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Abstract

Recently Schrijver’s open problem, whether the Chvátal-Gomory closure of an irrational
polytope is polyhedral was answered independently in the seminal works of Dadush et al.
[2011] and Dunkel and Schulz [2010]; the former even applies to general compact convex
sets. We present a very short, easily accessible proof.

1 Introduction

The Chvátal-Gomory procedure was the first cutting-plane procedure introduced (in Gomory
[1958, 1960, 1963], Chvátal [1973]) and has been studied thoroughly from a theoretical as well as
a practical point of view (see e.g., Chvátal et al. [1989], Caprara and Fischetti [1996], Bockmayr et al.
[1999], Letchford and Lodi [2002], Eisenbrand and Schulz [2003], Fischetti and Lodi [2007], Cornuéjols
[2008], Bonami et al. [2008]). Recall that the Chvátal-Gomory closure K′ of a polyhedron or a
compact convex set K ⊆ Rn is defined as

K′ :=
⋂

(c,δ)∈Zn×R,

K⊆{cx≤δ}

{cx ≤ ⌊δ⌋} ,

where we use {ax ≤ b} as a shorthand for {x | ax ≤ b}; for brevity we refer to it as CG closure
and to the defining inequalities as CG cuts. One of the fundamental questions in cutting-plane
theory is whether the closure arising from a cutting-plane procedure (i.e., adding all potential
cuts that can be derived from valid inequalities) is a polyhedron. Clearly, we add an infinite
number of cuts here and thus it is not clear a priori whether K′ is a polyhedron. However, for
the case where K is a rational polyhedron it is well-known that the CG closure is a rational
polyhedron again (see Schrijver [1980], Chvátal [1973]). As a natural consequence, in Schrijver
[1980] the question was raised whether the CG closure of an irrational polytope P is a poly-
tope. This important question was answered in the affirmative independently in the works by
Dunkel and Schulz [2010] and Dadush et al. [2011] (the latter established the even more gen-
eral case of arbitrarily compact convex set). The relevance of this result is many-fold, from the
convergence of adding cutting planes of the CG type to Mixed-Integer Nonlinear Programming
over compact convex sets to the theory of proof systems where we consider proofs of assertions
with infinitely many defining sentences.

∗Keywords and phrases: Chvátal–Gomory closure, polyhedrality, compactness, convex body
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Contribution

We provide a short proof of the more general result Dadush et al. [2011]. In contrast to Dadush et al.
[2011], we do not rely so much on convex analysis but take a rather direct topological approach
while maintaining the overall high-level strategy. Key is here a strengthened, quantitative ho-
mogeneity lemma (see Lemma 3) from which many required properties follow immediately.
Before, these had been established separately using different strategies. We believe that the
proposed proof lends itself to potential applications to many more classes of cutting planes.

The proof consists of three steps:

1. Continuity: Faces and implied cuts deform smoothly when perturbing the coefficients.
This is crucial for the actual finiteness argument via compactness, and is valid for in-
equalities in general. See Lemma 1.

2. Homogeneity for a procedure M: The cutting-plane closure M commutes with intersec-
tions with faces, i.e.,

M(K ∩ F) = M(K) ∩ F,

where F is a face-defining hyperplane of the convex body K. See Lemma 3.

Not only does homogeneity hold for many cutting-plane procedures M (such as the split
closure, the Lovász-Schrijver closures, Sherali-Adams hierarchies, and the Lift-and-Project
closure, see Pokutta and Schulz [2010]) in the case of rational polyhedra, but homogeneity
also allows a very clean, inductive approach to polyhedrality. See Theorem 7.

Moreover, it is also homogeneity that ensures that finitely many CG cuts suffice to restrict
the CG closure to a rational subspace of the affine space spanned by the convex set (which
is necessary for polyhedrality here). See Corollary 5.

3. Locality: Informally, every point x in the relative interior of a polytope P can be cut out by
a finite number of CG cuts.

This step is contained in the proof of Theorem 6.

