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Abstract

Resource allocation problems are usually solved with
specialized methods exploiting their general sparsity
and problem-specific algebraic structure. We show
that the sparsity structure alone yields a closed-form
Newton search direction for the generic primal-dual
interior point method. Computational tests show
that the interior point method consistently outper-
forms the best specialized methods when no addi-
tional algebraic structure is available.

1 Introduction

We consider the resource allocation problem in the
form

minimize f(z):= Z filx;) over allz (1)

i=1

subject to g(z) := Zgi(%‘) =b, (2)
i=1
<z <. (3)

Here z, [, and u are n-vectors of real numbers, b is
a real scalar, and the functions f; and g; are convex
and twice differentiable on an open set containing the
interval [I;, u;]. Inequalities of vectors are interpreted
coordinate-wise.

The recent survey paper of Patriksson [5] shows
that such problems have a long history and diverse
applications. The contexts in which the problem ap-
pears often demand that it be solved very quickly,
even in high dimensions. Consequently, researchers
long ago moved beyond general-purpose nonlinear
programming procedures and focused on exploiting
the special structure of the optimality conditions for

*Department of Statistics, Miami University, Oxford, OH
45056. Email: wrightse@muohio.edu

TDepartment of Mathematics, North Carolina State Univer-
sity, Raleigh, North Carolina 27695. Email: jjrohal@ncsu.edu

the problem. As noted by Patriksson, two frame-
works have emerged as the most competitive for
solving resource allocation problems: the pegging
or variable-firing methods and the breakpoint-search
methods. Patriksson also observes that computa-
tional studies in the literature have generally indi-
cated that pegging is superior to breakpoint search
when certain subproblems (see §2|) common to both
methods are easily solved, whereas breakpoint search
is faster otherwise. Moreover, numerical comparisons
of either method with general-purpose solvers are es-
sentially nonexistent in the literature.

Here we present evidence that a primal-dual in-
terior point method outperforms breakpoint search
on problems for which the latter is traditionally con-
sidered the best possible choice, namely, when its
subproblems do not admit closed-form solutions and
must be solved numerically. We show that the special
structure of 7 allows for a closed-form solution
of the linear system defining the search directions
and we present computational results showing the
method’s superiority. This addresses two questions
posed by Patriksson [5]. First, it shows that the spar-
sity can be exploited within the setting of a general-
purpose optimizer. Second, it provides an efficient
method that also avoids the usual assumptions (see
imposed by pegging or breakpoint search meth-
ods on the domain, monotonicity or strict convexity
of f; and g;.

In the next section, we review the optimality con-
ditions for 7. In §3| we describe the breakpoint
search and interior point methods, along with details
of their implementation. Section |4|lays out the prob-
lem instances used for the computational tests, and
the results are discussed in

2 Optimality conditions

In this study we make the following assumptions:

A1l. The relazed problem, in which is replaced by
g(x) < b, has no optimum with g(x) < b.



A2. The function f; is decreasing on [I;, u;] and g; is
increasing on [l;,u;] with g(1) < b < g(u).

The randomly generated test instances of §4] all sat-
isfy these assumptions, which are needed for break-
point search but not for the interior point method.

In practice, we are more interested in the relaxed
problem mentioned in Assumption Al. However, we
can easily determine whether either assumption holds
if we know the intervals of monotonicity for each f;
and g;. Indeed, many treatments of resource alloca-
tion problems include one or both of these assump-
tions because they can be inexpensively enforced
through some combination of initialization, prepro-
cessing, and data generation.

Assumptions A1-A2 imply that 7 and the re-
laxed problem are equivalent and admit an optimal
solution; they also guarantee that the Slater con-
straint qualification holds for the relaxed problem.
By Lagrangian duality, necessary and sufficient op-
timality conditions for 7 can therefore be ex-
pressed as follows: g(z) = b and, for some real num-
ber p, z is a solution to the separable optimization
subproblem

minimize f(z)+ pg(x) subject to | < x < w.

