
ar
X

iv
:1

30
3.

60
71

v2
 [

cs
.D

S]
 2

4
Ja

n
20

14

A Fully Polynomial-Time Approximation Scheme for

Approximating a Sum of Random Variables ∗

Jian Li † Tianlin Shi ‡

Abstract

Given n independent integer-valued random variables X1, X2, ..., Xn and an integer C, we study the
fundamental problem of computing the probability that the sum X = X1+X2+...+Xn is at most C. We
assume that each random variable Xi is implicitly given by an oracle Oi, which given two input integers
n1, n2 returns the probability of n1 ≤ Xi ≤ n2. We give the first deterministic fully polynomial-time
approximation scheme (FPTAS) to estimate the probability up to a relative error of 1±ǫ. Our algorithm
is based on the technique for approximately counting knapsack solutions, developed in [Gopalan et al.
FOCS11].

1 Introduction

We study the following fundamental problem. The input consists of n independent (not necessarily identically

distributed) random integral variables X1, . . . , Xn and an integer C. Our task is to compute the following

probability value

F (C) = Pr
[n∑

i=1

Xi ≤ C
]

(1)

It is well known that computing F (C) is #P-hard (see e.g., [9]). The hardness of computing F (C) has

an essential impact in the area of stochastic optimization as many problems generalize and/or utilize this

basic problem in one way or another, thus inheriting the #P-hardness. Although we can sometimes use for

example the linearity of expectation to bypass the difficulty of computing F (C), more than often no such

simple trick is applicable, especially in the context of risk-aware stochastic optimization where people usually

pay more attention to the tail probability than the expectation.

Despite the importance of the problem, surprisingly, no approximation algorithm with provable multi-

plicative factor is known. We note that we can easily obtain an additive PRAS (polynomial-time randomized

approximation scheme) for this problem via the Monte-Carlo method: for each i ∈ {1, 2, ..., n}, generate K

independent samples X
(k)
i , k = 1, 2, ...,K, according to the distribution of Xi, and then use the empirical

average

F̃ (C) =
1

K

K∑

k=1

I

(n∑

i=1

X
(k)
i ≤ C

)

as the estimation of F (C), where I(·) is the indicator function. It is easy to see that F̃ (C) is an unbiased

estimator of F (C). By standard Chernoff bound, one can see that with K = poly(1/ǫ) samples, the estimate

is within an additive error ǫ from the true value with constant probability (see e.g., [14]). To get a reasonable

multiplicative approximation factor (say a constant close to 1), we need to set the additive error at the order

∗Institute for Interdisciplinary Information Sciences, Tsinghua University, China.
†Email: lijian83@mail.tsinghua.edu.cn
‡Email: stl501@gmail.com

1

http://arxiv.org/abs/1303.6071v2

of F (C). So the number of samples needs to be poly(1/F (C)), which can be exponentially large, when F (C)

is exponentially small 1.

Assumptions. Before presenting our main result, we need some notations and assumptions of the compu-

tation model. We assume that all random variables are discrete and the support of Xi, denoted as suppi,

is finite and consists of only integers. Without loss of generality, we can assume all Xis are nonnegative

(i.e., suppi ⊆ N) and 0 ∈ suppi for all i. To see why this is without loss of generality, simply consider the

equivalent problem of computing Pr[
∑n

i=1(Xi−minXi) ≤ C−
∑n

i=1 minXi], where minXi is the minimum

value in suppi. Under such an assumption, the problem is non-trivial only for C > 0. Moreover, we can

assume that suppi ∈ [0, C + 1] for all i since we can place all mass in [C + 1,∞) at the single point C + 1,

which does not affect the answer. The distribution of each random variable Xi is implicitly given by an

oracle Oi, which given two input value (n1, n2) returns the value Pr[n1 ≤ Xi ≤ n2] in constant time.

Our main result is a fully polynomial-time approximation scheme (FPTAS) for computing F (C). For ease

of notation, we use (1 ± ǫ)F (C) to denote the interval [(1 − ǫ)F (C), (1 + ǫ)F (C)]. Let ∆ =
∏

i Pr[Xi = 0].

Clearly ∆ is a lower bound on the solution. Recall that we say there is an FPTAS for the problem, if for

any positive constant ǫ > 0, there is an algorithm which can produce an estimate F̃ with F̃ ∈ (1 ± ǫ)F (C)

in poly(n, ǫ−1, logC, log 1
∆) time 2 (See e.g., [14]).

Theorem 1.1. We are given n independent nonnegative integer-valued random variables X1, . . . , Xn, a

positive integer C, and a constant ǫ > 0. Suppose that for all i ∈ {1, 2, ..., n}, suppi ⊆ [0, C+1], 0 ∈ suppi and

there is an oracle Oi, which, upon two input integers (n1, n2), returns the value Pr[n1 ≤ Xi ≤ n2] in constant

time. There is an FPTAS for estimating Pr[
∑n

i=1 Xi ≤ C] and the running time is O
(
n3

ǫ2
log(1

∆)2 logC
)
.

