

Since x ∈ X is unrestricted, if φ−A′(ψ) is not the zero linear functional onX,
then the inner minimization goes to negative infinity, so require φ−A′(ψ) =
θX , where θX is the zero linear functional on X . Then the Lagrangian dual
of (ConLP) is

sup 〈b, ψ〉
s.t. A′(ψ) = φ

ψ ∈ P ′.
(ConDLP)

This problem is called the algebraic Lagrangian dual of (ConLP) since the
linear functionals ψ that define the dual problem are in Y ′, which is the
algebraic dual of Y.
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Semi-infinite linear programs. Consider the case where X = R
n and Y = R

I ,
i.e., the vector space of real-valued functions with domain I where I is an
arbitrary (potentially infinite) set. Let a1, a2, . . . , an and b be functions in
Y = R

I . Let A : Rn → R
I be the linear mapping x 7→ (a1(i)x1 + a2(i)x2 +

. . . + an(i)xn : i ∈ I). Let RI
+ denote the pointed cone of u ∈ R

I such that
u(i) ≥ 0 for all i ∈ I and let P = R

I
+. With this specification for the vector

spaces X and Y , the map A, right hand side b and cone P , problem (ConLP)
reduces to the standard semi-infinite linear program

infx∈Rn φ⊤x
s.t.

∑n

k=1 a
k(i)xk ≥ b(i) for all i ∈ I.

(SILP)

There is a slight abuse of notation here. When X = R
n, the algebraic dual

X ′ is isomorphic to R
n so each linear functional φ ∈ X ′ can be mapped to

a vector in R
n. Thus, the primal objective function 〈x, φ〉 in (ConLP), is

replaced by the inner product φ⊤x with φ now treated as a vector in R
n.

Next consider two alternative duals of (SILP): the algebraic Lagrangian
dual and the finite support dual due to Haar [8]. Recall that (RI

+)
′ denotes

the algebraic dual cone of P = R
I
+. The algebraic Lagrangian dual of (SILP)

using (ConDLP) is

sup 〈b, ψ〉
s.t. A′(ψ) = φ

ψ ∈ (RI
+)

′.
(DSILP)

A second dual is derived as follows. Instead of considering every linear
functional ψ ∈ (RI

+)
′ as above, consider a subset of these linear functionals,

called the finite support elements. For u ∈ R
I , the support of u is the set

supp(u) = {i : u(i) 6= 0}. The subspace R
(I) denotes those functions in R

I

with finite support. Let R
(I)
+ denote the pointed cone of v ∈ R

(I) such that
v(i) ≥ 0 for all i ∈ I. Under the natural embedding of R(I) into (RI)′ for
u ∈ R

I and v ∈ R
(I), write 〈u, v〉 =

∑

i∈I u(i)v(i). The latter sum is well-

defined since v has finite support. Under this embedding, R
(I)
+ is a subset of

(RI
+)

′. Moreover, under this embedding, A′ : (RI)′ → X ′(= R
n) restricted to

R
(I) becomes the map A′(v) = (

∑

i∈I a
k(i)v(i))nk=1. The finite support dual

is

sup
∑

i∈I b(i)v(i)
s.t.

∑

i∈I a
k(i)v(i) = φk, k = 1, . . . , n

v ∈ R
(I)
+ .

(FDSILP)
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The finite support dual (FDSILP) is restricted to the linear functionals

ψ that can be mapped to v ∈ R
(I)
+ under the standard embedding of R(I)

into (RI)
′

. Therefore v(FDSILP) ≤ v(DSILP) where the optimal value of
optimization problem (∗) is denoted by v(∗). This leads naturally to the
following question.

Question 1. Is it possible that v(SILP) = v(DSILP) and yet v(SILP) >
v(FDSILP)? In other words, can there exist a duality gap between the pri-
mal and its finite support dual that is closed by considering the algebraic
Lagrangian dual?

