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Abstract

Fluid models have become an important tool for the study of many-server queues with

general service and patience time distributions. The equilibrium state of a fluid model has been

revealed by Whitt (2006) and shown to yield reasonable approximations to the steady state of

the original stochastic systems. However, it remains an open question whether the solution to

a fluid model converges to the equilibrium state and under what condition. We show in this

paper that the convergence holds under a mild condition. Our method builds on the framework

of measure-valued processes developed in Zhang (2013), which keeps track of the remaining

patience and service times.

Key words and phrases: many-server queue, abandonment, fluid model, equilibrium state, con-

vergence

1 Introduction

In this paper, we analyze the asymptotic behavior of fluid models for many-server queues with

abandonment. We allow both the service time and patience time distributions to be general. To

the best of our knowledge, Whitt (2006) is the earliest to propose a fluid model for many-server

queues with generally distributed service and patience times. In Whitt (2006), the equilibrium

state for a fluid model is characterized and extensive simulations show that the equilibrium state of

the fluid model yields reasonably good approximations to the original stochastic system in steady

state.

The challenge in studying many-server queues, especially when the service time is generally

distributed, is that the status of the server pool plays an important role in the dynamics. However,

describing the status itself is quite complicated. There have been two streams of work providing

different modeling approaches. Kang and Ramanan (2010), which is based on Kaspi and Ramanan

(2011) for many-server queues without abandonment, modeled the status of the server pool by

keeping track of the “age” (the amount of time a customer has been in service). Alternatively,

Zhang (2013) modeled the status of the server pool by tracking each customer’s “residual” (the

remaining service time). The fluid model proposed in Kang and Ramanan (2010) is too complicated
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to be analyzed. Even the existence and uniqueness of the fluid model solution is proved using heavy

traffic approximation. This paper thus builds on the second approach instead.

Both Kang and Ramanan (2010) and Zhang (2013) established the fluid model as the limit of

fluid-scaled stochastic processes underlying many-server queues (in Skorohod J1 topology as the

size of the system goes to infinity). However, the analysis of the fluid model itself remains open.

Whitt (2006), Kang and Ramanan (2010) and Zhang (2013) have all been unable to show that the

fluid model converges to the equilibrium states. Such a convergence was proved by Whitt (2004)

for a many-server fluid model with exponentially distributed service and patience times. Taking

advantage of the exponential distribution, the fluid model reduces to a one-dimensional ordinary

differential equation (ODE).

In general, proving convergence to the equilibrium states for fluid models is intrinsically dif-

ficult, even though the fluid models are just deterministic dynamic systems. Bramson (1996a,b)

used entropy functions to prove convergence to the equilibrium states for fluid models of single-

server queueing networks. Their fluid models are characterized by a set of ODEs plus some policy

constraints. The challenge in these works mainly comes from the routing in the general network

structure. The idea of constructing the entropy functions is based on the Kullback-Leibler dis-

tance. Zhang et al. (2009) studied the fluid model for the limited processor sharing queue. The

fluid model is essentially proved to be equivalent to an equation involving convolution with the

service time distribution. Convergence of this fluid model is established based on careful analysis

of the convolution equation and application of the renewal theorem. Part of the proving technique

builds on Puha et al. (2006), which studied the fluid model for overloaded processor sharing queues.

The current work can be viewed as a sequel to Zhang (2013). We use the same definition for

the fluid model, and even the same set of notations for easy connection. The modeling is close to

that in Zhang et al. (2009) but the method is significantly different due to customer abandonment

(which does not appear in Zhang et al. (2009)) and intrinsic difficulties in many-server models.

Puhalskii and Reed (2010) offered a nice treatment for the fluid model of the many-server queue

without abandonment. Though the main focus of that paper is not the fluid analysis, the elegant

treatment of the fluid model helps to relax the assumption on initial customers made in Reed

(2009). Abandonment, especially with a general patience time distribution, imposes significant

challenges. A virtual buffer, which holds all the customers who have arrived but not yet scheduled

to receive service according to the FCFS policy, is constructed to study abandonment in Zhang

(2013). The idea is to keep some abandoned customers in the virtual buffer for tracking purposes.

This paper adoptes the same idea. Our fluid model can be shown to be equivalent to the one in

Puhalskii and Reed (2010) when patience time becomes infinite (no abandonment).

We hope the analytical tools we develop in this paper can pave the way for studying more

complicated many-server models such as the multiple customer class V-model studied in Atar et al.

(2010). The analysis of any multi-class model will surely be more difficult, since the policy needs to

be carefully modeled. This is out of the scope of the current paper. Having a better understanding

of the basic model is a necessary step for embarking on more complicated models.

The rest of the paper is organized as follows. Section 2 introduces the fluid model with as-

sumptions on the service and patience time distributions. Section 3 defines the equilibrium state

and presents the main convergence result. A preliminary analysis together with some intuitions are
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provided in Section 4. Section 5 proves the main theorem based on several auxiliary tools provided

in Appendix A. Section 6 concludes this paper.