From all those properties the hardest one to establish and the cornerstone of our proof is
the quantitative version of the homogeneity lemma in Section 3. In fact, for the proof we need
a generalization of a famous theorem due to Kronecker and Weyl provided in Lemma 2. Once
homogeneity is established, the conclusion of polyhedrality follows naturally in our framework
and it is actually very similar to the proof for rational polyhedra given in Schrijver [1980].

2 Preliminaries

In the following, we only consider exposed faces of convex sets and for the sake of brevity we
refer to them as faces. In other words, a face F of a compact convex set K is a subset of the form
F = K ∩ {πx = π0} for some supporting hyperplane πx = π0, i.e., K ⊆ {πx ≤ π0}, and there
exists x0 ∈ K with πx0 = π0; we will call the face F the π-face of K. In particular, F = K is
allowed if K is lower dimensional. Recall that a compact convex set is uniquely determined by
its exposed proper faces (i.e., exposed faces different from K). All facts that we mention without
pointers to the literature can be found in Schrijver [1998] and Barvinok [2002].

To formalize continuity of directions, we identify a direction with the unit vector pointing to
that direction, therefore for any non-zero vector π, let π̂ := π / ‖π‖. The next lemma shows that
compact π-faces change “upper semi-continuously” in the direction of π. In the following we
denote the dimension of the ambient space Rn by n and we use the shorthand [k] := {1, . . . , k}.
Let ∂K denote the relative boundary of a closed convex set K.

Lemma 1 (Continuity). Let K be a closed convex set in Rn. Let π be a non-zero vector, and let the
π-face F of K be compact. Then for every neighbourhood U of F there exists an ε > 0 such that whenever
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∥∥∥π̂′ − π̂

∥∥∥ < ε, the π′-face of K is a subset of U, i.e., all the maximizers of the function x 7→ π′x on K

lie in U.

Proof. Without loss of generality, we may assume that U is compact and convex. By assumption,
for some constant c, we have πx = c for all x ∈ F, and πx < c for all x ∈ K \ F, in particular for
all x ∈ ∂U ∩ K. As ∂U ∩ K is compact, actually πx < c1 for some c1 < c and all x ∈ ∂U ∩ K.

As π′x is continuous in π′ and x, and F and ∂U ∩ K are compact, for all π′ in a neighbour-
hood of π, we have π′x > c1 for all x ∈ F, but π′x < c1 for all x ∈ ∂U ∩ K. In particular, all
maximizers of x 7→ π′x on K lie in U. This is obvious if K ⊆ U. If K * U, then π′x is every-
where smaller on K \ U than on F: take arbitrary points x0 ∈ K \ U and x1 ∈ F. There is an
x2 ∈ ∂U ∩ K in the line segment [x0, x1]. As π′x2 < π′x1, we obtain π′x0 < π′x1. This finishes
the proof of the lemma.

Remark 1. If K is a polyhedron one can show more: the π′-face is contained in F. In particular,
there is no need for U. To see this we choose U to be a polytope in the proof. Then U ∩ K is
also a polytope, and x 7→ π′x is everywhere larger on the vertices of the π-face than on the
other vertices, when the direction of π′ is close to that of π. Hence the π′-face is contained in
the π-face, as claimed.

We will use a well-known approximation theorem due to Kronecker. We state a version
suitable for our needs, which we derive from Weyl’s criterion.

Lemma 2 ([Kronecker, 1884],[Weyl, 1916, Satz 3]). Let n, N0 ∈ N and π ∈ Rn with π 6= 0. Then
Zn +πZ>N0

contains a dense subset of a linear subspace V of Rn. In particular, Zn +πZ>N0
contains

points arbitrarily close to 0, i.e., for every ǫ > 0 there exists N > N0 and a ∈ Zn with ‖a − Nπ‖ < ǫ.

Proof. When the components of π together with 1 are linearly independent over Q, this is a
special case of Weyl’s criterion with V = Rn. We reduce the general case to this one.

First we define V. Let π1, . . . , πn denote the components of π. We can assume without loss
of generality that a linear basis of 1, π1, . . . , πn over Q is 1, π1, π2, . . . , πk.