(4)

The dual objective is

P bp—i—z

which attains its maximum; moreover, any maximizer
p is necessarily nonnegative. The subproblem has
coordinate-wise optimality conditions given by

filzi) + pgi(zi) = 0,
fi(@i) + pgiwi) > 0,
fi(i) + pgilwi) <0,
The left-hand sides give the Karush-Kuhn-Tucker

multipliers for the bounds I; < z; and x; < u;, re-
spectively, as

mln
z; €[1; ,uq]

fz (w4) + sz(l'z)] (5)

ifl; <x; < Ui,

Ai = max{0, =[f{(z:) + pgi(z:)]},
i = max{0, f1(w:) + pgl(z)}.
Letting s := u— x denote the vector of slack variables
for the upper bounds on z, we express the Karush-
Kuhn-Tucker (KKT) conditions for (I)-(3) as
V(@) +pVg(z) = A+ p=0,
xr+ s =u,
x>0, A>0,5s>0, u>0,
diag(x — )\ = 0, diag(s)u =0,
g(z) =b.

Here diag(z) denotes the diagonal matrix whose di-
agonal entries are the entries of the vector z.

The three solution frameworks discussed in §1] uti-
lize the optimality conditions in different ways:

e Pegging methods solve subproblems of the form
7, but for which some variables are held
fixed while the bounds for all remaining vari-
ables are omitted.

e Breakpoint search methods maximize the dual
objective by solving a sequence of subprob-
lems of the form at various values of p.

e Primal-dual interior point methods apply New-
ton’s method to perturbations of the KKT sys-

tem @f.

The pegging and breakpoint search methods both
benefit considerably when minimization of z; +—
fi(x;)+pgi(z;) can be handled efficiently. Because we
focus on problems for which breakpoint search dom-
inates pegging, we do not include pegging methods
in this study. In fact, the pegging approach is not
even well-defined for some of the problems we con-
sider, because the pegging subproblems do not admit
optimal solutions.

3 Methods and implementation

In this section, we describe the two main approaches
considered in our computational study.

3.1 Breakpoint search

Breakpoint search is based on the observation that
the dual objective is concave and defined piece-
wise with a finite number of easily calculated break-
points. The derivative, or subdifferential, of this ob-
jective is nonincreasing. A binary search of the break-
points therefore identifies either one that is a root or
a pair that most closely bracket a root.

There are at most 2n breakpoints, occurring at
p-values where some z; — f;(x;) + pg:(x;) attains
its minimum over [l;,u;] at an endpoint I; or w,.
Equivalently, a breakpoint makes the derivative x; —
fi(x;) + pgi(x;) nonnegative at I; or nonpositive at
u;.  Consequently, all breakpoints have the form

F = —f0)/g(0) or pi == —fl(us)/g)(us). The
monotonicity of f; and g; allow us to define p;” = oo
when ¢/(l;) = 0 and to guarantee that g;(u;) > 0 in
the definition of p; . The convexity and monotonicity
of f; and g; also guarantee that 0 < p; < pj.

The binary search sequentially refines a bracketing
p~ < p* < pt until the true root p* lies between



two consecutive breakpoints. The bracket is adjusted
inward by finding a breakpoint p within it and testing
the sign of the derivative of the dual objective ([5)). To
evaluate that derivative at p, we first fix

li7
€T =
Us

The remaining minimizers are critical points: f/(z;)-+
pgi(x;) = 0and l; < x; < u;. Depending on the prob-
lem data, these critical points might be found (a)
in closed form, (b) by using a problem-specific im-
plementation of Newton’s method, or (¢) by means
of a general-purpose Newton’s method with Armijo
linesearch for sufficient decrease and damping (as
needed) to maintain [; < x; < w;. The derivative
value at p is then given by —b+ ", g;(x;), the sign of
which determines whether p becomes the new p~ or
p*. This in turn determines, through , that some
values of x; shall remain fixed and can therefore be
removed from further consideration.

The final bracket, if nontrivial, consists of two
closest breakpoints with the optimal value of p ly-
ing somewhere between them. To interpolate be-
tween them, our implementation finds p and the
unfixed x;-coordinates (denoted by ¢ € I) simulta-
neously by applying a multi-dimensional Newton’s
method with Armijo linesearch to the corresponding
Lagrange multiplier conditions ), ; gi(z;) = b and
fi(z:) + pgi(z;) =0 for i € I.