2 Fluid Models of Many-server Queues

Let R denote the set of real numbers and R+ = [0,∞). For a, b ∈ R, write a+ for the positive part

of a and a ∧ b for the minimum. Denote Cx = (x,∞) and F c(x) = 1 − F (x) for any distribution

function. At time t, let R̄(t)(Cx) denote the amount of fluid in the virtual buffer with remaining

patience time larger than x. Since the virtual buffer also holds abandoned customers who have

negative remaining patience times, the testing parameter x is allowed to be both positive and

negative for the measure R̄(t). Introduce R̄(t) = R̄(t)(R), the total fluid content in the virtual

buffer. Denote by λ the arrival rate. So at time t, the earliest arrived fluid content in the virtual

buffer arrives at time t − R̄(t)/λ. To find out the status of the virtual buffer at time t, we take

integral from t− R̄(t)/λ to t. If an infinitesimal amount of fluid content λds arrives at time s, only

a fraction F c(x+ t− s) of it has remaining patience time larger than x at time t since t− s amount

of time has been spent waiting in queue. This yields the equation (2.2). Please see Section 2 of

Zhang (2013) for a more detailed discussion on the virtual buffer. Let Z̄(t)(Cx) denote the amount

of fluid in the server pool with remaining service time larger than x at time t. Unlike the virtual

buffer, a customer leaves the system once his remaining service time hits 0. So we restrict the

testing parameter x ∈ R+ for the measure Z̄(t). Let

B̄(t) = λt− R̄(t). (2.1)

The physical intuition for B̄ is that B̄(t)− B̄(s) represents the amount of fluid in the virtual buffer

that could have entered service during time interval (s, t]. It should be pointed out that not all of it

will actually enter the server pool. At time s, an infinitesimal amount dB̄(s) is scheduled to enter

service after waiting in the virtual buffer for R̄(s)
λ

. Thus, a fraction F
(

R̄(s)
λ

)

has actually abandoned

queue by time s. Only the rest makes it to the service. This contributes to the term F c
(

R̄(s)
λ

)

in

(2.3). The following fluid dynamic equations characterize how the fluid content (R̄(t), Z̄(t)) evolves

over time. For all t ≥ 0,

R̄(t)(Cx) = λ

∫ t

t−
R̄(t)
λ

F c(x+ t− s)ds, x ∈ R, (2.2)

Z̄(t)(Cx) = Z̄(0)(Cx+t) +

∫ t

0
F c

(

R̄(s)

λ

)

Gc(x+ t− s)dB̄(s), x ∈ R+, (2.3)

where we assume the initial state Z̄(0)(Cx) is non-increasing and will converge to 0 as x → ∞.

Introduce Z̄(t) = Z̄(t)(C0), the fluid content in service; and Q̄(t) = R̄(t)(C0), the fluid queue

length. Let Z̄(t) + Q̄(t) = X̄(t) denote the total amount of fluid in the physical system. The

following non-idling constraints must be valid at any time t ≥ 0,

Q̄(t) = (X̄(t)− 1)+, (2.4)

Z̄(t) = X̄(t) ∧ 1. (2.5)
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Essentially, the fluid dynamic equations (2.2)–(2.3) and non-idling constraints (2.4)–(2.5) de-

scribe the measure-valued process (R̄, Z̄), if we regard the real-valued processes Q̄, R̄, Z̄, B̄ as

notations derived from the measure-valued process. Let (λ, F,G) denote the fluid model defined

by (2.2)–(2.5). The initial condition (R̄(0), Z̄(0)) is said to be valid if it satisfies the equations

(2.2)–(2.5) at time t = 0.

Throughout this paper, we make the following assumptions:

Assumption 1. Assume the service time distribution G(·) is continuous with finite mean 1/µ; and

the patience time distribution F (·) is Lipschitz continuous.

According to Theorem 3.1 in Zhang (2013), under Assumption 1, there exists a unique solution

to the fluid model (λ, F,G) for any valid initial condition (R̄(0), Z̄(0)). The theorem justifies the

definition of the fluid model and provides a foundation to study the fluid model further. Theorem 3.3

in Zhang (2013) also shows that the fluid model solution serves as the fluid limit of the many-server

queueing models.

3 Convergence to Equilibrium States

A key property of the fluid model is that it has an equilibrium state. An equilibrium state is

defined intuitively as the state from which the fluid model solution starts and remains. More

precisely, (R̄∞, Z̄∞) is an equilibrium state of the fluid model (λ, F,G) if the solution to the fluid

model with a valid initial condition (R̄∞, Z̄∞) satisfies

(R̄(t), Z̄(t)) = (R̄∞, Z̄∞), for all t ≥ 0.