Thus for j > k there are integers nj,i and nj together with a positive integer m such that

mπj = nj +
k

∑
i=1

nj,iπi, j > k.

We use these as the defining equations of V, i.e., V is defined by

mxj =
k

∑
i=1

nj,ixi, j > k.

Let e1, . . . , en denote the canonical basis of Zn. The following elements lie in V:

ẽi := mei +
n

∑
j=k+1

nj,iej, i < k,

π̃ := mπ −
n

∑
j=k+1

njej.

By Weyl’s criterion, Zk +(π1, . . . , πk)Z>N0
is dense in Rk, and hence also mZk +m(π1, . . . , πk)Z>N0

is dense in Rk. We reformulate this for V via the projection to the first k coordinates, which is
obviously an isomorphism between V and Rk: a dense subset of V is ∑

k
i=1 Zẽi + π̃Z>N0

, which
is a subset of Zn + πZ>N0

. This finishes the proof. (For k = 0 the argument above is overkill,
as π is rational and hence Zn + πZ>N0

contains 0.)
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3 Homogeneity

In this section we compare K′ with the CG closure F′ of a face F.

Lemma 3 (Homogeneity for compact faces). Let K ⊆ Rn be a closed convex set and let

F := K ∩ {πx = π0}

be a compact π-face of K for some π ∈ Rn and π0 ∈ R with K ⊆ {πx ≤ π0}. Further, assume that F
satisfies cx ≤ δ with c ∈ Zn (and hence F′ satisfies cx ≤ ⌊δ⌋). Then there are finitely many CG cuts of
K defining a polyhedron P satisfying (c + απ)x ≤ ⌊δ⌋+ απ0 for some α > 0.

Proof. Rescaling (π0, π) we may assume, without loss of generality, that π0 ∈ Z. By increasing
δ a little if necessary, we may assume that δ is not an integer. Note that a small increase of δ

does not change ⌊δ⌋. Let 0 < ε < δ − ⌊δ⌋ be a small positive number. Choose a small compact
neighbourhood U of F such that cx ≤ δ + ε for x ∈ U.

There is clearly an ε1 > 0 such that for all y ∈ Rn with ‖y‖ < ε1, we have |yx| < ε for all

x ∈ U. By Lemma 1, there exists an ε2 > 0 such that whenever
∥∥∥π̂′ − π̂

∥∥∥ < ε2, all maximizers of

the function x 7→ π′x on K lie in U. There is a large positive integer N such that for all positive

integer m ≥ N and a ∈ Zn with ‖a − mπ‖ < ε1 we have
∥∥∥ĉ + a − π̂

∥∥∥ =
∥∥∥ ĉ+a

m − π̂

∥∥∥ < ε2. In

particular, all maximizers of (c + a)x on K lie in U for all such m and a. All in all, for all positive
integer m ≥ N and a ∈ Zn with ‖a − mπ‖ < ε1, all maximizers of the function x 7→ (c + a)x
on K lie in U, and we have ‖(a − mπ)x‖ < ε for all x ∈ U.

Now we choose a finite collection of such pairs (m, a). By Lemma 2 the collection Zn −
Z≥Nπ contains a dense subset of a linear subspace V of Rn. Let v1, . . . , vk be the vertices of
a small simplex in V containing 0 in its relative interior, with ‖vi‖ < ε1 for all i. We choose
the simplex to be full dimensional in V, i.e., here k − 1 is the dimension of V. By slightly
perturbing the vi in V, the vertices remain in the ε1-ball, and 0 in the interior of the simplex. As
Zn −Z≥Nπ contain a dense subset of V, by a slight perturbation we can even move the vertices
inside Zn − Z≥Nπ, obtaining a new simplex with vertices ai − miπ, with 0 still contained in
the relative interior of the new simplex: i.e., there exist coefficients λi satisfying

∑
i∈[k]

λi(ai − miπ) = 0, where λ1, . . . , λk > 0 and ∑
i∈[k]