Throughout the procedure, the subproblem opti-
mizations are initialized using the corresponding so-
lutions from prior iterations. Also, we extract the
required median values without sorting the list of
breakpoints in advance, which can yield significant
computational savings if each subproblem solution re-
quires only a few operations per index 4 [I}, 2] 4L [6].

if p > pi,

11
itp<p;. ()

3.2 Interior point method

The primal-dual interior point method solves the
KKT optimality conditions @7 for the variables
(x, A\, s, 1, p). Tts operation preserves strict inequality
for the simple bounds (8], only allowing them to be-
come active in the limit. The method is based on the
perturbed KKT system

Vi(x)+pVglx) = A+ p=0, (12)
T+ s=u, (13)

diag(z — )\ = 7e, diag(s)u = e, (14)
g(x) =b, (15)

where e denotes the n-vector of all ones and the in-
equalities z > I, A > 0, s > 0, p > 0 are enforced sep-

arately. The system f is algebraically equiva-
lent to the Lagrange multiplier equations for a related
optimization problem involving barrier functions for

the bounds :

minimize f(z) — 7 Z[ln(%' —1;) +In(s;)]

overall x>1, s>0

subject to g(z) =b, z + s = u.

As the barrier parameter 7 > 0 is driven to zero, we
expect the (unique) solution (z, A, s, , p) of 7
to tend toward the solution set of the original KKT
system @7.

In each iteration of the interior point method, we
calculate a Newton search direction for the perturbed
system 7 and then take a step along that di-
rection, damped so as to preserve x > I, A > 0, s > 0,
@ > 0. Next, the value of 7 is adjusted and the iter-
ation repeats. The method stops when the residuals
rq := Vf(x)+ pVg(x) = A+ u, r = diag(z — ),
ry := diag(s)p, and ry := g(x) — b are small enough.

Ours is a rudimentary implementation aimed at
any nonlinear programming formulation involving
simple bounds and an equality constraint. The al-
gorithmic parameters were assigned values that gave
reliable performance in preliminary testing: all rela-
tive tolerances for residuals were set to 10710, 7 was
set to 0.25 of the current duality gap (x-A+s-pu)/2n,
and the step size was taken to be the smaller of unity
or 0.8 of the feasible step. No attempt was made to
provide theoretical guarantees of global convergence,
superlinear convergence, or complexity. However,
the implementation correctly solved all the instances
described in §4] and easily outperformed breakpoint
search on challenging problems of moderate to very
large dimension. It therefore met the needs of the
present study. The key to making it competitive is
the fact that the linear system defining the Newton
search direction can be solved in Cn arithmetic oper-
ations for a small fixed value of C', as we show next.

To simplify the notation, we introduce a vector h
with entries h; := f/'(x;) + pg! (x;) and let £ denote
x — [. We also use uppercase letters to denote these
diagonal matrices: E := diag(§), A := diag(}\), S :=
diag(s), M := diag(u), H := diag(h). The linear
system satisfied by the search direction is then

H -1 0 I Vg| |Azx rd
A = 0 0 0 A\ T
0 0 M S 0 As| = |7y (16)
1 0o I 0 0 Ap 0
Vg 0 0 0 0 Ap Tg



To solve , first calculate the vectors
wi:=h+EZ AN+ 51y,

yi=rq+Z=tr; =S r,,
z:=W"lVyg
and let n := —1/VgTz. Multiplying (16} from the
left by
W=t 0 0 0 0] [ 2t 81 S 'M 0]
0 I 00 0[]0 2t o0 0 0
0 0 I 0 ofl0 0o S7! 0 0
0 0 0 I 0f|0 O 0 I 0
2T 00 0 nllo o o0 0 1
yields
1 0 0 0 z| [Az Wy ]
=A T 0 0 0| |Ax =1y
0 0 S7'M I 0| |As| = S~1r,
I 0 I 0 0| |Au 0
0 0 0 0 1| [Ap n(rg —z"y)]

from which we can read off the solution to as:
Ap=mn(ry —2"y),
Az =Wy - (Ap)z,
s =—Ax,
AN=Z="1r —E71AAR,
Ap=S"tr, — STIMAs.