The equilibrium state is characterized in Theorem 3.2 in Zhang (2013). The state (R̄∞, Z̄∞) is an

equilibrium state of the fluid model (λ, F,G) if and only if it satisfies

R̄∞(Cx) = λ

∫ ω

0
F c(x+ s)ds, x ∈ R, (3.1)

Z̄∞(Cx) = min (ρ, 1) [1−Ge(x)], x ∈ R+, (3.2)

where ρ = λ/µ is the traffic intensity, w is a solution to the equation

F (ω) = max

(

ρ− 1

ρ
, 0

)

, (3.3)

and Ge(·) is the associated equilibrium distribution of G(·) and is defined by

Ge(x) = µ

∫ x

0
Gc(y)dy, for all x ≥ 0. (3.4)

If equation (3.3) has multiple solutions, then there will be multiple equilibria (any solution w

corresponds to an equilibrium). If the equation has a unique solution (for example when F (·) is

strictly increasing), then the equilibrium state is unique.

The quantity w is interpreted as the virtual waiting time for an arriving customer. Roughly,

in the equilibrium state, if a customer’s patience time exceeds w, he will not abandon queue. This
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implies that the fraction of abandonment is F (ω), which is equal to (ρ − 1)+/ρ. From (3.1), it is

easy to see that the fluid content in the virtual buffer is

R̄∞ = R̄∞(R) = λω,

which is consistent with Little’s law. From (3.2), the fluid content in the server pool is

Z̄∞ = Z̄∞(C0) = min(ρ, 1).

If ρ > 1, then all servers will be busy, whereas if ρ < 1, there will be no abandonment (on the fluid

scale) and the fraction of busy servers will be ρ. These observations and interpretations were first

made by Whitt (2006), where approximation formulas based on a conjectured fluid model were also

given, and were compared with extensive simulation results. The approximation formulas derived

from our fluid model is consistent with those in Whitt (2006).

Theorem 1. Under Assumption 1, for any valid initial condition (R̄(0), Z̄(0)) if

lim
x→∞

Z̄(0)(Cx) = 0, (3.5)

then the fluid model solution converges to

lim
t→∞

(

R̄(t), Z̄(t)
)

=
(

R̄∞, Z̄∞

)

.

Note that the condition (3.5) is mild. We do not even require the initial remaining workload in

the server
∫∞

0 Z̄(0)(Cx)dx to be finite.

4 Preliminary Analysis

We now provide a preliminary analysis of the fluid model. Introduce two new functions

Fd(x) =

∫ x

0
(1− F (y))dy, (4.1)

H(x) =

{

F c
(

F−1
d

(

x
λ

))

, if 0 ≤ x < λNF ,

0, if x ≥ λNF ,
(4.2)

where NF is the mean of the patience time, i.e., NF =
∫∞

0 [1 − F (y)]dy. Note that scaling Fd(·)

using NF yields the equilibrium distribution of F (·). In this paper, we do not assume that patience

time has a finite mean. Thus, NF can be either finite or infinite. In Zhang (2013), the following

key equation is derived from the fluid equations (2.2)–(2.5),

X̄(t) = Z̄(0)(Ct)+ Q̄(0)Gc(t)+
λ

µ

∫ t

0
H
(

(X̄(t− s)− 1)+
)

dGe(s)+

∫ t

0
(X̄(t−s)−1)+dG(s). (4.3)

This equation serves as the key to obtaining the existence and uniqueness of the fluid model solution.

Again, it will play an important role in establishing the convergence to equilibrium states in this

paper.
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To facilitate understanding as well as for technical proofs, we introduce an auxiliary process

Ā(t) =

∫ t

0
F c

(

R̄(s)

λ

)

dB̄(s). (4.4)

According to the fluid dynamic equation (2.2),

R̄(t)(Cx) = λ

∫
R̄(t)
λ

0
F c(x+ s)ds. (4.5)

Plugging x = 0 into the above equation gives the fluid queue length

Q̄(t) = λ

∫ t

t−
R̄(t)
λ

F c(t− s)ds = λ

∫
R̄(t)
λ

0
F c(s)ds. (4.6)

Utilizing (2.1), (4.2) and (4.6), the auxiliary process can be written as

Ā(t) = λ

∫ t

0
H(Q̄(s))ds − Q̄(t) + Q̄(0). (4.7)

It follows from Lemma A.3 in Zhang (2013) that Ā(t) is non-decreasing in t. On the other side, if

we use the fluid dynamic equation (2.3), then

Z̄(t)(Cx) = Z̄(0)(Cx+t) +

∫ t

0
Gc(x+ t− s)dĀ(s), (4.8)

= Z̄(0)(Cx+t) +Gc(x)Ā(t)−

∫ t

0
Ā(t− s)dG(x+ s), (4.9)

where the second equality uses integration by parts. Plugging x = 0 into (4.9) yields the relation

between Ā and Z̄

Ā(t) = Z̄(t)− Z̄(0)(Ct) +

∫ t

0
Ā(t− s)dG(s). (4.10)

The solution to the above renewal equation is

Ā(t) =
(

Z̄(t)− Z̄(0)(Ct)
)

∗ UG(t), (4.11)

where UG(t) =
∑∞

n=0 G
n∗(t) and Gn∗(t) is the n-fold convolution of G(t) with itself. The nice thing

about the process Ā is that it connects to the process Q̄ via the integral equation (4.7) and connects

to the process Z̄ via the convolution equation (4.10).