λi = 1 (1)

with some ai ∈ Zn, mi ∈ N, mi ≥ N satisfying ‖ai − miπ‖ < ε1.
As a consequence, for all x ∈ U ∩ K, one has

(c + ai)x = cx + miπx + (ai − miπ)x ≤ (δ + ε) + miπ0 + ε, (2)

which is also valid for all x ∈ K as (c + ai)x attains its maximum in U. Hence

(c + ai)x ≤ ⌊δ + miπ0 + 2ε⌋ = ⌊δ⌋+ miπ0

is a CG cut for K for i ∈ [k].
Let P be the polyhedron defined by these CG cuts. The convex combination of the CG cuts

with coefficients λi is valid for P, which is exactly the claimed inequality

(c + απ)x ≤ ⌊δ⌋+ απ0,

for P with α := ∑i∈[k] λimi > 0 as (1) can be rewritten to

∑
i∈[k]

λi(c + ai) = c + ∑
i∈[k]

λimi

︸ ︷︷ ︸
α

π.
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Apart from establishing the basis for the later induction, the main advantage of Lemma 3
is that many important properties of the CG closure follow as simple corollaries.

Corollary 4. Let K ⊆ Rn be a compact convex set. Then K′ ⊆ K and we have K′ ∩ F = F′ for every
face F of K.

Proof. Applying Lemma 3 to c = 0 and δ = 0, we obtain that K′ satisfies every inequality
πx ≤ π0 satisfied by K.

For a face F, Lemma 3 implies that K′ ∩ F satisfies the CG cuts defining F′, hence K′ ∩ F ⊆ F′.
The inclusion in the other direction F′ ⊆ K′ ∩ F is obvious.

Remark 2. If one merely wants to establish K′ ∩ F ⊆ (K ∩ F)′ and one is not interested in the
finiteness statement of Lemma 3 then it suffices to consider a single vector c + a1 in the proof
of Lemma 3 instead of a finite family. From (2) the proof can then be concluded as follows: For
every x ∈ K′ ∩ F

cx = (c + a1)x + (m1π − a1)x − m1π0 ≤ ⌊δ⌋+ ε

for every ε > 0 small enough. Thus cx ≤ ⌊δ⌋ is valid for K′ ∩ F.
Also note that K′ ⊆ K alternatively follows with [Dey and Pokutta, 2011, Lemma 2] (see

Dadush et al. [2010] for a similar result).

We further obtain

Corollary 5. Let K be a compact convex set. Then finitely many CG cuts of K define a polyhedron in a
rational affine subspace V with V ⊆ aff(K).

Proof. The affine subspace aff(K) is defined by finitely many inequalities aix ≤ bi with i ∈ [ℓ]
for some ℓ ∈ N. These are consequences of finitely many CG cuts via Lemma 3 with π = ai,
π0 = bi and c = 0, δ = 0. Therefore the polyhedron defined by these CG cuts spans a rational
affine subspace V of aff(K).

4 The CG closure of a compact convex set

We will now prove the main theorem:

Theorem 6. Let K be a compact convex set. Then K′ is a rational polytope defined by finitely many CG
cuts of K.

The proof will proceed via induction on the dimension of K using the following step lemma.

Lemma 7. Let K be a compact convex set. Let us assume that for every proper face F of K, the CG
closure F′ is defined by finitely many CG cuts of F (i.e., Theorem 6 holds for F). Then there is a polytope
P defined by finitely many CG cuts of K, which is contained in K and P ∩ ∂K = K′ ∩ ∂K.

Proof. For all unit vectors π in the lineality space of aff(K), let πx ≤ π0 define the associated
supporting hyperplane of K. Now Fπ = K ∩ {πx = π0} is a proper face, the π-face of K, and
hence F′

π is defined by finitely many CG cuts of Fπ by our assumption. By Lemma 3 there are
finitely many CG cuts of K defining a polyhedron Pπ satisfying πx ≤ π0 and Pπ ∩{πx = π0} =
F′

π . For F′
π 6= ∅ this means exactly that the π-face of Pπ is F′

π. By adding finitely many CG cuts,
we may assume that Pπ is a polytope.