Remark 1. For simplicity of presentation, we assume in the above theorem a computation model in which

any real arithmetic can be performed with perfect accuracy in constant time and the probability values

returned by the oracle are reals, also with perfect accuracy. In Section 2.3, we show how to implement

our algorithm in a computation model where only bit operations are allowed and the oracles also return

numerical values with finite precision. We show that the bit complexity of the algorithm is still a (somewhat

larger) polynomial.

Remark 2. Note that the oracle assumption is weaker than assuming the explicit representations of the

distributions (i.e., listing the probability mass at every point). In fact, if the input is the explicit repre-

sentations of the distributions, we can preprocess the input in linear time so that each oracle call to Oi

can be simulated in O(log |suppi|) time. This can be done by computing the prefix sums Pr[Xi ≤ x] for all

x ∈ suppi in O(|suppi|) time. Then for each oracle call (n1, n2), we use binary search to find out the smallest

value x1 ∈ suppi that is no smaller than n1 and the largest value x2 ∈ suppi that is no larger than n2 in

O(log |suppi|) time. Therefore, Pr[n1 ≤ Xi ≤ n2] is the same as Pr[x1 ≤ Xi ≤ x2], which can be computed

from the prefix sums in constant time.

1.1 Related Work

There is a large body of work on estimating or upper/lower-bounding the distribution of the sum of indepen-

dent random variables. See e.g., [1, 18, 12, 3, 13]. Those works are based on analytic numerical methods (e.g.,

Edgeworth expansion, saddle point method) which either require specific families of distributions and/or do

not provide any provable multiplicative approximation guarantees.

1 In certain application domains such as risk analysis, small probabilities (often associated with catastrophic losses) can be
very important.

2 More precisely, such a running time is called weakly polynomial time since it is polynomial in the log of the numerical
values of the instance (or the number of bits required to encode those numerical values). On the contrary, a strongly polynomial
time for this problem would be a polynomial only in n and 1/ǫ.

2

Our problem is a generalization of the counting knapsack problem. For the counting knapsack problem,

Morris and Sinclair [15] obtained the first FPRAS (fully polynomial-time randomized approximation scheme)

based on the Markov Chain Monte-Carlo (MCMC) method. Dyer [4] provided a completely different FPRAS

based on dynamic programming. The first deterministic FPTAS is obtained by Gopalan et al.[7] (see also

the journal version [19]).

Our problem is also closely related to the threshold probability maximization problem (see a general

formulation in [11]). In this problem, we are given a ground set of items. Each feasible solution to the

problem is a subset of the elements satisfying some property (this includes problems such as shortest path,

minimum spanning tree, and minimum weight matching). Each element b is associated with a random weight

Xb. Our goal is to to find a feasible set S such that Pr[
∑

b∈S Xb ≤ C] is maximized, for a given threshold

C. There is a large body of literature on the threshold probability maximization problem, especially for

specific combinatorial problems and/or special distributions. For example, Nikolova, Kelner, Brand and

Mitzenmacher [17] studied the corresponding shortest path version for Gaussian, Poisson and exponential

distributions. Nikolova [16] extended this result to an FPTAS for any problem with Gaussian distributions,

if the deterministic version of the problem has a polynomial-time algorithm. The minimum spanning tree

version with Gaussian distributed edges has also been studied in [5]. For general discrete distributions, Li

and Deshpande [10] obtained an additive PTAS if the deterministic version of the problem can be solved

exactly in pseudopolynomial time. Very recently, Li and Yuan [11] further generalized this result to the class

of problems for which the multi-objective deterministic version admits a PTAS.

Our problem is also closely related to the fixed set version of the stochastic knapsack problem. In this

problem, we are given a knapsack of capacity C and a set of items with random sizes and profits. Their goal

is to find a set of items with maximum total profit subject to the constraint that the overflow probability is

at most a given parameter γ. Kleinberg, Rabani and Tardos [9] first considered the problem with Bernoulli-

type distributions and provided a polynomial-time O(log 1/γ)-approximation. Better results are known for

specific distributions, such as exponentially distributions [6], Gaussian distributions [8, 16]. For general

discrete distributions, bi-criteria additive PTASes 3 are known via different techniques [2, 10, 11].

2 Algorithm

Our algorithm is based on dynamic programming. In Section 2.1, we provide the recursion of the dynamic

program, which is largely based on the idea developed in [7, 19], with some necessary adaptations. However,

since the support of each random variable can be exponentially large, it is not immediately clear how the

recursion can be implemented efficiently given the oracles. We address this issue in Section 2.2. In Section 2.3,

we analyze the bit complexity of our algorithm.

