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Abstract

Motivated by a problem of scheduling unit-length jobs with weak preferences over time-

slots, the random assignment problem (also called the house allocation problem) is considered

on a uniform preference domain. For the subdomain in which preferences are strict except

possibly for the class of unacceptable objects, Bogomolnaia and Moulin characterized the

probabilistic serial mechanism as the only mechanism satisfying equal treatment of equals,

strategyproofness, and ordinal efficiency. The main result in this paper is that the natural

extension of the probabilistic serial mechanism to the domain of weak, but uniform, prefer-

ences fails strategyproofness, but so does every other mechanism that is ordinally efficient

and treats equals equally. If envy-free assignments are required, then any (probabilistic or

deterministic) mechanism that guarantees an ex post efficient outcome must fail even a weak

form of strategyproofness.

1 Introduction

We study the assignment problem, which is concerned with allocating a set of objects to a set

of agents, each of whom wishes to receive at most one object. Agents have preferences over

the objects, and the goal is to allocate the objects to the agents in a fair and efficient manner.

Further, as each agent’s preference ordering over the objects is private information, we require

the mechanism to be strategyproof: it should be a dominant strategy for the agents to report

their preference ordering truthfully. If the objects are divisible, we can think of a fractional

assignment in which an object may be allocated in varying amounts to multiple agents so that

the total amount allocated of any object is at most 1, and so that each agent receives at most

one unit in all. If the objects are indivisible, one can think of a lottery over assignments, which

again results in a fractional assignment matrix in which entry (i, a) represents the probability
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that agent i receives object a. These two views are equivalent for our purposes; while in the

rest of the paper we assume that the objects are indivisible, all of our results extend to the case

of divisible objects. There is now a rich literature on such models with applications to many

real-life allocation problems including allocating students to schools in various cities, the design

of kidney exchanges, etc [1, 2, 9, 22]. The two prominent mechanisms that have emerged from this

literature are the Random Priority (RP) mechanism and the Probabilistic Serial (PS) mechanism.

The PS mechanism is stronger in terms of its efficiency and equity properties, but it is only weakly

strategyproof in the strict preference domain and not strategyproof in the full preference domain;

whereas the RP mechanism is strategyproof, but satisfies only a weaker version of efficiency and

envy-freeness. Furthermore, Bogomolnaia and Moulin [7] show that no strategyproof mechanism

can satisfy the stronger form of efficiency and equity that the PS mechanism satisfies.

This paper is inspired by the paper of Bogomolnaia and Moulin [8] that characterized the PS

mechanism on a restricted preference domain. The PS mechanism was introduced in an earlier

paper of Cres and Moulin [11] that was motivated by the problem of scheduling unit-length jobs

with deadlines. Suppose there are n jobs, each requiring a unit processing time, and all jobs are

available at time zero. As the jobs all have unit-length, one could think of the scheduling problem

as one of assigning time-slots 1, 2, . . . , n to the jobs, so that slot k represents the interval (k−1, k],

and a job assigned to slot k finishes at time k. Jobs have deadlines and earn a non-negative utility

if they complete before their deadline. Specifically, if the deadline of job j is dj , then the utility

of assigning j to slot k is monotonically decreasing in k until the deadline, after which it drops

to zero. That is, if uj,k denotes the utility of assigning job j to slot k, then

uj,1 > uj,2 . . . > uj,dj > 0 = uj,dj+1 = uj,dj+2, . . . , uj,n.

The goal is to use a nonpricing mechanism to schedule the jobs in a fair and efficient manner

based on their reported utility information. Cres and Moulin [11] proposed the PS mechanism

and showed that it finds an ordinally efficient and envy-free allocation (all definitions appear in the

next section); furthermore, they showed that the PS mechanism is strategyproof on this domain:

note that each job/agent need only report their deadline, and they show that it is a weakly

dominant strategy for each job to report its deadline truthfully. Bogomolnaia and Moulin [8]

characterize the PS mechanism on this restricted domain in two different ways: first, they show

that ordinal efficiency and envy-freeness characterize the PS outcome on this restricted domain;

and second, they show that it is the only strategyproof mechanism that is ordinally efficient and

treats equals equally. Taken together, their result shows that the PS mechanism is perhaps the

only compelling mechanism on this restricted preference domain1.