This question is significant for the study of semi-infinite linear program-
ming for at least two reasons. First, most duality theory has been developed
for the finite support dual [3, 5, 6, 10, 12, 14]. Moreover, the only other dual
given significant attention in the literature is the “continuous dual” (see for
instance [4, 7]) and this dual shares many of the same duality properties as
the finite support dual. Indeed, as stated by Goberna in [4]: “all known
duality theorems guaranteeing the existence of a zero duality gap have the
same hypotheses for both dual problems [the finite support dual and the
continuous dual]”. He even goes so far to say that the finite support dual
and the continuous dual are “equivalent in practice.”

Second, the algebraic Lagrangian dual is notoriously challenging to char-
acterize and work with. Indeed, to the author’s knowledge, little has been
said about the algebraic dual in the semi-infinite programming literature
(only a few studies mention it, and they do not draw conclusions about its
connection with the finite support dual [2, 13]).

To the authors’ knowledge Question 1 has not been settled for I = N, i.e.,
semi-infinite linear programs with countably many constraints. Indeed, on
page 66 of Anderson and Nash’s seminal work [2] they write: “It seems to be
hard, if not impossible, to find examples of countable semi-infinite programs
which have a duality gap in this formulation [the finite support dual], but
have no duality gap when we take W to be a wider class of sequences”
where W refers to the vector space of dual variables. In our notation, W =
(RN)′ in (DSILP) and W = R

(N) in (FDSILP). Semi-infinite linear programs
with countably many constraints have been well-studied in the literature,
particularly from the perspective of duality [3, 10, 11]. In fact, one can
even show that, theoretically, there is no loss in generality in considering
the countable case. Theorem 2.3 in [11] shows that every semi-infinite linear
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program with uncountable many constraints can be equivalently reposed over
a countable subset of the original constraints.

The main result of this paper (Theorem 2.4) proves that the answer
to Question 1 is no for the case of I = N, settling Anderson and Nash’s
open question. We show that v(DSILP) = v(FDSILP) by establishing that
(DSILP) and (FDSILP) are equivalent programs.

However, there is a subtlety in Question 1 to keep in mind for semi-infinite
linear programs with countably many constraints. In the above discussion,
a semi-infinite linear program with countably many constraints was cast as
an instance of (ConLP) with X = R

n, Y = R
N, A : X → Y defined by

A(x) = (a1(i)x1+a
2(i)x2+. . .+a

n(i)xn : i ∈ I), and P = R
N

+. Then (DSILP)
was formed using (ConDLP). However, if the functions a1, a2, . . . , an and b
lie in a subspace V ⊆ R

N, then we may use Y = V and P = V ∩ R
N

+

to write the semi-infinite linear program as an instance of (ConLP). The
corresponding (ConDLP) is

sup 〈b, ψ〉
s.t. A′(ψ) = φ

ψ ∈ (V ∩ R
N

+)
′

(DSILP(V))

where (V ∩ R
N

+)
′ ⊆ V ′ is the dual cone of P = V ∩ R

N

+, which lies in the
algebraic dual of V.

It is quite possible that a positive linear functional defined on (V ∩ R
N

+)
′

cannot be extended to (RN
+ )

′. This implies (DSILP) (with I = N) may have
a smaller value than (DSILP(V)), i.e., v(DSILP) < v(DSILP(V)). In this
context, the following question is a natural extension of Question 1.

Question 2. Is it possible that v(SILP) = v(DSILP(V)) and v(SILP) >
v(FDSILP) = v(DSILP) when a1, . . . , an, b ∈ V for some subspace V ⊆ R

N?
In other words, when the constraint space V lies in a subspace of RN, can there
exist a duality gap between the primal and its finite support dual (FDSILP),
that is closed by considering the algebraic Lagrangian dual defined according
to that subspace?