2.1 The Dynamic Program

We first notice that Pr[
∑i

j=1 Xj ≤ C], for any i ∈ {1, 2, ..., n}, is a nondecreasing function of C. We consider

its inverse function τ(i, a) : {1, 2, ..., n} × R≥0 → N ∪ {±∞}, which is defined to

τ(i, a) =

min{C | C ≥ 0 and Pr[
∑i

j=1 Xj ≤ C] ≥ a}, 0 < a ≤ 1;

+∞, a > 1;

−∞, a = 0.

It is easy to see that τ(i, a) is nondecreasing in a. The following simple lemma is needed. We omit the proof,

which is straightforward.

3 The overflow probability constraint may be violated by an additive factor ǫ for any constant ǫ > 0.

3

Lemma 2.1. Both of the following statements hold true.

1. Pr
[∑n

i=1 Xi ≤ C
]
= max{a : τ(n, a) ≤ C}.

2. τ(i, a) = 0 for any i ∈ {1, 2, ..., n} and a ≤ ∆, where ∆ =
∏

i Pr[Xi = 0].

The following recursion is very important to us. For x ∈ suppi, we use pi(x) as a shorthand notation for

Pr[Xi = x].

Lemma 2.2. Let γi : suppi → R≥0 denote a function. The following recurrence holds:

τ(i, a) = min
γi

max
x∈suppi

{τ(i − 1, γi(x)) + x}, for any i ∈ {1, 2, ..., n} and a ≥ 0, (2)

where the minimum is taken among all functions γi such that

∑

x∈suppi

γi(x)pi(x) ≥ a. (3)

Intuitively, γi(x) represents the value Pr[
∑i−1

j=1 Xj ≤ τ(i, a) − x]. By enforcing (3), we make sure that

Pr[
i∑

j=1

Xj ≤ τ(i, a)] ≥ a so that the definition of τ(i, a) is met. The formal proof is as follows.

Proof. We first fix some 0 < a ≤ 1 and prove that for any γi : suppi → [0, 1], the quantity C′ :=

maxx∈suppi
{τ(i− 1, γi(x)) + x} ≥ τ(i, a). Due to the independence, we can see that

Pr
[i∑

j=1

Xj ≤ C′
]
=

∑

x∈suppi

pi(x) · Pr
[i−1∑

j=1

Xj ≤ C′ − x
]
. (4)

By the definition of C′, we know that C′ − x ≥ τ(i − 1, γi(x)) for all x ∈ suppi, and hence Pr[
∑i−1

j=1 Xj ≤

C′ − x] ≥ γi(x). This gives Pr
[∑i

j=1 Xj ≤ C′
]
≥

∑
x∈suppi

γi(x)pi(x) ≥ a. Therefore, we have C′ ≥ τ(i, a).

If a > 1, by (3) we know that γi(x
′) > 1 for some x′ ∈ suppi and therefore C′ ≥ τ(i − 1, γi(x

′)) = ∞. If

a = 0, τ(i, a) is defined to be −∞ and we trivially have C′ ≥ τ(i, a). In all above cases, we have C′ ≥ τ(i, a).

Now, we prove the reverse direction. In particular, we prove that there exists a choice of γi := γ⋆
i

such that C⋆ := maxx∈suppi
{τ(i − 1, γ⋆

i (x)) + x} ≤ τ(i, a). First assume that 0 < a ≤ 1. Let γ⋆
i (x) =

Pr
[∑i−1

j=1 Xj ≤ τ(i, a) − x
]
. It is easy to see that γ⋆

i satisfies (3), if we let C′ = τ(i, a) in (4) and use the

definition of τ(i, a) on the LHS. Therefore, τ(i − 1, γ⋆
i (x)) ≤ τ(i, a) − x for all x ∈ suppi, which leads to

maxx∈suppi
{τ(i − 1, γ⋆

i (x)) + x} ≤ τ(i, a). If a = 0, let γ⋆
i (x) = 0 for all x ∈ suppi. It is easy to see that

C⋆ ≤ τ(i, a) since C⋆ = −∞ by the definition of C⋆. If a > 1, τ(i, a) = +∞ and C⋆ ≤ τ(i, a) is also trivially

true. This completes the proof.

For ease of notation, we define function λi : suppi → R≥0 as λi(x) = γi(x)pi(x)/a. Hence, the recursion

in Lemma 2.2 can be rewritten as:

τ(i, a) = min
λi

max
x∈suppi

{τ(i− 1,
λi(x)

pi(x)
a) + x} subject to

∑

x∈suppi

λi(x) ≥ 1. (5)

Since the second argument a is a continuous variable, it is not clear how recursion (5) can be efficiently

evaluated. To overcome this issue, we discretize the above recursion as follows: Let

Q = 1 +
ǫ

n
.

4

Algorithm 1: The Dynamic Program for Computing (1)

1 Let Q = 1 + ǫ/n and s = ⌈logQ
1
∆⌉;

2 Query oracle O1 to obtain T (1, j) = τ(1, Q−j) for all j ∈ [s];
3 for i = 2→ n do

4 for j = 0→ s do

5 T (i, j)← minλi
maxx∈suppi

T (i− 1, j + ⌊logQ
pi(x)
λi(x)
⌋) + x, subject to

∑
x∈suppi

λi(x) ≥ 1.

