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Abstract

We present a new polynomially solvable case of the Quadratic Assignment Problem in
Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal
when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A
or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose
entries (increase) decrease monotonically along rows and columns when moving away from
the diagonal, and such matrices arise in the classical seriation problem.

Keywords: Quadratic Assignment Problem; Robinson (dis)similarity ; seriation; well solv-
able special case

1 Introduction

In this paper we consider two problems over permutations. Our main problem of interest is the
Quadratic Assignment Problem (QAP), a well studied hard combinatorial optimization problem,
introduced by Koopmans and Beckman [19] in 1957 as a mathematical model for the location of
indivisible economic activities. In the problem QAP(A,B), we are given n facilities, n locations,
a flow matrix A whose entry Aij represents the flow of activity between two facilities i and j,
and a distance matrix B whose entry Bij represents the distance between the locations i and j.
Then the objective is to find an assignment of the facilities to the locations, i.e., a permutation
π of the set [n] = {1, . . . , n}, minimizing the total cost of the assignment. That is, solve the
following optimization problem over all permutations π of [n]:

QAP(A,B) min
π

n∑

i,j=1

AijBπ(i)π(j), (1)

where AijBπ(i)π(j) is the cost inferred by assigning facility i to location π(i) and facility j to
location π(j). QAP has been extensively studied in the past decades, in particular due to its
many real world applications. We refer e.g. to [4, 6] and references therein for an exhaustive
survey. QAP is an NP-hard problem and it cannot even be approximated within a constant
factor [24].

However, there exist many special cases which are solvable in polynomial time by exploiting
the structure of the data. Specifically, we are interested in those “easy cases" where an optimal
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solution is known in explicit form and is represented by a fixed permutation. These cases have
a practical importance in designing heuristics, approximation and enumeration algorithms and
they occur when the matrices A and B have an specific ordered structure, like being Monge,
Toeplitz or monotone matrices (see [3, 5, 11, 10], [6, §8.4] for a survey and the recent works
[7, 14]). For instance, if A is monotonically nondecreasing (i.e., if both its rows and columns are
nondecreasing) and B is monotonically nonincreasing (i.e., if both its rows and columns are non-
increasing), then it is known that the identity permutation is an optimal solution to QAP(A,B)
[6, Proposition 8.23]. Another instance of QAP(A,B) for which the identity permutation is
optimal arises when A is a Kalmanson matrix, i.e., A is symmetric and satisfies:

max{Aij +Akl, Ail +Ajk} ≤ Aik +Ajl for all 1 ≤ i < j < k < l ≤ n,

and B is a symmetric circulant matrix (i.e., Bij depends only on |i−j| modulo n) with decreasing
generating function (i.e., with B12 ≤ B13 ≤ . . . ≤ B1,bn/2c+1) [10, Theorem 2.3]. This extends
an earlier result of Kalmanson [17] when B is the adjacency matrix of the cycle (1, 2, . . . , n), in
which case QAP(A,B) models the shortest Hamitonian cycle problem on the distance matrix A.

The main contribution of this paper is to provide a new class of QAP instances that admit a
closed form optimal solution. These instances arise when both matrices A and B have a special
ordered structure related to the so-called seriation problem, which is our second problem of
interest and is described below.

The seriation problem asks (roughly) to linearly order a set of objects in such a way that
similar objects are close to each other and dissimilar objects are far apart. This classical prob-
lem was introduced by Robinson [23] in 1951 for reconstructing the chronology of archeological
graves from information about their similarities. Beside archeological dating [23, 18] the seri-
ation problem has applications in many other areas including biology [21], machine learning [13],
scheduling [15] and sparse matrix reordering [2]. A more exhaustive list of applications can be
found in [20].

More precisely, an n × n symmetric matrix A is called a Robinson similarity matrix if its
entries decrease monotonically in the rows and the columns when moving away from the main
diagonal, i.e., if

Aik ≤ min{Aij , Ajk} for all 1 ≤ i ≤ j ≤ k ≤ n. (2)

Given a symmetric matrix A = (Aij), the seriation problem asks to find a simultaneous reodering
of its rows and columns, i.e., a permutation π of [n], so that the permuted matrix Aπ = (Aπ(i)π(j))
is a Robinson similarity. If such a permutation exists thenA is said to be a Robinsonian similarity.
Analogously a symmetric matrix B is called a Robinson dissimilarity matrix if its entries increase
monotonically in the rows and columns when moving away from the main diagonal, i.e., if −B is
a Robinson similarity; B is then a Robinsonian dissimilarity if −B is a Robinsonian similarity.
Note that the 0/1 Robinsonian similarity matrices are exactly the symmetric matrices with the
well known consecutive ones property. Recall that a matrix A ∈ Rn×n is a Toeplitz matrix if it
has constant entries along its diagonals, i.e., if Aij = Ai+1,j+1 for all 1 ≤ i, j ≤ n− 1.