We show in Section 3 that this can happen. More concretely, in Exam-
ple 3.5 in Section 3, there is a duality gap between (SILP) and the finite
support dual (FDSILP). However, if a1, . . . , an, b are considered as elements
of the space of convergent real sequences c, then (SILP) is a special case
of (ConLP) with X = R

n, V = Y = c, A : X → Y and P = c+ (the cone of
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convergent sequences with nonnegative entries), and there is no duality gap
with its algebraic Lagrangian dual (DSILP(c))

sup 〈b, ψ〉
s.t. A′(ψ) = φ

ψ ∈ (c+)
′

(DSILP(c))

where (c+)
′ is the algebraic dual cone of c+. The same result also holds when

Y is the subspace of bounded real sequences ℓ∞.

2. Main result

Lemma 2.1. For every ψ ∈ (RN

+)
′, there exists u ∈ R

(N)
+ such that 〈y, ψ〉 =

∑

i∈N y(i)u(i) for every y ∈ R
N. In other words, every positive linear func-

tional on R
N can be represented by a positive finite support dual vector.

Proof. Consider any ψ ∈ (RN

+)
′, i.e., 〈y, ψ〉 ≥ 0 for all y ≥ 0. We show that

ψ can be represented by a finite support linear functional.

Claim 1. There exists M ∈ N such that for all v ∈ R
N

+ whose first M
components are zero, 〈v, ψ〉 = 0.

Proof. Suppose no suchM exists. Then for every n ∈ N, there exists vn ∈ R
N

+

such that 〈vn, ψ〉 > 0 (we can assume strictly greater than zero without loss)
and the first n components of vn are zero. Consider the sequence of vectors
v̂n = vn

〈vn,ψ〉
for n ∈ N. Observe that 〈v̂n, ψ〉 = 1 for all n ∈ N . Now, consider

vector a ∈ R
N

+ where a(i) =
∑

n∈N v̂
n(i) =

∑i

n=1 v̂
n(i) +

∑

n>i v̂
n(i) for all

i ∈ N. Since v̂n(i) = 0 for all n > i,
∑

n>i v̂
n(i) = 0. This implies

∑

n∈N v̂
n(i)

is a finite sum and therefore well-defined. Given any N ∈ N, it follows from
the definition of a(i), that a(i) −

∑N

n=1 v̂
n(i) =

∑

n∈N v̂
n(i) −

∑N

n=1 v̂
n(i) =

∑

n>N v̂
n(i). We have

∑

n>N v̂
n(i) ≥ 0 since the v̂n are in R

N

+. This implies

a−
∑N

n=1 v̂
n ≥ 0. Thus, 〈a−

∑N

n=1 v̂
n, ψ〉 ≥ 0 for every N ∈ N. By linearity

of ψ, this implies that 〈a, ψ〉 ≥
∑N

n=1〈v̂
n, ψ〉 = N for every N ∈ N. But this

means 〈a, ψ〉 cannot be a finite number, which is a contradiction of the fact
that ψ, being a linear functional, is real valued.

LetM be the natural number from Claim 1. Now let ei denote the element
of RN with 1 in the i-th coordinate and 0 everywhere else. Let u ∈ R

(N) be
a finite support element given as follows

u(i) =

{

〈ei, ψ〉, i ≤ M
0, i > M.
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Claim 2. 〈y, ψ〉 =
∑

i∈N u(i)y(i) for every y ∈ R
N

+.

Proof. Observe that any y ∈ R
N

+ can be represented as y =
∑M

i=1 y(i)e
i + v

where v ∈ R
N
+ has zeros in its first M components. By Claim 1, 〈v, ψ〉 = 0.

Hence 〈y, ψ〉 =
∑M

i=1 y(i)〈e
i, ψ〉+ 〈v, ψ〉 =

∑

i∈N u(i)y(i).