6 j⋆ ← min{j : T (n, j) ≤ C}. Return F̃ (C) := Q−j⋆+1;

Note that Q is slightly larger than 1. Recall that ∆ =
∏

i Pr[Xi = 0], which is a trivial lower bound on

F (C). Let s = ⌈logQ
1
∆⌉ = O(n

ǫ
log 1

∆).

We define recursively the function T : {1, 2, ..., n}× {0, 1, 2, ..., s} → Z∪ {±∞} as follows: The base case

is defined as

T (1, j) = τ(1, Q−j), for all j ∈ [s]. (6)

Note that each τ(1, Q−j) can be computed with O(logC) calls to O1. For i ≥ 2 and j ∈ [s], define

T (i, j) = min
λi

max
x∈suppi

{
T
(
i− 1, j + ⌊logQ

pi(x)

λi(x)
⌋
)
+ x

}
subject to

∑

x∈suppi

λi(x) ≥ 1. (7)

To make analysis easier (mainly to avoid tedious case-by-case study near the boundary), we extend the

domain of T (i, j) to {1, 2, ..., n} × Z ∪ {+∞} such that for all i ∈ {1, 2, ..., n}, we define T (i, j) = 0 for

j > s and T (i, j) = +∞ for j < 0. Furthermore, we define T (i,+∞) = −∞. So if λi(x) = 0, T
(
i − 1, j +

⌊logQ(
pi(x)
λi(x)

)⌋
)

= T (i − 1,+∞) = −∞. Comparing (7) and (5), the similarity suggests that T (i, j) is an

approximate version of τ(i, Q−j). The next lemma formalizes this idea.

Lemma 2.3. For all i ∈ {1, 2, ..., n} and j ∈ Z ∪ {∞}, we have that

τ(i, Q−j) ≤ T (i, j) ≤ τ(i, Q−(j−i)).

Proof. We prove this by induction. The base case is trivially true by the definition of T (1, j), even for j < 0

and j > s. Now assume that the statement is true for i − 1 (i ≥ 2) and all j ∈ Z ∪ {+∞}. We prove it is

also true for i and all j ∈ Z ∪ {+∞}. By the induction hypothesis, we have that

T
(
i − 1,

⌊
j + logQ

pi(x)

λi(x)

⌋)
≤ τ

(
i− 1, Q

−(⌊j+logQ

pi(x)

λi(x)
⌋−i+1)

)
≤ τ

(
i− 1,

λi(x)

pi(x)
Q−(j−i)

)
and

T
(
i− 1,

⌊
j + logQ

pi(x)

λi(x)

⌋)
≥ τ

(
i− 1, Q

−⌊j+logQ

pi(x)

λi(x)
⌋
)
≥ τ

(
i− 1,

λi(x)

pi(x)
Q−j

)
.

Note that the above inequalities hold even j + logQ
pi(x)
λi(x)

is negative or larger than s, or λi(x) = 0. Taking

the maximum over x and the minimum over λi does not change the direction of the inequalities. Combining

the above inequalities with (5), we complete the proof.

With this lemma, we can approximate the recursion (5) by solving the recursion (7). The pseudocode

of the dynamic program is provided in Algorithm 1. Note that it is still not clear how to implement (7) in

polynomial time, as the number of possible functions λi can be infinite. We address this issue in the next

section. Assuming (7) can be implemented efficiently, we can show the output of the algorithm is a good

5

Algorithm 2: Efficient Implementation of Recursion (7)

1 Initially, let L = 0, R = n(C + 1);
2 while R > L do

3 T ← ⌊(L+R)/2⌋;

4 Pi(0)← Pr
[
Xi ∈ (T −∞, T − T (i− 1, 0)]

]
(via oracle Oi);

5 for m = 1, 2, . . . , s+ 1 do

6 Pi(m)← Pr
[
Xi ∈ (T − T (i− 1,m− 1), T − T (i− 1,m)]

]
(via oracle Oi);

7 Z =
∑s+1

m=0 Q
j+s+1−mPi(m);

8 if Z ≥ Qs+1 then

9 R ← T ;

10 else

11 L ← T + 1;

12 Return T (i, j) := L;

approximation of the true probability with the following lemma.

Lemma 2.4. The output F̃ (C) of Algorithm 1 is a (1± ǫ)-approximation of F (C).

Proof. From the choice of j⋆, we know that T (n, j⋆) ≤ C < T (n, j⋆ − 1). According to Lemma 2.3, we have

τ(n,Q−j⋆) ≤ C < τ(n,Qn−j⋆+1). Therefore, F (C) = Pr[
∑n

i=1 Xi ≤ C] ∈ [Q−j⋆ , Qn−j⋆+1]. By outputting

F̃ (C) = Q−j⋆+1, the approximation ratio can bounded as 1− ǫ ≤ Q−n ≤ F̃ (C)/F (C) ≤ Q ≤ 1 + ǫ.