Our main result in this paper can then be formulated as follows. Assume that A is a Robinson
similarity, B is a Robinson dissimilarity and that one of the two matrices A or B is a Toeplitz ma-
trix. Then the identity permutation is an optimal solution for problem QAP(A,B) (Theorem 4).
From this we derive a more general result when both matrices are Robinsonian (Corollary 1).
Hence our result uncovers an interesting connection between QAP and the seriation problem and
introduces a new class of QAP instances which is solvable in polynomial time.
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Our result can be seen as an analogue for symmetric matrices of the above mentioned result
about QAP for monotone matrices, where we replace the monotonicity property by the Robinson
property (which implies unimodal rows and columns).

Moreover our result extends two previously known cases. The first case is when the Robinson
similarity A is a combination of (special) cut matrices and the Robinson dissimilarity B is
the Toeplitz matrix ((i − j)2), considered in [14]. This case (which in fact has motivated our
work) is discussed in Section 2 below (see Proposition 1). The second class of instances (which
was pointed out to us by a referee) is when the similarity matrix A is the adjacency matrix
of the path (1, . . . , n) (thus Toeplitz), and B is a Robinson dissimilarity which is metric (i.e.,
Bik ≤ Bij + Bjk for all i, j, k ∈ [n]) and strongly monotone (i.e., Bjk = Bjl =⇒ Bik = Bil and
Bjk = Bik =⇒ Bjl = Bil for all 1 ≤ i < j < k < l ≤ n.) Then [9, Lemma 10] shows that
QAP(A,B) is easily solvable, which also follows from our main result. Interestingly the above
class of strongly monotone Robinson dissimilarity metrics plays a central role in the recognition
algorithm of [9] for matrices that are permutation equivalent to Kalmanson matrices.

The rest of the paper is organized as it follows. In Section 2 we introduce the seriation
problem and discuss some known algorithms to solve it in polynomial time, and we also discuss
links to the 2-SUM problem and other instances of QAP. Section 3 contains the main result
of the paper and in Section 4 we present some applications of it leading to new instances of
polynomially solvable QAP’s.

Notation

Throughout, Pn is the set of permutations of [n], Sn is the set of symmetric n × n matrices
and J is the all-ones matrix. For A,B ∈ Rn×n, 〈A,B〉 = Tr(ATB) =

∑n
i,j=1AijBij denotes the

usual trace inner product on Rn×n. For π ∈ Pn and A ∈ Sn, set Aπ = (Aπ(i)π(j))
n
i,j=1 ∈ Sn. For

A,B ∈ Sn and π, τ ∈ Pn, we have:

(Aπ)τ = Aπτ and 〈A,Bτ 〉 = 〈Aτ−1 , B〉. (3)

Since A is a Robinson dissimilarity if −A is a Robinson similarity, we often refer to A as
a Robinson matrix if A or −A is a Robinson similarity matrix. Clearly, the all-ones matrix
J is both a similarity and a dissimilarity Robinson matrix and thus adding any multiple of J
preserves the Robinson property. Therefore, for a Robinson matrix A, we may assume without
loss of generality that A is entrywise nonnegative. We may also assume without loss of generality
that all diagonal entries are equal in a Robinson similarity and all diagonal entries are equal to
0 in a Robinson dissimilarity. On the other hand, observe that when dealing with QAP(A,B), if
one of the two matrices has zero diagonal entries, then the diagonal entries of the other matrix
do not play a role.

2 Seriation and 2-SUM

Given a set of n objects to order and a similarity matrix A = (Aij) which represents the pairwise
correlations between the objects, a consistent ordering of the objects is a permutation π of [n]
for which the permuted matrix Aπ is a Robinson similarity, i.e., satisfies the linear constraints
(2). The seriation problem consists in finding (it they exist) all possible consistent orderings of
the objects.

It is straightforward to verify whether a given matrix A ∈ Sn is a Robinson similarity.
Moreover one can decide in polynomial time whether A is Robinsonian and if so construct all
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consistent reorderings. Mirkin and Rodin first introduced in 1984 anO(n4) algorithm to recognize
Robinsonian similarities. Later, Chepoi and Fichet [8] and Seston [25] improved the algorithm
to respectively O(n3) and O(n2 log n) and, very recently, Prea and Fortin [22] presented an
O(n2) algorithm. These algorithms apply to recognize Robinsonian dissimilarities and thus also
Robinson similarities as discussed above. They are based on a characterization of Robinsonian
matrices in terms of interval hypergraphs [15].

A completely different approach to recognize Robinsonian similarities was used by Atkins et
al. [1], who introduced an interesting spectral sequencing algorithm. Given a matrix A ∈ Sn,
its Laplacian matrix is the matrix LA = diag(Ae) − A ∈ Sn, where e is the all-ones vector and
diag(Ae) is the diagonal matrix whose diagonal is given by the vector Ae. If A ≥ 0 then LA
is positive semidefinite and thus its smallest eigenvalue is λ1(LA) = 0. Moreover, the second
smallest eigenvalue λ2(LA) is positive if A is irreducible. The Fiedler vector yF ∈ Rn of A is the
eigenvector corresponding to the second smallest eigenvalue λ2(LA) of LA, which is also known
as the Fiedler value. The spectral algorithm of Atkins et al. [1] relies on the following properties
of the Fiedler vector of a Robinson similarity matrix.