We claim that for vectors π′ in a neighbourhood Uπ of π, the polytope Pπ still satisfies
π′x ≤ π′

0 and Pπ ∩ {π′x = π′
0} = F′

π′ . This is immediate if F′
π = ∅, as Fπ′ is disjoint from Pπ

by Lemma 1. If F′
π 6= ∅, let FPπ ,π′ denote the π′-face of Pπ. The inequality π′x ≤ π′

0 is satisfied
by Pπ as FPπ ,π′ is also the π′-face of F′

π. If FPπ ,π′ is not contained in the π′-face Fπ′ of K, then Pπ

satisfies π′x < π′
0 and F′

π′ = ∅. However, if FPπ ,π′ is contained in the π′-face Fπ′ , then clearly
F′

π′ = FPπ ,π′ = Pπ ∩ {π′x = π′
0}, proving the claim.
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We obtain an open cover of the unit sphere of aff(K) with neighborhoods Uπ such that for
each π′ ∈ Uπ we have Pπ ∩ {π′x = π′

0} = F′
π′ and π′x ≤ π′

0 for all x ∈ Pπ. Since the unit
sphere is compact, it follows by choosing a finite subcover that finitely many CG cuts define a
polytope Q with Q ∩ {πx = π0} = F′

π and πx ≤ π0 for all x ∈ Q.
By Corollary 5, by adding finitely many cuts we obtain a polytope P in a rational affine

subspace of aff(K), which is contained in Q. In particular, it lies in K and P∩ ∂K = K′ ∩ ∂K.

Finally, we are ready to prove the main theorem.

Proof of Theorem 6. The proof proceeds via induction on the dimension of K. By the induction
hypothesis, the Theorem holds for proper faces of K. From Lemma 7 we know that finitely
many CG cuts define a polytope P in K with P∩ ∂K = K′ ∩ ∂K. The polytope P spans a rational
affine subspace V of aff(K).

Let D denote the orthogonal projection of Zn onto the lineality space W of V. As W is
rational, the orthogonal projection D is a lattice. We claim that there are only finitely many
d ∈ D with a preimage c ∈ Zn, for which a CG cut cx ≤ ⌊δ⌋ cuts out something from P i.e., at
least one vertex v of P.

As vertices on the boundary of K belong to K′, these cannot be cut out. Therefore v has
to be contained in the relative interior of K and so does a small ball U in V around v. Let r
denote the radius of U. Now whenever d ∈ D is too long, i.e., ‖d‖ ≥ 1/r, we have maxx∈K cx ≥
maxx∈U cx ≥ cv + 1 as x − v ∈ W and so cx − cv = dx − dv. Hence cx ≤ ⌊maxx∈K cx⌋ cannot
cut off v. As there are only a finite number of vertices v of P, there is a global upper bound on
the length of the d which could cut out a vertex in the relative interior of K. As D is discrete,
there are only finitely many such vectors d, and adding these CG cuts to P we obtain K′.

Actually, for every d we need to add only one cut, thus defining K′ by finitely many CG cuts,
as claimed. To prove this, we consider all the CG cuts cx ≤ ⌊δ⌋ where c is a preimage of a fixed
d ∈ D. We claim that unless P = ∅ (when P = K′ and the theorem holds), there is a deepest
cut among these.This will be the only cut we need to add to P for the vector d.

To prove the last claim, let x0 be a rational point of V. Restricted to V, every CG cut cx ≤ ⌊δ⌋
can be rewritten to dx ≤ ⌊δ⌋ − (c − d)x0. As ⌊δ⌋ is an integer, c − d is rational with bounded
denominator (as D is discrete), and x0 is rational, therefore the right-hand side can take only a
discrete set of values, and dx is a lower bound on the set of values for every x ∈ P. Therefore
there is a cut with ⌊δ⌋ − (c − d)x0 minimal, which is obviously a deepest cut.
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