2.2 An Efficient Implementation using Binary Search

In this subsection, we show how to implement the recursion (7) in polynomial time. Suppose we have

already computed T (i′, j′) for all i′ < i and 0 ≤ j′ ≤ s and we are trying to compute the value T (i, j).

Our approach is based on a binary search over the range of T (i, j). We maintain an interval [L,R] such

that T (i, j) ∈ [L,R] throughout the algorithm. In each iteration, we make a guess T = ⌊(L + R)/2⌋ and

decide whether T (i, j) ≤ T using the criterion in Lemma 2.5. It is not immediately clear how we can check

efficiently whether the criterion is met. We address this issue in Lemma 2.7. The pseudocode is provided in

Algorithm 2.

Lemma 2.5. Suppose we are computing T (i, j) and T is the current guess. We define that for all x ∈ suppi,

λ′
i(x) = max

{
z | z ∈ R≥0 and T

(
i− 1, j + ⌊logQ

pi(x)

z
⌋
)
+ x ≤ T

}
.

Then, T (i, j) ≤ T if and only if
∑

x∈suppi
λ′
i(x) ≥ 1.

Proof. Suppose
∑

x∈suppi
λ′
i(x) ≥ 1. This means that there exists a choice of λi := λ′

i such that

max
x∈suppi

{
T (i− 1, j + ⌊logQ

pi(x)

λi(x)
⌋) + x

}
≤ T ,

and therefore T (i, j) ≤ T by (7).

On the other hand, assume T (i, j) ≤ T . Suppose that T (i, j) is achieved by λi := λ⋆
i in (7). We know that

T (i− 1, j+ ⌊logQ
pi(x)
λ⋆
i
(x)⌋)+x ≤ T (i, j) ≤ T for any x ∈ suppi. By definition of λ′

i, we see that λ
⋆
i (x) ≤ λ′

i(x),

for all x ∈ suppi. Therefore,
∑

x∈suppi
λ′
i(x) ≥

∑
x∈suppi

λ⋆
i (x) ≥ 1.

6

From Lemma 2.5, we can see that if |suppi| is bounded by a polynomial, we can decide whether T (i, j) ≤ T

in polynomial time. However, |suppi| can be exponentially large. We resolve this issue by showing that∑
x∈suppi

λ′
i(x) can be computed using at most O(s) calls to Oi. For this purpose, we divide the support of

Xi into s+ 3 segments such that the sum of λ′
i(x) values over each segment can be computed efficiently. In

particular, we divide N into segments

Seg0 = (−∞, T − T (i− 1, 0)] ∩ N,

Segk = (T − T (i− 1, k − 1), T − T (i− 1, k)] ∩ N, for all k = 1, . . . , s+ 1,

Segs+2 = (T − T (i− 1, s+ 1),∞) ∩ N.

Let us first investigate the last segment.

Lemma 2.6. Suppose x ∈ Segs+2 and λ′
i(x) is defined as in Lemma 2.5. Then, we have that λ′

i(x) = 0.

Proof. First, recall that T (i− 1, s+ 1) = 0. For any x > T , the only possible nonnegative value z that can

make T
(
i− 1, j + ⌊logQ(

pi(x)
z

)⌋
)
+ x ≤ T is 0, since T (i− 1,+∞) = −∞.

For each other segment, λ′
i(x) can be computed using the following lemma.

Lemma 2.7. Suppose x ∈ Segm for some m ∈ [0, s + 1] and λ′
i(x) is defined as in Lemma 2.5. Then, we

have that

λ′
i(x) = Qj−mpi(x). (8)

Proof. Fix any x ∈ Segm for some m ∈ [0, s+ 1]. Let z > 0 be such that

j + logQ

(pi(x)
z

)
= m.

Now, we show λ′
i(x) = z. Since x ∈ Segm, we can see that T − x ∈ [T (i− 1,m), T (i− 1,m− 1)). Therefore,

we have that

T
(
i− 1, j + ⌊logQ

(pi(x)
z

)
⌋
)
= T (i− 1,m) ≤ T − x.

Now, we show any value z′ larger than z does not satisfy the above inequality. This is because T (i− 1, j +

⌊logQ

(
pi(x)
z′

)
⌋) is at least T (i− 1,m− 1) which is greater than T −x. Since z is the largest value that makes

the inequality true, we have λ′
i(x) = z.

As a result, it is sufficient to ask the Oi for the probability values Pi(m) =Pr[Xi ∈ Segm] and we can

compute
∑

x∈Segm
λ′
i(x) simply by ∑

x∈Segm

λ′
i(x) = Qj−mPi(m). (9)

Together with Lemma 2.5, (9) shows that the criterion T (i, j) ≤ T is equivalent to
∑s+1

m=0 Q
j−mPi(m) ≥ 1

. Multiplying Qs+1 on both sides, we derive Line 8 of Algorithm 2, which is used to decide the criterion

T (i, j) ≤ T .