B>

The saved values of =~ !r;, Z71A, S~1r,, S™!M from
the calculation of w and y can be reused here. The so-
lution of requires 9n — 1 additions/subtractions,
5n + 1 multiplications, and 6n + 1 divisions.

Table [1| shows that the proposed method for solv-
ing is much faster than a standard linear solver,
namely, the MATLAB sparse LU factorization with
approximate minimum-degree reordering of columns.
The proportionate speed-up seen here completely ac-
counts for the superiority of our interior point method
over the general breakpoint search (see ).

Table 1: Solution time in ms for linear system (|16)).

dimension
solver 102 103 10* 10° 108
proposed 0.03 0.08 0.50 5.53 69
LU colamd 0.85 3.25 43.16 526.98 5627

4 Test instances

For our computational tests, we selected five prob-
lem classes involving mathematical forms of potential

interest in operations research. None admits closed-
form solutions for its separable breakpoint subprob-
lems. Instances were generated so that assumptions
A1-A2 of §2] were satisfied, after possible reorien-
tation of intervals. In the following, the notation
z ~ U(a,b) indicates that the value z was selected ac-
cording to a continuous uniform distribution on the
open interval (a,b), whereas z ~ N(u,o) indicates
that z was selected according to a normal distribu-
tion with mean p and standard deviation o.

4.1 Resource renewal

Problems in this class have fi(x;) = a;z;(e /% — 1)
and g;(z;) = ¢;x; for z; > 0, as studied by Melman
and Rabinowitz [3]. For convenience, we extend f;
to a C* convex function on the real line by defining
fi(z;) = —x; for x; < 0. Instances were generated as
follows:

o a;,ci ~ U(0.001,1000);
e b=1.1)",¢&, where v = min;{a;/c;} and

0, if a;/c; >,
argmin f;(z;) + vgi(xs),

Zq

& =

ifa;/c; <

e [, =0and u; =b/c;.

4.2 Weighted p-norm over a ball

Problems in this class have f;(x;) = a;|z; — y;|P and
gi(x;) = |z;|". Note that f; and g; are everywhere
twice differentiable when p,r > 2. Instances with
p,r € {2,2.5,3,4} and p # r were generated as fol-
lows:

e a; ~U(1,10);
o [~ [](0,5)7 U; ~ [](ll,lZ —|—5);

® Y~ U(uiaui + S)a b~ U(g(l)ag<u))

4.3 Sums of powers

Problems in this class have f;(z;) = a;|z; — y;|P* and
gi(xz;) = |x;|". Instances were generated as follows:

o a; ~ U(1,10);
® D, Tq ~ U(274)5
L] ll ~ U(0,5), g ~ U(Zl,ll +5),

o yi ~ U(us,u; +5), b~ U(g(l),g(u)).



4.4 Convex quartic over a simplex

This class of problems has f;(z;) = a;2} +bjz3+c;x?+
d;z; and g;(xz;) = x;. Instances of these problems
were generated as follows:

o a; = (& +n))/V8, bi = (&G +mixi)/V/3 and
Ci = (412 + Xlz)/\/ga with fianhciaxi ~ N(07 1)7

o d; = —f/(7:), with ; ~ U(0,10);
o U; = min(Ti, )\Z), with )\Z ~ U(Oa T’L)7
o I ~ U0, uy);

o b~U(g(l),g(u)).

The choice of coefficients for f; guarantees that f; is
strictly convex on the real line, which is true if and
only if 8a;¢; > 3b2, a; > 0, and ¢; > 0. Equivalently,

the matrix
V8a; V/3b;
V3bi V8¢

must be positive definite. This can be ensured by se-
lecting a;, b;, c; to be the rescaled entries of a matrix
formed as AT A, where the entries of A are given by
&, ni, G,y xi- The choice of d; guarantees that the crit-
ical point of f; is positive, after which the bounds are
chosen so that each f; has the same monotonicity.