Intuition. The auxiliary process Ā has an intuitive explanation. It can be regarded as the “flow”

into the server pool. According to (2.1), the fluid content in the virtual buffer at time t is

R̄(t) = R̄(0) + λt− [B̄(t)− B̄(0)].

So B̄(t) − B̄(0) can be understood as the “flow” that has left the virtual buffer by time t. From

(4.4), we see that the flow Ā is just a part of the flow B̄(t) − B̄(0). We depict all the “flows” in

Figure 4.1 for the many-server queueing model. Let L̄2(t) = B̄(t) − B̄(0) − Ā(t) be the difference

between the aforementioned two flows. Note that L̄2 is not the fluid abandonment process since
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part of the fluid L̄1(t) = R̄(t) − Q̄(t) in the virtual buffer has already “abandoned” the system

(remaining patience time being less than or equal to zero). So the cumulative amount of fluid that

has abandoned the system by time t is

L̄(t) = L̄1(t) + L̄2(t).

We can also write the fluid service completion process as

S̄(t) = Z̄(0)((0, t]) +

∫ t

0
G(t− s)dĀ(s). (4.12)

By plugging x = 0 into (4.9), one can easily verify that the balance equation

Z̄(t) = Z̄(0) + Ā(t)− S̄(t)

holds. Neither the abandonment process nor the service completion process is needed in the proof

of convergence. The characterization is given for completeness and potential future applications.

λt

L̄2(t)

B̄(t)−B̄(0) Ā(t) S̄(t)

L̄1(t)

Figure 4.1: Flow Diagram of the Many-server Queue

5 Proof of the Convergence

Using the three auxiliary tools (Lemmas 1–3) given in the appendix, we show the convergence of

the measure-valued fluid model solution to equilibrium state. The essential step is to show the

convergence of the total amount of fluid X̄(t) to some limit, which is also of independent interest.

Proposition 1. Under Assumption 1, for any valid initial condition (R̄(0), Z̄(0)), the fluid model

solution (R̄(t), Z̄(t)) satisfies

lim
t→∞

X̄(t) = min(ρ, 1) + λ

∫ ω

0
F c(x)dx,

where ω is given in (3.3).

Proof. The proof is divided into three cases, the underloaded case (λ < µ), the critically loaded

case (λ = µ) and the overloaded case (λ > µ).
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Underloaded. If λ < µ, we just need to show that

lim
t→∞

X̄(t) =
λ

µ
. (5.1)

By (2.4) and (4.3) we have,

Q̄(t) = −Z̄(t) + Z̄(0)(Ct) + Q̄(0)Gc(t) +
λ

µ

∫ t

0
H(Q̄(t− s))dGe(s) +

∫ t

0
Q̄(t− s)dG(s).

Define

K̄(t) = −Z̄(t) + Z̄(0)(Ct) + Q̄(0)Gc(t) +
λ

µ

∫ t

0
H(Q̄(t− s))dGe(s), (5.2)

then

Q̄(t) = K̄(t) +

∫ t

0
Q̄(t− s)dG(s). (5.3)

So

Q̄(t) = K̄(t) ∗ UG(t) =

∫ t

0
K̄(t− s)dUG(s). (5.4)

Consider the following two cases:

If Q̄(t) = 0, then by (5.3),

K̄(t) = Q̄(t)−

∫ t

0
Q̄(t− s)dG(s) = 0−

∫ t

0
Q̄(t− s)dG(s) ≤ 0.

If Q̄(t) > 0, then Z̄(t) = 1 due to non-idling constraints. Since λ < µ and H(·) ≤ 1, we can pick

δ = (1− λ/µ)/3 which is positive such that λ
µ

∫ t

0 H(Q̄(t− s))dGe(s) ≤ 1− 2δ. For this given δ > 0,

there exists a T such that Z̄(0)(Ct) + Q̄(0)Gc(t) ≤ δ for all t ≥ T . It now follows from (5.2) that

for all t ≥ T where Q̄(t) > 0

K̄(t) = −1 + Z̄(0)(Ct) + Q̄(0)Gc(t) +
λ

µ

∫ t

0
H(Q̄(t− s))dGe(s)

≤ −1 + δ + 1− 2δ = −δ.

Denote by the set S = {t ≥ 0 : Q̄(t) > 0} the collection of times when the fluid queue is positive.

We first prove by contradiction that m(S) < ∞, where m is the Lebesgue measure on real numbers.