Lemma 2.8. Suppose the oracle can answer each query in constant time. The optimization over all λi and

x in equation (7) can be done in time O
(
n
ǫ
log 1

∆ logC
)
, where ∆ =

∏
i Pr[Xi = 0].

Proof. The binary search takes logC iterations, while in each iteration we make at most O(s) oracle calls.

So the implementation of the recursion step runs in O(s logC) = O(n
ǫ
log 1

∆ logC) since s = O(n
ǫ
log 1

∆).

7

The number of states in the dynamic program is O(ns). Combined with Lemma 2.8, the total running

time of Algorithm 1, which calls Algorithm 2 as a subroutine, is O
(
n3

ǫ2
log(1

∆)2 logC
)
. This completes the

proof of Theorem 1.1.

2.3 The Bit Complexity of the Algorithm

Our results have been stated under the assumption that any real arithmetic operation has unit cost. Now

we consider the computation model where only bit operations are allowed. Moreover, the oracles also return

numerical values that are encoded in bits. To model this, we assume that each query to the oracle contains

an additional integer ℓ (called precision paramter), which specifies the number of bits the oracle should

return. Upon such a query, the oracle returns the first (i.e., the most significant) ℓ bits of the answer,

which is always between 0 and 1 4. Our goal is to show that a slightly modified algorithm still preserves a

(1± ǫ)-approximation, while the bit complexity is also poly(n, ǫ−1, logC, log 1
∆).

First, we use the oracle to figure out a close estimate of log 1/∆, since it determines s, which relates to

the table size of the dynamic problem. For each Oi, we repeatedly query the value Pr[Xi = 0] with precision

ℓ = 1, 2, 3, . . . until we get the first nonzero bit. It is easy to see that we stop with ℓi = ⌈− log Pr[Xi = 0]⌉+1

steps. It then suffices for our algorithm to use an upper bound of log 1/∆, which we choose to be
∑

i ℓi.

In the sequel, we run Algorithm 1 and Algorithm 2 as its subroutine with a slightly different value of

Q = 1+2−ℓq , where ℓq = ⌈log2
n
ǫ
⌉+2, so that Q ≤ 1+ ǫ

4n . Notice that L, R, T can be encoded in O(logC)

bits and with O(log n
ǫ
) bits, Q has exact representation. When we multiply a number of a bits and a number

of b bits, we use a+ b bits for the result so that no precision is lost. Hence, any Qj+s+1−m(0 ≤ m ≤ s+ 1)

used in the algorithm can be encoded in O(s log n
ǫ
) bits.

The problematic part is the answer Pi(m) returned by the oracle (in Steps 4 and 7 of Algorithm 2) is

of finite precision. Whenever Algorithm 2 attempts to make an oracle call, e.g., Pr[n1 ≤ Xi ≤ n2], we

set the precision parameter to be L, which we will determine later, and call Oi, which returns a truncated

probability P̂i(m) with a truncation error Pi(m) − P̂i(m) ∈ [0, 2−L+1). To distinguish from the original

version of Algorithm 2, we call the new version with finite precision the bit version. We use T̂ (i, j) to denote

the T (i, j) value obtained from the bit version of Algorithm 2. To account for this truncation error, we need

a modified version of Lemma 2.3:

Lemma 2.9. Let the precision parameter be L for each oracle call. For all i ∈ {1, 2, ..., n} and j ∈ Z∪{+∞},

we have

τ(i, Q−j) ≤ T̂ (i, j) ≤ τ(i, (1 + η)iQ−(j−i)), (10)

where η = (Qs+1 −Q−1)/(Q− 1) · 2−(L−1).

Proof. The statement is trivial for j > s and j < 0. For j ∈ [s], we prove the lemma by induction on i.

We first prove the induction step. The proof for the base case i = 1 is very similar and we present it at

the end. For i ≥ 2, suppose in the dynamic program, we have computed the T̂ (i− 1, j), ∀j ∈ Z. Assume the

statement of the lemma is true for i−1 (i ≥ 2) and j ∈ Z. Now, we prove it for i and j ∈ Z. Fix a particular

0 ≤ j ≤ s. Imagine that we run two copies of Algorithm 2 simultaneously: one copy A1 is the original

version with infinite precision, and the other A is the bit version 5. Clearly, the execution flows of both A1

and A would be the same in the beginning (i.e., L,R, T values are the same). If the execution flows are the

same throughout, the outputs of A1 and A are the same. Otherwise, we consider the snapshot when the

deviation first occurs and the condition in Line 8 returns different boolean values between A1 and A. Recall

that Z =
∑s+1

m=0 Q
j+s+1−mPi(m) and let Ẑ =

∑s+1
m=0 Q

j+s+1−mP̂i(m). It is easy to see that Ẑ < Qs+1 ≤ Z.

4 This can model the case where the oracle is given by a mathematical formula and there is a numerical algorithm that can
compute the answer to arbitrary precision.