Theorem 1. [1] If A ∈ Sn is a Robinson similarity then it has a monotone Fiedler vector yF ,
i.e., satisfying: yF (1) ≤ . . . ≤ yF (n) or yF (n) ≤ . . . ≤ yF (1).

Theorem 2. [1] Assume that A ∈ Sn is a Robinsonian similarity, that its Fiedler value is
simple and that the Fiedler vector yF has no repeated entries. Let π be the permutation induced
by sorting monotonically the values of yF (in increasing or decreasing order). Then the matrix
Aπ is a Robinson similarity matrix.

In other words, the above results show that sorting monotonically the Fiedler vector yF
reorders A as a Robinson similarity. The complexity of the algorithm of [1] in the general case
is given by O(n(T (n) + n log n)), where T (n) is the complexity of computing (approximately)
eigenvalues of an n× n symmetric matrix.

Barnard et al. [2] had earlier used the same spectral algorithm to solve the 2-SUM problem.
Given a matrix A ∈ Sn, the 2-SUM problem is the special instance QAP(A,B) of QAP, where
the distance matrix is B = ((i− j)2)ni,j=1. That is,

2-SUM min
π∈Pn

n∑

i,j=1

Aπ(i)π(j)(i− j)2. (4)

The authors of [16] show that 2-SUM is an NP-complete problem and they use the above spectral
method of reordering the Fiedler vector of A to produce a heuristic solution for problem (4).
This in turn permits to bound important matrix structural parameters, like envelope-size and
bandwidth. However, no assumption is made on the structure of the matrix A. As observed in [16,
14], the following fact can be used to motivate the spectral approach for 2-SUM. If we define the
vectors x = (1, . . . , n)T, xπ = (π(1), . . . , π(n))T ∈ Rn for π ∈ Pn, then

∑n
i,j=1Aij(π(i)−π(j))2 =

(xπ)TLAxπ and thus computing the Fiedler value arises as a natural continuous relaxation for
the 2-SUM problem (4).

Fogel et al. [14] point out an interesting connection between the seriation and 2-SUM prob-
lems. They consider a special class of Robinson similarity matrices for which they can show
that the identity permutation is optimal for the 2-SUM problem (4). Namely they consider the
following cut matrices: given two integers 1 ≤ u ≤ v ≤ n, the cut matrix CUT(u, v) is the
symmetric n × n matrix with (i, j)-th entry 1 if u ≤ i, j ≤ v and 0 otherwise. Clearly each

4



cut matrix is a Robinson similarity and thus conic combinations of cut matrices as well. The
following result is shown in [14], for which we give a short proof.

Proposition 1. [14] If A ∈ Sn can be written as a conic combination of cut matrices, then the
identity permutation is optimal for the 2-SUM problem (4). More generally if, for some π ∈ Pn,
Aπ can be written as a conic combination of cut matrices, then π is optimal for the 2-SUM
problem (4).

Proof. First we show the result when A is a cut matrix. Say, A = CUT(u, v) and set t = v−u+1.
Then, we need to show that

∑v
i,j=u(π(i)− π(j))2 ≥∑v

i,j=u(i− j)2 for any permutation π ∈ Pn.
Suppose that π maps the elements of the interval [u, v] to the elements of the set {i1, . . . , it},
ordered as 1 ≤ i1 < . . . < it ≤ n. Because the left-hand side of the above inequality involves all
pairs of indices in the interval [u, v], equivalently, we need to show that

∑

1≤r<s≤t
(ir − is)2 ≥

∑

1≤r<s≤t
(r − s)2.

Now the latter easily follows from the fact that |ir− is| ≥ |r−s| for all r, s. Hence we have shown
that the identity permutation is an optimal solution of problem (4) when A is a cut matrix and
this easily implies that this also holds when A is a conic combination of cut matrices. The second
statement follows as a direct consequence.

In other words, the above result shows that for similarity matrices as in Proposition 1, any
permutation reordering A as a Robinson matrix also solves (4). As not every Robinson similarity
is a conic combination of cut matrices, this raises the question whether the above result extends
to the case when A is an arbitrary Robinson similarity matrix.

There is a second possible way in which one may want to generalize the result of Proposition
1. Indeed, the 2-SUM problem (4) is the instance of QAP(A,B), where the distance matrix
is B = ((i − j)2)ni,j=1, which turns out to be a Toeplitz dissimilarity Robinson matrix. In fact
there are many other interesting classes of QAP whose distance matrix B is a Toeplitz Robinson
dissimilarity matrix. For instance, QAP(A,B) models the minimum linear arrangement (aka
1-SUM) problem when B = (|i− j|)ni,j=1 and, more generally, the p-SUM problem when we have
B = (|i− j|p)ni,j=1 (for p ≥ 1), and QAP(A,B) models the minimum bandwith problem when A
is the adjacency matrix of a graph and B is of the form B∆

n , as defined in relation (5) below. For
more details on these and other graph (matrix) layout problems with pratical impact we refer to
the survey [12] and references therein.