Claim 2 only applies to y ≥ 0, i.e., the nonnegative elements in R
N. To

complete the proof, we need to show that for arbitrary y ∈ R
N, 〈y, ψ〉 =

∑

i∈N u(i)y(i). Define y+, y− ∈ R
N

+ as follows: for each i ∈ N, y+(i) =
max{y(i), 0} and y−(i) = max{−y(i), 0}. Thus, we can write y ∈ R

N as
y = y+ − y−. Therefore,

〈y, ψ〉 = 〈y+, ψ〉 − 〈y−, ψ〉
=

∑

i∈N u(i)y
+(i)−

∑

i∈N u(i)y
−(i)

=
∑

i∈N u(i)(y
+(i)− y−(i))

=
∑

i∈N u(i)y(i)

where the second equality follows from Claim 2.

Recall every u ∈ R
(N)
+ maps to a positive linear functional ψ over RN via

ψ(x) =
∑∞

i=1 u(i)x(i). Thus, R
(N)
+ can be embedded into a subset of (RN

+)
′.

Combined with Lemma 2.1, this implies (RN

+)
′ ∼= R

(N)
+ . In other words, the

algebraic dual cone of RN

+ is isomorphic to the positive cone R
(N)
+ in R

(N).

Remark 2.2. The fact that (RN

+)
′ is isomorphic to R

(N)
+ does not contradict

the well-known fact that the full algebraic dual (RN)′ of RN is difficult to
characterize. Indeed, the full algebraic dual (RN)′ is of uncountable dimension
(see page 195 of [1]) whereas the algebraic dual cone (RN

+)
′ is isomorphic to

a subset of R(N), which has countable dimension. One intuitive justification
is that R

N

+ is not a “full dimensional” subset of RN. This is because R
N

+

has empty interior in every linear topology. For a justification of this fact
see Appendix A.

Remark 2.3. Our Lemma 2.1 shares some similarities with Theorem 16.3 of
[1]. We emphasize that Lemma 2.1 does not contradict, nor depend on, The-
orem 16.3 of [1]. The latter result states that, under the usual product topol-
ogy of RN, the topological dual (RN)∗ of RN is isomorphic to R

(N). Lemma 2.1
differs from this result in two ways. First, Lemma 2.1 demonstrates an equiv-
alence between the algebraic dual cone of RN

+ and the positive cone of R(N).
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In other words, Theorem 16.3 of [1] concerns all continuous linear functionals
on R

N whereas our result concerns only positive linear functionals. Second,
our result is a statement about algebraic duality whereas Theorem 16.3 of [1]
concerns topological duality. Our proof of Lemma 2.1 is direct and entirely
algebraic. It does require Theorem 16.3 of [1] or any topological concepts.

Using Lemma 2.1, Question 1 is answered for I = N.

Theorem 2.4. When I = N, v(SILP) = v(DSILP) if and only if v(SILP) =
v(FDSILP).

Proof. It suffices to show that v(DSILP) = v(FDSILP). Lemma 2.1 implies

(RN

+)
′ ∼= R

(N)
+ and thus the feasible regions of (DSILP) and (FDSILP) are

equivalent under the standard embedding of R(N) into (RN)′. The objectives
are also equivalent under that embedding and thus v(DSILP) = v(FDSILP).

3. Duality gaps in proper subspaces of RN

By Theorem 2.4, the optimal value of the finite support dual is equal
to the optimal value of the algebraic Lagrangian dual for semi-infinite lin-
ear programs with countably many constraints, when we model them as an
instance of (ConLP) using Y = R

N. However, this is not necessarily true
for problems with countably many constraints when they are modeled as
(ConLP) with Y as a proper subspace of RN. In this section, we give an
affirmative answer to Question 2 via Example 3.5.

Two examples of proper subspaces of RN are ℓ∞, the space of all bounded
real sequences, and c, the space of all convergent sequences. Clearly, c ⊂
ℓ∞ ⊂ R

N. We extend the notion of positive linear functionals to these sub-
spaces. A linear functional ψ ∈ X ′ on any subspace X ⊆ R

N, is called a
positive linear functional on X if 〈v, ψ〉 ≥ 0 for all v ∈ R

N

+ ∩X .
Restricting to a subspace of RN allows for more positive linear functionals.