4.5 Log-exponential
Problems in this class have g;(x;) = ¢;x; and
5
fz(xz) = ln Zexp(aijxi —+ d”)
j=1
Instances were generated as follows:
e dij ~N(0,1) and ¢; ~ U(0,10);
U(0,1),
N(0,1),

if fij > 0 for all 7,

otherwise;

ifiel,
ifiel;

gij NN(O,l) and Cl ~ {

Qs = |€lj|7
=
! &ijs

e x; = argmin f;;

{min(xi, 1.2¢ix4),
U; =

ifi €1,
ifi &I

5Gi,
o [, = u; — 0.05|u;| — 5|n;|, with n; ~ N(0,1);

o b~U(g(l),g(u)).

4.6 A note on easier problems

In addition to the problems described above, we
ran similar tests on randomly generated instances
from several classes of problems admitting closed-
form algebraic solutions to the either pegging or
breakpoint subproblems. We don’t report the results
on these easier problems beyond the following brief
summary. Unsurprisingly, problem-specific pegging
methods (when available) handily outperformed all
other approaches. However, the results were mixed
concerning problem-specific breakpoint search versus
the interior point method: the former was faster for
low- to medium-dimensional instances but lost its
edge as the dimension increased, so that the inte-
rior point method was generally faster for n > 10* or
n > 10°. Regardless of the problem class, the per-
formance of the interior point method relative to the
general breakpoint search of §3.1] was similar to the
results described in 5] below.

5 Computational results

The procedures of §3| were coded in MATLAB 7.12
and their performance compared on randomly gen-
erated instances as described in §4 All tests were
performed on a dedicated 2xquad-core Intel 64-bit
(2.26 GHz) platform with 24GB RAM running Cen-
tOS Linux.

We attempted to solve instances of dimension 10*
for k € {2,3,4,5,6} with both methods for each prob-
lem class. One hundred random instances were gen-
erated at each dimension for four of the five prob-
lem classes. The exception was the class described in
for which we generated 100 instances at each di-
mension for each value of p,r € {2,2.5,3,4}. Perfor-
mance differences among these combinations of p and
r were detectable, but too small to warrant separat-
ing out the results for discussion. We therefore report
them in aggregate over all p and r, and remark that
the higher values of p or r tended to require slightly
longer running times than did the smaller values.

Based on preliminary testing, an a priori time limit
of 10*=2 seconds was imposed on each attempt at
solution. The interior point method was run first
and never exceeded this time limit. Consequently, for
higher dimensional instances on some problem types,
the breakpoint searches were limited to at most a
factor of ten over the worst runtime for the interior
point method on problems of the same type and size.

The results of the tests are presented by problem
class in Figure [ Because the breakpoint search of-
ten exceeded the given time limits, the graphs consist
mainly of the median runtimes. Mean runtimes are
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Figure 1: Mean and median running times (seconds) for three methods on ten problem classes.

drawn separately whenever they can be visually dis-
tinguished from the medians on the scale shown; the
mean curves are always the upper branches when two
curves of the same line type are shown. Means that
include runtimes at their limits are specially marked.

The interior point method clearly dominates the
general breakpoint search, often by an order of mag-
nitude. Table [2|shows the frequency with which such
dominance occurs. The common scale and position
on the five graphs in Figure [I] suggest that running
times for the interior point method do not depend
greatly on the specific type problem (aside from the
expense of function evaluations). On the other hand,
the performance gap between the two optimization
methods is smaller than the gap between the two
linear-system solvers considered in §3.2] We conclude
that when algebraic simplifications due to the form of
fi and g; are unavailable, an interior point method is
a strong option for solving problems of the form 7
(3). However, its competitiveness relies even more
heavily than usual on the efficiency of the underlying
linear-system solver.

Table 2: Win percentage of IPM over general break-
point method

dimension
problem class 102 10* 10* 10° 106
resource renewal 0 73 86 100 100
weighted p-norm 4 95 99 100 100
sums of powers 4 97 100 100 100
quartic 8 100 100 100 97
log-exponential 100 100 100 100 100
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