This thus raises the further question whether the result of Proposition 1 extends to instances
of QAP(A,B), where B is an arbitrary Toeplitz dissimilarity matrix. This is precisely what we do
in this paper. We remove both assumptions on A and B and show that the identity permutation
is optimal for QAP(A,B) when A is any Robinson similarity and B is any Robinson dissimilarity,
assuming that B (or A) has a Toeplitz structure.

3 The main result

Let A be a Robinson similarity matrix and let B be a Toeplitz Robinson dissimilarity matrix.
The first key (easy) observation is that we can decompose B as a conic combination of 0/1
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Toeplitz Robinson dissimilarities. Given an integer ∆ ∈ [n], we define the symmetric matrix
B∆
n ∈ Sn with entries

(
B∆
n

)
ij

=

{
1 if |i− j| ≥ n−∆

0 else
for i, j = 1, . . . , n. (5)

Note that for ∆ = n, we have that B∆
n = J . Clearly, each matrix B∆

n is a Toeplitz matrix and a
Robinson dissimilarity. In fact all Toeplitz Robinson dissimilarities can be decomposed in terms
of these matrices B∆

n .

Lemma 1. Let B ∈ Sn be a Toeplitz matrix and let β0, . . . , βn−1 ∈ R such that B(i, j) = βk for
all i, j ∈ [n] with |i− j| = k for 0 ≤ k ≤ n. Then,

B = β0J +
n−1∑

k=1

(βk − βk+1)Bn−k
n . (6)

If moreover B is a Robinson dissimilarity, i.e., if β0 = 0 ≤ β1 ≤ . . . ≤ βn−1, then B is a conic
combination of the matrices B∆

n (for ∆ = 1, . . . , n− 1).

Proof. Direct verification.

Our main result, which we show in this section, is that the identity permutation is optimal
for QAP(A,B∆

n ) for any integer 1 ≤ ∆ ≤ n− 1. We will mention its application to QAP(A,B)
in Section 4.

Theorem 3. Let A ∈ Sn be a Robinson similarity matrix and let ∆ ∈ [n − 1]. Then, for any
permutation π of [n], we have:

〈Aπ, B∆
n 〉 ≥ 〈A,B∆

n 〉. (7)

Proof. Let E∆
n denote the support of the matrix B∆

n , i.e., the set of upper triangular positions
where B∆

n has a nonzero entry. That is:

E∆
n = {{i, n−∆ + j} : 1 ≤ i ≤ j ≤ ∆}.

Then we can reformulate the inner products in (7) as

〈Aπ, B∆
n 〉 =

n∑

i,j=1

Aπ(i),π(j)

(
B∆
n

)
i,j

= 2
∑

{i,j}∈E∆
n

Aπ(i),π(j),

〈A,B∆
n 〉 =

n∑

i,j=1

Ai,j
(
B∆
n

)
i,j

= 2
∑

{i,j}∈E∆
n

Ai,j ,

and (7) is equivalent to the following inequality:
∑

{i,j}∈E∆
n

Aπ(i),π(j) ≥
∑

{i,j}∈E∆
n

Aij . (8)

We show the inequality (8) using induction on n ≥ 2. The base case n = 2 is trivial, since then
∆ = 1 and both summations in (8) are identical. We now assume that the result holds for n− 1
and we show that it also holds for n. For the remaining of the proof, we fix a Robinson similarity
matrix A ∈ Sn, an integer ∆ ∈ [n − 1] and a permutation π of [n]. Moreover we let k ∈ [n]
denote the index such that n = π(k).

The key idea in the proof is to show that there exist a subset F ⊆ E∆
n and a permutation τ

of [n] satisfying the following properties:
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(C1) |F | = ∆,

(C2) the indices min{π(i), π(j)} for the pairs {i, j} ∈ F are pairwise distinct,

(C3) τ(n) = k and the set R := E∆
n \ F satisfies

R = τ(E∆−1
n−1 ) := {{τ(i), τ(j)} : {i, j} ∈ E∆−1

n−1 }.

Here the set E∆−1
n−1 is the support of the matrix B∆−1

n−1 , defined by

E∆−1
n−1 = {{i, n−∆ + j} : 1 ≤ i ≤ j ≤ ∆− 1},

so that E∆
n is partitioned into the two sets {{i, n} : 1 ≤ i ≤ ∆} and E∆−1

n−1 .
In a first step, we show (in Claim 1 below) that if we can find a set F and a permutation τ

satisfying (C1)-(C3), then we can conclude the proof of the inequality (8) using the induction
assumption. The proof relies on the following idea: we split the summation

Σπ(A) :=
∑

{i,j}∈E∆
n

Aπ(i),π(j) (9)

into two terms, obtained by summing over the set F and over its complement R, and we show
that the first term is at least

∑∆
i=1Ain (using the conditions (C1)-(C3)) and that the second

term is at least
∑
{i,j}∈E∆−1

n−1
Aij (using the induction assumption applied to the smaller Robinson

similarity (Aij)
n−1
i,j=1).