Now suppose m(S) = ∞. Combining the above two cases, we have K̄(t) ≤ 0 for all t ∈ [T,+∞)

and K̄(t) ≤ −δ for all t ∈ S ∩ [T,+∞). Write the integral in (5.4) in two parts,

Q̄(t) =

∫ t−T

0
K̄(t− s)dUG(s) +

∫ t

t−T

K̄(t− s)dUG(s). (5.5)

It is clear that the first term in (5.5) is negative whenever t > T since K̄(t − s) ≤ 0 for all

s ∈ [0, t−T ]. Moreover K̄(t−s) ≤ −δ for all s ∈ St,T , where St,T , {s : t−s ∈ S ∩ [T,∞)}. By the

assumption that m(S) = ∞, we have m(St,T ) → ∞ as t → ∞. So the first term on the right-hand

side of (5.5)
∫ t−T

0
K̄(t− s)dUG(s) ≤

∫

St,T

−δdUG(s),
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which converges to −∞ as t → ∞. The second term on the right-hand side of (5.5) is essentially

an integral on a finite interval. Let M = sups∈[0,T ]K(s), then

∫ t

t−T

K(t− s)dUG(s) ≤ M

∫ t

t−T

dUG(s) → µMT,

as t → ∞. So we have lim
t→∞

Q̄(t) = −∞, which contradicts Q̄(t) ≥ 0 for all t ≥ 0. Thus we have

proved m(S) < ∞. As a byproduct, the above analysis also yields an upper bound for the fluid

queue length process. Since the first term on the right-hand side of (5.5) is always less than or equal

to 0 for all t ≥ T , and the second term has an asymptotic upper bound, there exists a constant M1

such that

sup
t≥0

Q̄(t) ≤ M1 + µMT. (5.6)

Since m(S) < ∞, for any ε > 0 there exists a τ such that m (S ∩ [τ,+∞)) < ε. Now consider the

fluid model shifted by time τ as in Lemma 1. Let Sτ+t , {s : τ + t− s ∈ S ∩ [τ,∞)}, then

m (Sτ+t) ≤ m (S ∩ [τ,+∞)) < ε. (5.7)

Since G(·) is continuous by Assumption 1, we can choose an ε small enough and a corresponding

τ such that
∫ t

0
Q̄τ (t− s)dG(s) ≤ (M1 + µMT )

∫

Sτ+t

dG(s) ≤
1

2
(1−

λ

µ
),

where the first inequality is due to (5.6) and the second one follows from (5.7), Theorem 12.34

in Hewitt and Stromberg (1975) and the fact that λ/µ < 1. Now by (A.1) in Lemma 1 and that

H(·) ≤ 1,

X̄τ (t) ≤ Z̄(τ)(Ct) + Q̄(τ)Gc(t) +
λ

µ
+

1

2
(1−

λ

µ
) = Z̄(τ)(Ct) + Q̄(τ)Gc(t) +

λ

2µ
+

1

2
.

Therefore there exists a τ1 such that X̄(t) < 1, consequently Q̄(t) = 0, for all t ≥ τ1. Replacing τ

in (A.2) by τ1 gives Āτ1(t) = λt. Now plugging τ1 and x = 0 into (A.3) yields

Z̄τ1(t) = Z̄(τ1)(Ct) + λ

∫ t

0
Gc(t− s)ds.

Replacing (t, x) in (4.8) by (τ1, t), it follows from the monotonicity of Ā(·) and (3.5) that Z̄(τ1)(Ct)

vanishes as t → ∞. The second term on the right-hand side in the above converges to λ/µ due to

Assumption 1. So we have proved (5.1).

Critically loaded. If λ = µ, we only need to show that

lim
t→∞

X̄(t) = 1. (5.8)

Same as in Lemma 3, introduce a fluid model with arrival rate λ1 < λ while keeping service and

patience time distributions and the initial condition the same. Append the subscript 1 to the new
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fluid model. Because λ1 < λ = µ, it follows from the underloaded case that lim
t→∞

Q̄1(t) = 0. Then

by (4.7), we have

lim
t→∞

Ā1(t)

t
= lim

t→∞

(

λ1

∫ t

0 H(Q̄1(s))ds

t
−

Q̄1(t)

t
+

Q̄1(0)

t

)

= lim
t→∞

λ1H(Q̄1(t))

= λ1.

According to Lemma 3, Ā1(t) ≤ Ā(t) for all t ≥ 0. So

lim inf
t→∞

Ā(t)

t
≥ lim

t→∞

Ā1(t)

t
= λ1.

Since λ1 < λ but can be arbitrarily close to λ, lim inf
t→∞

Ā(t)
t

≥ λ. On the other hand, by (4.11) and

the fact that Z̄(t)− Z̄(0)(Ct) ≤ 1 (due to Z̄(t) ∈ [0, 1] and Z̄(0)(Ct) ≥ 0),

lim sup
t→∞

Ā(t)

t
= lim sup

t→∞

(Z̄(t)− Z̄(0)(Ct)) ∗ UG(t)

t
≤ lim

t→∞

UG(t)

t
= µ. (5.9)

Since λ = µ, we must have

lim
t→∞

Ā(t)

t
= λ.

By taking limit on both sides of (4.7) after dividing it by t and applying Lemma 2, the above limit

yields

lim
t→∞

H(Q̄(t)) = 1. (5.10)

So for any ε > 0, there exists a τ such that H(Q̄(t)) ≥ 1− ε for all t > τ . According to (A.1), for

the time-shifted fluid model we have

X̄τ (t) = Z̄(τ)(Ct) + Q̄(τ)Gc(t) +
λ

µ

∫ t

0
H(Q̄τ (t− s))dGe(s) +

∫ t

0
Q̄τ (t− s)dG(s)

≥

∫ t

0
H(Q̄τ (t− s))dGe(s)

≥ (1− ε)Ge(t).