Define the limit functional ψ on c by

〈v, ψ〉 = lim
i→∞

v(i). (3.1)

Clearly, ψ is a positive linear functional over c. The next result shows that
ψ cannot be extended to a positive linear functional over all of RN.
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Lemma 3.1. The limit functional ψ defined in (3.1) cannot be extended to
a positive linear functional on R

N, i.e., it cannot be extended to an element
of (RN

+)
′ ⊆ (RN)′.

Proof. Assume ψ is an extension of ψ and that ψ is a positive linear functional
on R

N. We shall derive a contradiction. Let 1 ∈ R
N

+ ∩ c be the all ones

sequence. Then 〈1, ψ〉 = 〈1, ψ〉 = 1. Let v = (n)n∈N be the sequence
(1, 2, 3, . . .). Since v is in the nonnegative orthant 〈v, ψ〉 = α ≥ 0. Let
M = ⌈α⌉ + 1. Consider the sequence m = (0, 0, 0, ...,M,M,M, . . .) where
the first M − 1 entries are 0. Then v − m is in the nonnegative orthant,
but 〈v − m,ψ〉 = 〈v, ψ〉 − 〈m,ψ〉 = α − 〈m,ψ〉 = α − M < 0, and this
is a contradiction to the assumption that ψ is a positive linear functional.
Therefore ψ cannot be extended to a positive linear functional on R

N.

Although positive linear functionals on the space c cannot be extended
to (RN

+)
′, they can be extended to positive linear functionals on ℓ∞ as shown

in Lemma 3.3 below.
First, recall the notion of a core point. Given a vector space X and a

subset A ⊆ X , a point a ∈ A is called a core point of A if for every x ∈ X ,
there exists ǫ > 0 such that a+ λx ∈ A for all 0 ≤ λ ≤ ǫ. Some authors call
such a point an internal point (see for instance Definition 5.58 in [1]). The
following is a useful result for extending positive linear functionals.

Theorem 3.2 (Krein-Rutman theorem, see Holmes [9] p. 20). Let X be
a vector space ordered by �P where P is a pointed, convex cone in X .
Furthermore, let M be a linear subspace of X ordered by �P∩M . If P ∩M
contains a core point (with respect to X) of P , then any positive linear
functional on M admits a positive linear extension to all of X . In other
words, if ψ :M → R satisfies 〈m,ψ〉 ≥ 0 for all m ∈M ∩P , then there exists
a ψ : X → R with 〈x, ψ〉 ≥ 0 for all x ∈ P and 〈x, ψ〉 = 〈x, ψ〉 for all x ∈M .

Lemma 3.3. Every positive linear functional on c can be extended to a
positive linear functional on ℓ∞.

Proof. Let P = R
N

+∩ℓ∞ be the nonnegative cone in ℓ∞. Take the convergent
sequence 1 = (1, 1, . . . ). This convergent sequence is an element of P ∩ c.
Also, 1 is a core point of P with respect to ℓ∞. To see that 1 is a core point
of P , take any sequence (an)n∈N ∈ ℓ∞. Since (an) is in ℓ∞, supn |an| < ∞
and 1+ λ(an) ∈ P for all λ ∈ (0, 1/ supn |an|). Since P has a core point with

9



respect to ℓ∞, apply the Krein-Rutman theorem to extend positive linear
functionals defined on c to positive linear functionals defined on ℓ∞.

Corollary 3.4. The limit functional defined in (3.1) can be extended to a
positive linear functional over ℓ∞.

Example 3.5 below provides an affirmative answer to Question 2. This
example gives an (SILP) with I = N, where v(SILP) = v(DSILP(V)) and
v(SILP) > v(FDSILP) = v(DSILP), with the subspace V = c and V = ℓ∞.
The equality v(FDSILP) = v(DSILP) follows from Theorem 2.4.

Example 3.5. The (SILP) is

inf x1
x1 +

1
i2
x2 ≥ 2

i
, i ∈ N.