Claim 1. Assume that there exist a set F ⊆ E∆
n and a permutation τ of [n] satisfying (C1)-(C3),

then the inequality (8) holds.

Proof. (of Claim 1). Let us decompose the summation Σπ(A) from (9) as the sum of the two
terms:

Σπ(A) = Σπ,F (A) + Σπ,R(A), (10)

where we set:
Σπ,F (A) :=

∑

{i,j}∈F

Aπ(i),π(j), Σπ,R(A) :=
∑

{i,j}∈R

Aπ(i),π(j).

We now bound each term separately. First we consider the term Σπ,F (A). As A is a Robinson
similarity matrix, it follows that for all indices i, j ∈ [n]:

Aij ≥ An,min{i,j}.

Hence, we can deduce:

Σπ,F (A) =
∑

{i,j}∈F

Aπ(i),π(j) ≥
∑

{i,j}∈F

An,min{π(i),π(j)} ≥
∆∑

i=1

An,i, (11)

where for the right most inequality we have used the conditions (C1),(C2) combined with the
fact that A is a Robinson similarity.

We now consider the second term Σπ,R(A). Define the permutation σ = πτ . Then, by (C3),
we have that σ(n) = π(k) = n and thus σ(E∆−1

n−1 ) = π(τ(E∆−1
n−1 )) = π(R). We can then write:

Σπ,R(A) =
∑

{i,j}∈E∆−1
n−1

Aσ(i),σ(j). (12)
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As σ(n) = n, the permutation σ of [n] induces a permutation σ′ of [n− 1]. We let A′, B′ ∈ Sn−1

denote the principal submatrices obtained by deleting the row and column indexed by n in A
and in B∆

n , respectively. Then A′ is again a Robinson similarity matrix (now of size n− 1) and
B′ = B∆−1

n−1 is supported by the set E∆−1
n−1 . Then, using the induction assumption applied to A′,

∆− 1 and σ′, we obtain:

Σσ′(A
′) :=

∑

{i,j}∈E∆−1
n−1

A′σ(i),σ(j) ≥ Σid(A
′
) :=

∑

{i,j}∈E∆−1
n−1

A′i,j . (13)

Using (12), we get:
Σπ,R(A) = Σσ′(A

′) ≥ Σid(A
′
) =

∑

{i,j}∈E∆−1
n−1

Ai,j . (14)

Finally, combining (10),(11) and (14), we get the desired inequality:

Σπ(A) ≥
∆∑

i=1

Ai,n +
∑

{i,j}∈E∆−1
n−1

Aij =
∑

{i,j}∈E∆
n

Aij ,

which concludes the proof of Claim 1.

In a second step, we formulate (in Claim 2 below) two new conditions (C4) and (C5) which
together with (C1),(C2) imply (C3). These two conditions will be simpler to check than (C3).

Claim 2. Assume that the sets F ⊆ E∆
n and R := E∆

n \ F satisfy the conditions (C1),(C2) and
the following two conditions:

(C4) no pair in the set R contains the element k,

(C5) no pair {i, n−∆ + i} with 1 ≤ i ≤ ∆ and k + 1− n+ ∆ ≤ i ≤ k − 1 belongs to the set R.

Define the permutation τ = (k, k + 1, . . . , n). Then, we have R = τ(E∆−1
n−1 ).

Proof. (of Claim 2). By (C1), |F | = ∆, thus R has the same cardinality as the set τ(E∆−1
n−1 ) and

therefore it suffices to show the inclusion R ⊆ τ(E∆−1
n−1 ). For this consider a pair {i, n−∆ + j}

in R, where 1 ≤ i ≤ j ≤ ∆. We show that i = τ(r) and j = τ(s) for some 1 ≤ r ≤ s ≤ ∆− 1. In
view of (C4), we shall define r, s depending whether i lies before or after k, getting the following
cases:

1) i ≤ k − 1, then r = i and i = τ(i),

2) i ≥ k + 1, then r = i− 1 and i = τ(i− 1).

We do the same for index j, getting the following cases:

a) n−∆ + j ≤ k − 1, then s = j and n−∆ + j = τ(n−∆ + j),

b) n−∆ + j ≥ k + 1, then s = j − 1 and n−∆ + j = τ(n−∆ + j − 1).

It remains only to check that 1 ≤ r ≤ s ≤ ∆ − 1 holds. For this, we now discuss all possible
combinations for indices i and j according to the above cases:

1a) Then, r = i and s = j. Since 1 ≤ i ≤ j ≤ ∆, we only have to check that j ≤ ∆−1. Indeed,
if j = ∆, then from a) we get n ≤ k − 1, which is impossible.
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1b) Then, r = i and s = j − 1. It suffices to check that r ≤ s, i.e., i 6= j. Indeed, assume that
i = j. Then, the pair {i, n−∆ + i} belongs to R with i ≤ k − 1 (as we are in case 1) for
index i) and i ≥ k + 1 − n + ∆ (as we are in case b) for index j), which contradicts the
condition (C5).