5 We note that both A1 and A use T̂ (i− 1, j) values. So the output of A1 may not be the exact value of T (i, j).

8

So the only possibility is that A1 jumps to Line 9 and A goes to Line 11. Let T1 be output of A1. The

above argument shows that T̂ (i, j) ≥ T1.

Now we show T1 ≥ τ(i, Q−j). By (7) and Lemma 2.5 (with T (i− 1, ·) replaced by T̂ (i − 1, ·)), T1 is the

solution of the following optimization problem:

T1 = min
λi

max
x∈suppi

{
T̂ (i − 1, j + ⌊logQ(

pi(x)

λi(x)
)⌋) + x

}
, subject to

∑

x∈suppi

λi(x) ≥ 1,

Using the same proof as in Lemma 2.3, we can show that T1 ≥ τ(i, Q−j). Hence, we have one direction of

the lemma: T̂ (i, j) ≥ τ(i, Q−j).

The proof for the other direction is similar. This time, we run A simultaneously with a slightly modified

version A2 of Algorithm 2. Suppose that the oracles in A2 can return values with infinite precision. The

goal of A2 is to solve the following optimization problem:

T2 = min
λi

max
x∈suppi

{
T̂ (i − 1, j + ⌊logQ(

pi(x)

λi(x)
)⌋) + x

}
, subject to

∑

x∈suppi

λi(x) ≥ 1 + η. (11)

We immediately can see that T2 is an approximate value of τ̃ (i, Q−(j−i)), which is defined as

τ̃ (i, Q−(j−i)) = min
λi

max
x∈suppi

{
τ(i − 1,

λi(x)

pi(x)
Q−(j−i)) + x

}
, subject to

∑

x∈suppi

λi(x) ≥ 1 + η. (12)

Using the same argument as in Lemma 2.3, we can show that

T2 ≤ τ̃(i, (1 + η)i−1Q−(j−i)). (13)

Furthermore, comparing (12) with (5), we can see the connection between τ and τ̃ as follows:

τ̃(i, (1 + η)i−1Q−(j−i)) = τ(i, (1 + η)iQ−(j−i)). (14)

Using the same argument as in Section 2.2, the optimization problem (11) can be implemented by a binary

search procedure almost identical to Algorithm 2 except that A2 compares Z with (1 + η)Qs+1 in Line 8.

Notice that η has been chosen carefully such that the inequality Z ≥ (1 + η)Qs+1 implies Ẑ ≥ Qs+1. Using

a similar execution-flow analysis, we can see that the deviation occurs when Qs+1 ≤ Ẑ < Z < (1 + η)Qs+1

and consequently we have that T2 ≥ T̂ (i, j). By (13) and (14), we have that T̂2 ≤ τ(i, (1 + η)i−1Q−(j−i)).

Now we prove the base case i = 1. The proof is very similar to the induction step. Recall that in

Algorithm 1, we use binary search to compute the value T (1, j) exactly. The binary search maintains an

interval [L,R] such that T (1, j) ∈ [L,R] throughout. In each iteration, we make a guess T , compare it

with Q−j, and update L ← T + 1 if Pr[X1 ≤ T] < Q−j, or R ← T otherwise. In the bit version, Q−j

and Pr[X1 ≤ T] may not be exact. Nevertheless, we can still get approximation T̂ (1, j), which is T (1, j) of

finite precision using a slightly modified binary search program B. Denote the truncated probability from

the oracle O1 as P̂r[X1 ≤ T]. B follows the previous binary search scheme but replaces the decision rule

Pr[X1 ≤ T] < Q−j by Qj · P̂r[X1 ≤ T] < 1. We first show the output of B, T̂ (1, j) is at least τ(1, Q−j).

Imagine another copy of this binary search program B1 running simultaneously but with infinite precision.

Obviously, B1 computes the exact value T (1, j) = τ(1, Q−j). If the execution flows of B and B1 are the same

throughout, then the output would be the same: T̂ (1, j) = T (1, j). Otherwise, by considering the snapshot

when the deviation first occurs, i.e., Qj · P̂r[X1 ≤ T] < 1 ≤ Qj · P̂r[X1 ≤ T]. It is not hard to see that

T̂ (1, j) ≥ T (1, j) = τ(1, Q−j). Next, we show the upper bound by proving T̂ (1, j) ≤ τ(1, (1 + η)Q−j) ≤

9

τ(1, (1 + η)Q1−j). Imagine a third copy of this binary search program B2 running simultaneously, but with

the decision rule replaced by Qj · P̂r[X1 ≤ T] < 1 + η. By the choice of η, the same execution-flow analysis

gives that T̂ (1, j) ≤ τ(1, (1 + η)Q−j). This concludes the proof of the base case.

When all T̂ (n, j) values have been computed (for j ∈ [0, s]), the bit version of Algorithm 1 returns Q−j⋆+1

up to precision ℓans. The following lemma shows the returned F̃ (C) is an (1 ± ǫ)-approximation of F (C).