(3.2)

We show that (x1, x2) = (1
δ
, δ) is feasible to (3.2) for all δ > 0. For every

i ∈ N,
(i− δ)2 ≥ 0

⇒ i2 + δ2 − 2δi ≥ 0
⇒ i2 + δ2 ≥ 2δi

⇒ i2+δ2

δi2
≥ 2δi

δi2

⇒ 1
δ
+ δ

i2
≥ 2

i
.

Letting δ → ∞ gives feasible solutions whose objective values converge to an
objective value of 0.

Next observe that if (x̄1, x̄2) is any feasible solution, then x1 ≥ 0. Indeed,
taking i→ ∞ in (3.2) leaves x1 ≥ 0. Therefore the optimal primal objective
value is equal to 0.

The finite support dual (FDSILP) for this semi-infinite linear program
is infeasible. The objective coefficient of x2 is 0 and the coefficient of x2
is strictly positive in the constraints, and so the only possible dual element
satisfying the dual constraint corresponding to x2 is u = (0, 0, . . . , 0, . . . );
however, the objective coefficient of x1 is 1 and the dual constraint corre-
sponding to x1 is not satisfied for u = 0. This shows that using the finite
support dual leads to an infinite duality gap.

In this example, a1(i) = 1 for all i ∈ N so this sequence converges to 1.
Also, a2(i) = 1

i2
for all i ∈ N and this sequence converges to 0. Likewise,

b(i) = 2
i
for all i ∈ N so this sequence converges to 0. Therefore, this semi-

infinite linear program is an instance of (ConLP) with Y = c (or ℓ∞) ⊂ R
N.
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Now consider the algebraic Lagrangian dual (DSILP(V)) defined on the space
of positive linear functionals on c (or ℓ∞). The limit functional ψ defined
in (3.1) is 〈v, ψ〉 = limi→∞ v(i), for all v ∈ R

N

+ ∩ c. This is a positive lin-
ear functional on c (as is its extension to ℓ∞ by Corollary 3.4) since any
convergent sequence of nonnegative numbers has a nonnegative limit. As
observed earlier, a1(i) converges to 1 which is the coefficient of x1 in the
objective, and a2(i) converges to 0 which is the coefficient of x2 in the objec-
tive. Therefore ψ is a feasible dual solution. The dual objective value 〈b, ψ〉
is limi∈N b(i) = limi∈N

2
i
= 0. This is the optimal value of the primal and

therefore the duality gap is zero.
This example illustrates Lemma 3.1. If ψ could be extended to a positive

linear functional ψ on R
N, then ψ would be a feasible solution to (DSILP)

with objective function value zero implying a zero duality gap between (3.2)
and (DSILP). Since there is an infinite duality gap between (3.2) and its
finite support dual (FDSILP), this would contradict Theorem 2.4. ⊳
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Appendix A. Details on Remark 2.2

This short appendix contains ancillary material pertaining to Remark 2.2
and the unsubstantiated claim that R

N has no interior points in any linear
topology. This claim follows from Corollary 9.41 in [1] and the fact RN has no
order unit. An order unit e in a Riesz space X is a positive element where for
every vector x ∈ X there exists a λ > 0 such that |x| ≤ λe. See page 322 of [1]
for more details. To see that RN has no order unit, consider candidate vector
e = (e1, e2, . . . ). There are two cases to consider. Case 1: the components e
are bounded. Then there exists an M > 1 such that ei ≤ M for all i. Take

12



x = (M,M2, . . . ,Mn, . . . ). Then e is not an order unit since, for sufficiently
large n, there does not exist λ > 0 such that Mn ≤ λei for all i. Case
2: the components of e are unbounded. Then e contains a subsequence eik
where eik → ∞. Now consider x where xi = e2i for i = 1, 2, . . . . Setting
λ ≥ e2ik/eik = eik for all k is impossible since eik → ∞. Thus, e is not an
order unit since eik → ∞.
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