2a) Then, r = i − 1 and s = j. It suffices to check that r ≥ 1 and s ≤ ∆ − 1. The first one
holds since i ≥ 2 as we are in case 2) for index i. The second one is also true, since we are
in case a) for index j and k ≤ n.

2b) Then, r = i− 1 and s = j − 1. It suffices to check that r ≥ 1, which holds since we are in
case 2) for index i and thus i ≥ 2.

Thus we have shown that R ⊆ τ(E∆−1
n−1 ), which concludes the proof of Claim 2.

In view of Claims 1 and 2, in order to conclude the proof of the inequality (8) it suffices to
find a set F ⊆ E∆

n and a permutation τ of [n] satisfying the conditions (C1), (C2), (C4) and
(C5).

For the permutation τ , we choose τ = (k, k + 1, . . . , n) as in Claim 2, thus τ(n) = k. It
remains to construct the set F . This is the last step in the proof which is a bit technical.

The following terminology will be useful, regarding the pairs {i, n−∆+j} (for 1 ≤ i ≤ j ≤ ∆)
in the set E∆

n . We refer to the pairs {i, n − ∆ + i} (with 1 ≤ i ≤ ∆) as the diagonal pairs.
Furthermore, for each 1 ≤ i0 ≤ ∆, we refer to the pairs {i0, n −∆ + j} (with i0 + 1 ≤ j ≤ ∆)
as the horizontal pairs on row i0, meaning the pairs of E∆

n in the row indexed by i0. Finally,
for each k0 = n − ∆ + j0 such that 1 ≤ j0 ≤ ∆, we refer to the pairs {i, n − ∆ + j0} (with
1 ≤ i ≤ j0 − 1) as the vertical pairs on column k0, meaning the pairs of E∆

n in the column
indexed by k0. Note that, in both horizontal and vertical pairs, the diagonal pair {i, n−∆ + i}
is not included. As an illustration see Figure 1.

?

?
...

?

. . .

. . .

?

?

?







n− ∆ + 1 k0 n− ∆ + i0 n

1

j0

i0

∆

vertical pairs

diagonal pairs

horizontal pairs

Figure 1: Vertical, diagonal and horizontal pairs in the set E∆
n

Moreover, we denote by:

U = UR ∪ UC , where UR = {1, . . . ,∆}, UC = {n−∆ + 1, . . . , n},

the set consisting of the row and column indices for the nonzero entries of the matrix B∆
n .

In the rest of the proof we indicate how to construct the set F . In view of (C4), the set F
must contain all the pairs in E∆

n that contain the index k. Moreover, in view of (C5), F must
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contain all the diagonal pairs, except those coming before the position (k + 1 − n + ∆, k) on
column k (if it exists) and those coming after the diagonal position (k, n−∆ + k) on row k (if it
exists). Hence we must discuss depending whether the index k belongs to the sets UR and/or UC .
Namely we consider the following four cases: (1) k 6∈ UR∪UC , (2) k ∈ UR \UC , (3) k ∈ UC \UR,
and (4) k ∈ UR ∩ UC . In each of these cases, we define the set F which, by construction, will
satisfy the conditions (C1), (C4) and (C5). Hence it will remain only to verify that condition
(C2) holds in each of the four cases and this is what we do below.

Case (1): k 6∈ UR ∪ UC .
Then, ∆ + 1 ≤ k ≤ n−∆, which implies ∆ ≤ (n− 1)/2. In this case we define F as the set of
all diagonal pairs (see Figure 2a at page 10), namely:

F = {{i, n−∆ + i} : 1 ≤ i ≤ ∆}

. . .

. . .

. . .







n− ∆ + 1 · · · n

1

...

∆

(a) Definition of set F for case (1)

. . .

. . .

. . .

?

?

?







n− ∆ + 1 n− ∆ + k n

1

k

...

∆

(b) Definition of set F for case (2)

?

?
...

?

?

. . .







n− ∆ + 1 · · · n− ∆ + h · · · n

1

...

h

...

∆

(c) Definition of set F for case (3)

?

?
...

?

. . .

. . .

?

?

?







n− ∆ + 1 n− ∆ + h n− ∆ + k n

1

h

k

∆

(d) Definition of set F for case (4)

Figure 2: Different definition of set F for all 4 cases

To see that (C2) holds, let r 6= s ∈ [∆] and we have to show that min{π(r), π(n−∆ + r)} 6=
min{π(s), π(n−∆ + s)}.
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This is clear since the four indices π(r), π(n −∆ + r), π(s), and π(n −∆ + s) are pairwise
distinct. Indeed, if equality π(r) = π(n−∆ + s) would hold, this would imply the inequalities:
n−∆ + 1 ≤ r = n−∆ + s ≤ ∆ and thus ∆ ≥ (n+ 1)/2, a contradiction.