Lemma 2.10. By choosing Q = 1 + 2−lq ≤ 1 + ǫ
4n for ℓq = ⌈log2

n
ǫ
⌉ + 2, L ≥ log2

32n2Q
ǫ2

+ s + 1 and

ℓans = s+ log2
Q
ǫ
, the above modified algorithm can produce a (1± ǫ)-approximation of F (C).

Proof. According to Lemma 2.9, we have τ(n,Q−j⋆) ≤ C ≤ τ(n,Qn−j⋆+1(1 + η)n), and hence F (C) ∈

[Q−j⋆ , Qn−j⋆+1(1+ η)n]. On the other hand, the returned F̃ (C) by our bit version of the algorithm satisfies

F̃ (C) ∈ (Q−j⋆+1 − 2−ℓans+1, Q−j⋆+1]. By our choice of Q (or ℓq), L and ℓans, it is not hard to verify that

F̃ (C)/F (C) ∈ [1− ǫ, 1 + ǫ].

The required bit length L (the length of P̂i(m) values) is poly(n, ǫ−1, log 1
∆). So all numbers involved in

our algorithms can be encoded in poly(n, ǫ−1, logC, log 1
∆) bits, and the total number of arithmetic operations

(additions, multiplications, comparisons) is also poly(n, ǫ−1, logC, log 1
∆), we then conclude the overall bit

complexity is poly(n, ǫ−1, logC, log 1
∆).

Acknowledgements

We would like to thank Paul Tsui and the anonymous reviewer for their detailed comments, which helped us

to improve the presentation significantly. This work was supported in part by the National Basic Research

Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China

Grant 61202009, 61033001, 61061130540, 61073174.

References

[1] G. Bennett. Probability inequalities for the sum of independent random variables. Journal of the

American Statistical Association, 57(297):33–45, 1962.

[2] A. Bhalgat, A. Goel, and S. Khanna. Improved approximation results for stochastic knapsack problems.

In ACM-SIAM Symposium on Discrete algorithms, 2011.

[3] H. E. Daniels. Tail probability approximations. International Statistical Review/Revue Internationale

de Statistique, pages 37–48, 1987.

[4] M. Dyer. Approximate counting by dynamic programming. In ACM Symp. on Theory of Computing,

pages 693–699, 2003.

[5] S. Geetha and K. Nair. On stochastic spanning tree problem. Networks, 23(8):675–679, 1993.

[6] A. Goel and P. Indyk. Stochastic load balancing and related problems. In Annual Symp. on Foundations

of Computer Science, page 579, 1999.

[7] P. Gopalan, A. Klivans, R. Meka, D. Stefankovic, S. Vempala, and E. Vigoda. An FPTAS for# knapsack

and related counting problems. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual

Symposium on, pages 817–826. IEEE, 2011.

10

[8] V. Goyal and R. Ravi. Chance constrained knapsack problem with random item sizes. Operation

Research Letter, 2009.

[9] J. Kleinberg, Y. Rabani, and É. Tardos. Allocating bandwidth for bursty connections. In ACM Symp.

on Theory of Computing, page 673, 1997.

[10] J. Li and A. Deshpande. Maximizing expected utility for stochastic combinatorial optimization problems.

In Annual Symp. on Foundations of Computer Science, 2011.

[11] J. Li and W. Yuan. Stochastic combinatorial optimization via poisson approximation. In ACM Symp.

on Theory of Computing, 2013.

[12] R. Lugannani and S. Rice. Saddle point approximation for the distribution of the sum of independent

random variables. Advances in applied probability, pages 475–490, 1980.

[13] N. B. Mehta, J. Wu, A. F. Molisch, and J. Zhang. Approximating a sum of random variables with a

lognormal. Wireless Communications, IEEE Transactions on, 6(7):2690–2699, 2007.

[14] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and probabilistic

analysis. Cambridge University Press, 2005.

[15] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0-1 knapsack solutions.

SIAM journal on computing, 34(1):195–226, 2004.

[16] E. Nikolova. Approximation Algorithms for Reliable Stochastic Combinatorial Optimization. Interna-

tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages 338–

351, 2010.

[17] E. Nikolova, J. Kelner, M. Brand, and M. Mitzenmacher. Stochastic shortest paths via quasi-convex

maximization. In European Symposium on Algorithms, pages 552–563, 2006.

[18] V. V. Petrov. On the probabilities of large deviations for sums of independent random variables. Theory

of Probability & Its Applications, 10(2):287–298, 1965.

[19] D. Štefankovic, S. Vempala, and E. Vigoda. A deterministic polynomial-time approximation scheme for

counting knapsack solutions. SIAM Journal on Computing, 41(2):356–366, 2012.

11

	1 Introduction
	1.1 Related Work

	2 Algorithm
	2.1 The Dynamic Program
	2.2 An Efficient Implementation using Binary Search
	2.3 The Bit Complexity of the Algorithm