This implies lim inf
t→∞

X̄(t) ≥ 1. Also by (5.10) and the shape of H(·) in (4.2), we must have

lim
t→∞

Q̄(t) = 0. So (5.8) must hold.

Overloaded If λ > µ, we only need to show that

lim
t→∞

X̄(t) = 1 + λ

∫ ω

0
F c(x)dx, (5.11)

where ω is the solution to F (ω) = ρ−1
ρ

. Introduce another fluid model with arrival rate λ2 = µ

while keeping service and patience time distributions and the initial condition the same. Append

the subscript 2 to the new fluid model. This fluid model is actually critically loaded. So

lim
t→∞

Ā2(t)

t
= λ2 = µ.
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It again follows from the comparison result in Lemma 3 that

lim inf
t→∞

Ā(t)

t
≥ lim

t→∞

Ā2(t)

t
= µ.

Note that (5.9) holds regardless of the load, so

lim
t→∞

Ā(t)

t
= µ.

Again, by taking limit on both sides of (4.7) after dividing it by t and applying Lemma 2, the

above limit yields

lim
t→∞

λH(Q̄(t)) = µ.

Applying the form of H(·) in (4.2) gives

lim
t→∞

F
(

F−1
d (Q̄(t)/λ)

)

=
ρ− 1

ρ
.

It follows from the definition of Fd(·) in (4.1) that

lim
t→∞

Q̄(t) = λ

∫ ω

0
F c(x)dx.

So (5.11) is proved.

Finally, we present the proof to our main result.

Proof of Theorem 1. Since the space of real numbers is separable and R̄∞({x}) = Z̄∞({x}) = 0 for

all x, according to Property (iv) of the Prohorov metric on page 72 in Billingsley (1999), it suffices

to show that

lim
t→∞

R̄(t)(Cx) = R̄∞(Cx), (5.12)

lim
t→∞

Z̄(t)(Cx) = Z̄∞(Cx). (5.13)

It follows from Proposition 1 that the limit of Q̄(t) is

lim
t→∞

Q̄(t) = Q̄∞ = λ

∫ ω

0
F c(x)dx,

where ω is a solution to F (ω) = max
(

ρ−1
ρ

, 0
)

. Then by (4.2) and (4.6),

lim
t→∞

H(Q̄(t)) = H(Q̄∞) =

{

1, λ ≤ µ,

µ/λ, λ > µ,

lim
t→∞

R̄(t) = R̄∞ = λω.

Hence, (5.12) follows from (3.1), (4.5) and the above limit. Next we consider the convergence of

Z̄(t)(Cx). According to the convergence of Q̄(t) and H(Q̄(t)) in the above, for any ε > 0, there

11



exists a τ such that |H(Q̄(τ + t))−H(Q̄∞)| ≤ ε and |Q̄(τ + t)− Q̄∞| ≤ ε for t > 0. Now consider

the fluid model shifted by τ . Plugging (A.2) into (A.3) yields

Z̄τ (t)(Cx) = Z̄(τ)(Cx+t) + λ

∫ t

0
H(Q̄τ (t− s))Gc(x+ s)ds

− Q̄τ (t)G
c(x) + Q̄τ (0)G

c(x+ t) +

∫ t

0
Q̄τ (s)dG

c(x+ t− s).

On the one hand, we have

Z̄τ (t)(Cx) ≥ Z̄(τ)(Cx+t) + λ

∫ t

0
(H(Q̄∞)− ε)Gc(x+ s)ds

− Q̄τ (t)G
c(x) + Q̄τ (0)G

c(x+ t) +

∫ t

0
(Q̄∞ − ε)dGc(x+ t− s)

= Z̄(τ)(Cx+t) + λH(Q̄∞)

∫ t

0
Gc(x+ s)ds− λε

∫ t

0
Gc(x+ s)ds

− Q̄τ (t)G
c(x) + Q̄τ (0)G

c(x+ t) + Q̄∞Gc(x)− Q̄∞Gc(x+ t)− ε (Gc(x)−Gc(x+ t)) .

Since ε > 0 can be arbitrarily small, the above inequality implies

lim inf
t→∞

Z̄(t)(Cx) ≥ λH(Q̄∞)

∫ ∞

0
Gc(x+ s)ds.

On the other hand, we can show in a similar way that

lim sup
t→∞

Z̄(t)(Cx) ≤ λH(Q̄∞)

∫ ∞

0
Gc(x+ s)ds.

Thus we have

lim
t→∞

Z̄(t)(Cx) =
λH(Q̄∞)

µ

(

1− µ

∫ x

0
Gc(s)ds

)

.

So (5.13) follows from (3.2) and (3.4).