Case (2): k ∈ UR \ UC .
Then, 1 ≤ k ≤ ∆ and k ≤ n−∆. In this case we let F consist of the diagonal pairs till position
(k, n−∆+k) and then of the horizontal pairs on the k-th row (see Figure 2b at page 10), namely:

F = {{i, n−∆ + i} : 1 ≤ i ≤ k} ∪ {{k, n−∆ + i} : k + 1 ≤ i ≤ ∆}.

In order to check that (C2) holds, we consider the following three cases:

• For r 6= s ∈ [k], we get min{π(r), π(n−∆ + r)} 6= min{π(s), π(n − ∆ + s)}, since the
four indices π(r), π(n−∆ + r), π(s), π(n−∆+s) are pairwise distinct (using the fact that
k ≤ n−∆).

• For r 6= s ∈ {k + 1, . . . ,∆}, using the fact that π(k) = n, min{π(k), π(n − ∆ + r)} =
π(n−∆ + r) 6= min{π(k), π(n−∆ + s)} = π(n−∆ + s).

• Finally, for r ∈ [k] and s ∈ {k + 1, . . . ,∆}, we have that min{π(r), π(n − ∆ + r)} 6=
min{π(k), π(n−∆ + s)} = π(n−∆ + s). Indeed, π(r) 6= π(n−∆ + s) (since otherwise this
would imply that n−∆ + k+ 1 ≤ r = n−∆ + s ≤ k and thus n+ 1 ≤ ∆, a contradiction)
and it is clear that π(n−∆+r) 6= π(n−∆+s). The case for s ∈ [k] and r ∈ {k+1, . . . ,∆}
is symmetric.

Case (3): k ∈ UC \ UR.
This case corresponds to k = n−∆ + h, where 1 ≤ h ≤ ∆. Then, since k belongs to the column
indices, we have that n−∆ + h = k ≥ ∆ + 1, which implies ∆ ≤ (n+ h− 1)/2.

In this case we let F consists of the vertical pairs on the k-th column and of the diagonal
pairs from position (k, n−∆ + k) (see Figure 2c at page 10), namely:

F = {{i, k} : 1 ≤ i ≤ h− 1} ∪ {{i, n−∆ + i} : h ≤ i ≤ ∆}.

To see that (C2) holds, we consider the following three cases.

• For r 6= s ∈ [h− 1], π(r) = min{π(r), π(k)} 6= min{π(s), π(k)} = π(s).

• For r 6= s ∈ {h, . . . ,∆}, min{π(r), π(n−∆ + r)} 6= min{π(s), π(n − ∆ + s)}, since the
four indices π(r), π(n−∆ + r), π(s), π(n − ∆ + s) are pairwise distinct. Indeed, π(r) =
π(n −∆ + s) would imply: n −∆ + h ≤ r = n −∆ + s ≤ ∆ and thus ∆ ≥ (n + h)/2, a
contradiction.

• For r ∈ [h−1] and s ∈ {h, . . . ,∆}, min{π(r), π(k)} = π(r) 6= min{π(s), π(n−∆+s)}, since
the indices π(r), π(s), π(n−∆+s) are pairwise distinct. Indeed, equality π(r) = π(n−∆+s)
would imply that n−∆ + h ≤ r = n−∆ + s ≤ h− 1 and thus ∆ ≥ n+1, a contradiction.

Case (4): k ∈ UR ∩ UC = {n−∆ + 1, . . . ,∆}.
This case corresponds to k = n−∆+h, where 1 ≤ h ≤ 2∆−n. Moreover, we have ∆ ≥ (n+1)/2.
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Then we let F consist of the vertical pairs on the k-th column, of the diagonal pairs from
position (h, n −∆ + h) to position (k, n −∆ + k), and of the horizontal pairs on the k-th row
(see Figure 2d at page 10), namely:

F = {{i, k} : 1 ≤ i ≤ h} ∪ {{i, n−∆ + i} : h+ 1 ≤ i ≤ k}
∪ {{k, n−∆ + i} : k + 1 ≤ i ≤ ∆}.

In order to check condition (C2), as F consists of the union of three subsets we need to
consider the following six cases.

• For r 6= s ∈ [h], min{π(r), π(k)} = π(r) 6= min{π(s), π(k)} = π(s).

• For r 6= s ∈ {h + 1, . . . , k}, min{π(r), π(n−∆ + r)} 6= min{π(s), π(n−∆ + s)}, since
π(r), π(n −∆ + r), π(s) and π(n −∆ + s) are pairwise distinct. Indeed, equality π(r) =
π(n−∆+s) would imply r = n−∆+s and thus k+1 = n−∆+h+1 ≤ n−∆+s = r ≤ k,
yielding a contradiction.

• For r 6= s ∈ {k + 1, . . . ,∆}, it holds min{π(k), π(n − ∆ + r)} = π(n − ∆ + r) 6=
min{π(k), π(n−∆ + s)} = π(n−∆ + s).

• For r ∈ [h] and s ∈ {h + 1, . . . , k}, min{π(r), π(k)} = π(r) 6= min{π(s), π(n − ∆ + s)},
since the indices π(r), π(s), π(n−∆ +s) are pairwise distinct. Indeed, π(r) = π(n−∆ +s)
would imply that n−∆ + h+ 1 ≤ n−∆ + s = r ≤ h and thus ∆ ≥ n+ 1, a contradiction.

• For r ∈ [h] and s ∈ {k + 1, . . . ,∆}, then we have that min{π(r), π(k)} = π(r) 6=
min{π(k), π(n − ∆ + s)} = π(n−∆ + s), since the indices π(r), π(n − ∆ + s) are dis-
tinct. Indeed, equality π(r) = π(n − ∆ + s) would imply that r = n − ∆ + s and thus
2(n − ∆) + h + 1 = n − ∆ + k + 1 ≤ n − ∆ + s = r ≤ h, which implies ∆ ≥ n + 1, a
contradiction.

• For r ∈ {h+1, . . . , k} and s ∈ {k+1, . . . ,∆}, then we have that min{π(r), π(n−∆+r)} 6=
min{π(k), π(n − ∆ + s)} = π(n − ∆ + s). Indeed, r = n − ∆ + s would imply that
n−∆ + k + 1 ≤ n−∆ + s = r ≤ k, which implies ∆ ≥ n+ 1, a contradiction.

Thus (C2) holds, which concludes the proof in case (4) and thus the proof of the theorem.

4 Applications of the main result

We now formulate several applications of our main result in Theorem 3. As a first direct conse-
quence, we can show that the identity matrix is an optimal solution to the problem QAP(A,B)
whenever A is a Robinson similarity matrix, B is a Robinson dissimilarity matrix, and at least
one of A or B is a Toeplitz matrix.

Theorem 4. Let A,B ∈ Sn and assume that A is a Robinson similarity matrix, B is a Robinson
dissimilarity matrix and moreover A or B is a Toeplitz matrix. Then the identity permutation is
an optimal solution to the problem QAP(A,B).

Proof. Assume first that B is a Toeplitz matrix. Then, by Lemma 1, B is a conic combination
of the matrices B∆

n , i.e., B =
∑n−1

∆=1 λ∆B
∆
n for some scalars λ∆ ≥ 0. Applying the inequality (7)

in Theorem 3, we obtain that

〈Aπ, B〉 =

n−1∑

∆=1

λ∆〈Aπ, B∆
n 〉 ≥

n−1∑

∆=1

λ∆〈A,B∆
n 〉 = 〈A,B〉,
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which shows that the identity permutation is optimal for QAP(A,B).
Assume now that A is a Toeplitz Robinson similarity (and B is a Robinson dissimilarity).

Then we simply exchange the roles of A and B after a simple modification. Namely, let α
and β denote the maximum value of the entries of A and B, respectively. Let define the two
matrices B′ = αJ − A and A′ = βJ − B. Then A′ is a Robinson similarity matrix and B′ is a
Toeplitz Robinson dissimilarity matrix. For any permutation π, by the previous result applied to
QAP(A′, B′), 〈(A′)π, (B′)〉 ≥ 〈A′, B′〉. If we compute the inner product of both sides, we obtain
〈(A′)π, B′〉 = αβ〈Jπ, J〉 − α〈Jπ, A〉 − β〈Bπ, J〉 + 〈Bπ, A〉 and 〈A′, B′〉 = αβ〈J, J〉 − α〈J,A〉 −
β〈B, J〉 + 〈B,A〉, from which we can easily conclude that 〈A,Bπ〉 ≥ 〈A,B〉. Hence, this shows
that the identity permutation is optimal for QAP(A,B) and it concludes the proof.

As a direct application, Theorem 4 extends to the case when the matrices A and B are
Robinsonian.

Corollary 1. Let A,B ∈ Sn. Assume that A is a Robinsonian similarity matrix, B is a Robin-
sonian dissimilarity matrix, and let π, τ be permutations that reorder A and B as Robinson
similarity and dissimilarity matrices, respectively. Assume furthermore that one of the matrices
Aπ or Bτ is a Toeplitz matrix. Then the permutation τ−1π is optimal for the problem QAP(A,B).

Proof. Directly from Theorem 4, using relation (3).

Finally we observe that the assumption that either A or B has a Toeplitz structure cannot
be omitted in Theorem 3. Indeed, consider the following matrices:

A =




1 1 1 0 0
1 1 1 1 0
1 1 1 1 0
0 1 1 1 0
0 0 0 0 1



, B =




0 1 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0




so that A (resp., B) is a Robinson similarity (resp., dissimilarity). In this case, the identity
permutation gives a solution of value 〈A,B〉 = 8. Consider now the permutation π = (4, 5, 1, 2, 3)
which reorders A as follows:

Aπ =




1 0 0 1 1
0 1 0 0 0
0 0 1 1 1
1 0 1 1 1
1 0 1 1 1



.

This gives a solution of value 〈Aπ, B〉 = 4. Hence, in this case the identity permutation is not
optimal, and thus the Toeplitz assumption cannot be removed in Theorem 3.

To the best of our knowledge the complexity of QAP(A,B), when A is a Robinson similarity
and B is a Robinson dissimilarity, is not known.
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