6 Conclusion

The proof is made possible by carefully analyzing the fluid dynamic equations (2.2)–(2.3) and some

auxiliary processes. The most important step is to show the convergence of total amount of the

fluid process X̄(t). However, the measure-valued processes play a significant role in analyzing the

real-valued process X̄(t). This paper contributes to the understanding of fluid models of many-

server queues with general service and patience times. We believe the analytical tools we developed

for the fluid models can contribute to the study of many-server queues with multiple customer

classes and server pools, where a dynamic control policy plays a prominent role.

A Some Auxiliary Lemmas

Time shift of the fluid model. For any τ ≥ 0, denote
(

Z̄τ (t), R̄τ (t)
)

=
(

Z̄(τ + t), R̄(τ + t)
)

.

The time shift for all the derived “status” quantities such as Q̄τ (·), R̄τ (·), Z̄τ (·) and X̄τ (·) are
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defined in the same way, e.g., Q̄τ (t) = Q̄(τ + t). However, let Āτ (t) = Ā(τ + t) − Ā(τ) since Ā(t)

records the “cumulative” amount of fluid that has entered service by time t. The time shift B̄τ (·)

is defined in the same way as that for the cumulative process Ā(·). The following lemma says that

the time-shifted fluid model can be regarded as “restarting” from time τ by viewing
(

Z̄(τ), R̄(τ)
)

as the initial condition. In particular, we show the time-shifted versions of (4.3), (4.7) and (4.8),

which will be used in the proof of convergence.

Lemma 1. Any time-shifted fluid model solution
(

Z̄τ (t), R̄τ (t)
)

satisfies

X̄τ (t) = Z̄(τ)(Ct) + Q̄(τ)Gc(t) +
λ

µ

∫ t

0
H(Q̄τ (t− s))dGe(s) +

∫ t

0
Q̄τ (t− s)dG(s), (A.1)

Āτ (t) = λ

∫ t

0
H(Q̄τ (s))ds− Q̄τ (t) + Q̄τ (0), (A.2)

Z̄τ (t)(Cx) = Z̄(τ)(Cx+t) +

∫ t

0
Gc(x+ t− s)dĀτ (s). (A.3)

Proof. Plugging (4.7) into (4.8) and applying integration-by-parts give

Z̄(τ)(Ct) = Z̄(0)(Cτ+t) + λ

∫ τ

0
Gc(τ + t− s)H(Q̄(s))ds −

∫ τ

0
Gc(τ + t− s)dQ̄(s)

= Z̄(0)(Cτ+t) +
λ

µ

∫ τ+t

t

H(Q̄(τ + t− s))dGe(s)

− Q̄(τ)Gc(t) + Q̄(0)Gc(τ + t) +

∫ τ+t

t

Q̄(τ + t− s)dG(s).

So the right-hand side of (A.1) becomes

Z̄(0)(Cτ+t) + Q̄(0)Gc(τ + t) +
λ

µ

∫ τ+t

0
H(Q̄(τ + t− s))dGe(s) +

∫ τ+t

0
Q̄(τ + t− s)dG(s),

which equals X̄(τ + t) by (4.3). Thus (A.1) follows by applying the time shift definition.

The equation (A.2) follows easily by the time shift definition and (4.7),

Āτ (t) = λ

∫ τ+t

τ

H(Q̄(s))ds − Q̄(τ + t) + Q̄(τ)

= λ

∫ t

0
H(Q̄τ (s))ds − Q̄τ (t) + Q̄τ (0).

It follows from (4.8) and the time shift definition that the right-hand side of (A.3) becomes

Z̄(0)(Cx+τ+t) +

∫ τ

0
Gc(x+ τ + t− s)dĀ(s) +

∫ t

0
Gc(x+ t− s)dĀ(τ + s)

= Z̄(0)(Cx+τ+t) +

∫ τ

0
Gc(x+ τ + t− s)dĀ(s) +

∫ τ+t

τ

Gc(x+ τ + t− s)dĀ(s)

= Z̄(0)(Cx+τ+t) +

∫ τ+t

0
Gc(x+ τ + t− s)dĀ(s).

By (4.8), the above equality is equal to Z̄(τ + t)(Cx) = Z̄τ (t)(Cx). So (A.3) is proved.
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An asymptotic bound on the growth of the fluid queue length. Recall that NF , the mean

of patience time distribution F (·), can be finite or infinite. If NF < ∞, then it follows from (4.6)

that

Q̄(t) ≤ λ

∫ +∞

0
F c(s)ds = λNF < ∞.

So the fluid queue length is uniformly bounded by the constant λNF in this case. However, NF

is also allowed to be infinite in our study. The fluid queue length does not have an upper bound

any more. We show the following bound on the growth of the fluid queue length, which will help

to prove our main result of convergence.

Lemma 2. For any valid initial condition (R̄(0), Z̄(0)), the fluid model solution satisfies

lim
t→∞

Q̄(t)

t
= 0.

Proof. The result trivially holds when NF < ∞. We focus on the case when NF = ∞ in this

proof. It is easy to see that F (t) < 1 for any t > 0 when NF = ∞. According to (4.4) and the

monotonicity of Ā(t), the process B̄(t) is also non-decreasing. Using the definition of B̄(t) in (2.1),

we have B̄(t)− B̄(0) = λt− R̄(t) + R̄(0) ≥ 0, or equivalently

t−
R̄(t)

λ
≥ −

R̄(0)

λ
.

Applying the above inequality to (4.6) gives

Q̄(t) =λ

∫ 0

t−
R̄(t)
λ

F c(t− s)ds+ λ

∫ t

0
F c(t− s)ds

≤λ

∫ 0

−
R̄(0)
λ

F c(t− s)ds+ λ

∫ t

0
F c(t− s)ds

=Q̄(0) + λ

∫ t

0
F c(s)ds.

Thus

lim
t→∞

Q̄(t)

t
≤ lim

t→∞

Q̄(0) + λ
∫ t

0 F
c(s)ds

t
= lim

t→∞
λF c(t) = 0.

A comparison result. Consider two G/GI/N + GI fluid models with the same service time

distribution G, patience time distribution F and the valid initial condition
(

R̄(0), Z̄(0)
)

. The only

difference is the arrival rate. Let
(

R̄i(·), Z̄i(·)
)

denote the fluid model solution corresponding to the

arrival rate λi, i = 1, 2. Denote by Q̄i, R̄i, Z̄i and Āi the corresponding derived process associated

with the ith fluid model. We have the following comparison result.

Lemma 3. Suppose λ1 ≤ λ2, then Ā1(t) ≤ Ā2(t), S̄1(t) ≤ S̄2(t) for any t ≥ 0.

Proof. We first prove the comparison of Āi’s. For any δ > 0, let

τ = inf{t ∈ R+ : Ā1(t)− Ā2(t) ≥ δ}
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be the first time when Ā1 exceeds Ā2 by δ. Since the two fluid models start from the same initial

condition, we must have τ > 0. Now the objective is to show that τ = ∞. Suppose τ is finite. For

any t ∈ [0, τ ], if Z̄1(t) ≤ Z̄2(t), then by (4.10)

Ā1(t)− Ā2(t) = Z̄1(t)− Z̄2(t)−

∫ t

0
(Ā1(s)− Ā2(s))dG(t − s)

≤ −

∫ t

0
(Ā1(s)− Ā2(s))dG(t − s)

< δG(t) ≤ δ,

(A.4)

for any t ∈ [0, τ ]. This implies that Z̄1(τ) > Z̄2(τ). A direct consequence is that

Q̄2(τ) = 0, (A.5)

due to the non-idling equations (2.4) and (2.5). Let

r = sup{t < τ : Q̄1(t) < Q̄2(t)} ∨ 0

be the last time Q̄1 is less than Q̄2. Thus Q̄1(t) ≥ Q̄2(t) for each t ∈ [r, τ ]. Then it follows from

(4.6) that
R̄1(t)

λ1
≥

R̄2(t)

λ2
, for any t ∈ [r, τ ]. (A.6)

According to (2.1) and (4.4),

Ā1(τ)− Ā2(τ) = Ā1(r)− Ā2(r)−

[
∫ τ

r

F c

(

R̄1(s)

λ1

)

dR̄1(s)−

∫ τ

r

F c

(

R̄2(s)

λ2

)

dR̄2(s)

]

+ λ1

∫ τ

r

F c

(

R̄1(s)

λ1

)

ds− λ2

∫ τ

r

F c

(

R̄2(s)

λ2

)

ds

≤ Ā1(r)− Ā2(r)− Q̄1(τ) + Q̄1(r) + Q̄2(τ)− Q̄2(r), (A.7)

where the inequality is due to (A.6) and the following derivation based on (4.6)

∫ τ

r

F c

(

R̄1(s)

λ1

)

dR̄1(s) = λ1

∫

R̄1(τ)
λ1

R̄1(r)
λ1

F c(s)ds = Q̄1(τ)− Q̄1(r).

From the definition of r and the continuity of Q̄i, we have Q̄1(r) = Q̄2(r). Following this and (A.5),

the above inequality (A.7) can be continued as

Ā1(τ)− Ā2(τ) ≤ Ā1(r)− Ā2(r)− Q̄1(τ).

If r = 0, then Ā1(τ)−Ā2(τ) ≤ 0 due to the same initial condition and non-negativity of Q̄i. If r > 0,

then Z̄2(r) = 1 by the non-idling constraints (2.4)–(2.5) and continuity of Z̄i. So Z̄1(r) ≤ Z̄2(r),

which implies that Ā1(r) − Ā2(r) < δ by (A.4). Therefore, we have Ā1(τ) − Ā2(τ) < δ in this

case. Both cases contradict the definition of τ . So τ cannot be finite. Thus, we have proved that

Ā1(t) ≤ Ā2(t) for all t ≥ 0.

The equation in (4.12) implies

S̄(t) = Z̄(0)((0, t)) +

∫ t

0
Ā(t− s)dG(s).

Thus, the comparison of the service completion processes S̄i’s follows immediately from the above

equation and the comparison of Āi’s.
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