1Cres and Moulin [11] show that the PS mechanism is in fact group strategyproof, although this stronger property

is not needed in the characterization results of PS.
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In this paper we consider a slightly more general domain, again inspired by the problem of

scheduling unit-length jobs. For simplicity, assume there are n agents and n objects, and suppose

the objects are arranged in the order (1, 2, . . . , n) by all the agents. Each agent’s preference

ranking, however, is determined by a weakly decreasing utility function over the objects, in contrast

to a strictly decreasing utility function over the objects till a deadline. (A good way to visualize

this preference domain is to have each agent separate the sequence of objects into indifference

classes, without disturbing the common order on the objects.) This domain is quite natural in

the scheduling context, where completing a job early is always (weakly) better, but jobs may be

insensitive to completion times within a certain time interval, and these intervals may change

from job to job. The domain considered in the earlier papers is a special case in which, for each

agent, all but the final indifference class has a single object. It is then natural to ask if the two

characterizations of PS extend to this domain. It turns out that the answer is negative for both

characterizations. We show that the PS outcome (actually, a correspondence) is no longer the

only outcome that is ordinally efficient and envy-free, nor is the PS mechanism strategyproof on

this domain. Somewhat surprisingly, we show that:

• No weakly strategyproof mechanism can satisfy both ex post efficiency and envy freeness

on this domain, when there are three or more agents; and

• No strategyproof mechanism can satisfy both ordinal efficiency and equal treatment of equals

on this domain, when there are four or more agents.

The literature on random assignment problems focuses on simultaneously satisfying various

notions of fairness, efficiency, and strategyproofness, and several impossibility results have been

established over the last two decades [4, 7, 10, 15, 16, 25]. Our two main impossibility results

are strengthened versions of similar results in the literature in which preferences are drawn from

richer domains. Specifically, versions of the two impossibility results have been obtained by Katta

and Sethuraman [16] on the full preference domain (where any weak ordering of the objects is

permissible), and by Bogomolnaia and Moulin [7] on the strict preference domain (where any

strict ordering of the objects is permissible). Thus the surprising element in our result is that

these difficulties persist even in domains in which the preferences are severely restricted.

Our work contributes to the rich and growing literature on matching and allocation problems

in which monetary transfers are not permitted. The PS mechanism and the Random Priority

mechanims are central mechanisms for such allocation problems and have been studied extensively

from several points of view, see the recent survey of Sonmez and Unver [23] for an overview. This

has also inspired other characterizations and extensions of the PS mechanism [3, 4, 6, 13, 17, 18].

There is an equally extensive literature on models where monetary transfers are allowed to restore

fairness or strategyproofness in a queueing or scheduling setting [12, 19, 20, 21, 24], and we refer
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the reader to the work of Hassin and Haviv [14] for a comprehensive overview.

2 Preliminaries

2.1 Model and Definitions

An assignment problem is given by a triple (N,O,%), where N = {1, . . . , n} is the set of agents,

O = {o1, . . . on} is the set of objects, and the preference profile %= (%1, . . . ,%n) specifies each

agent’s preference ordering over the objects. We will assume that the preference relation of each

agent is complete (every pair of objects is comparable) and transitive. By a %i b, we mean that

agent i weakly prefers object a to object b. We write a ≻i b if i strictly prefers a to b, i.e. a %i b

but b 6%i a; and we use a ∼i b when i is indifferent between a and b, i.e. a %i b and b %i a.

We assume that the indifference relation is also transitive. Thus each agent has a most-preferred

subset of objects (and the agent is indifferent between all the objects within this set), followed by

a most-preferred subset of objects among the remaining ones, etc.

In this paper, we shall consider the uniform preference domain in which o1 %i o2 %i . . . %i on

for every agent i ∈ N . Agents differ in their preference ordering only in their strict preference

relation ≻i (and hence their indifference relation ∼i). In the rest of the paper, we use the following

notation for the preference ordering of the agents: all the objects within an indifference class for

an agent appear within braces in that agent’s preference list, and these maximal indifference

classes are separated by a comma; objects are always written in subscript order; and the braces

are omitted for singleton indifference classes. Thus, the preference ordering

o1 ≻i o2 ∼i o3 ∼i o4 ≻i o5

for agent i is written as

i : o1, {o2 o3 o4}, o5.

By a mechanism, we mean a mapping from the set of all preference profiles (within this re-

stricted domain) to a doubly stochastic matrix2, which we call the assignment matrix for that

profile. The assignment matrix is deterministic if its entries are {0, 1} (and so the outcome is a

matching of the agents and objects); otherwise, it is probabilistic. If a mechanism maps each pref-

erence profile to a deterministic matrix, the mechanism is deterministic; otherwise the mechanism

is probabilistic3. As a consequence of the Birkhoff-von Neumann theorem [5], the outcome of a

2If the number of agents is not the same as the number of objects, the outcome is typically a matrix in which

the row-sums and the column-sums are each at most 1. One can always balance such a problem by adding dummy

agents or dummy objects.
3Alternatively, we could have defined a probabilistic mechanism as a lottery over deterministic mechanisms. In

this view, different lotteries are regarded as different mechanisms, even if they result in the same assignment matrix

for each preference profile.
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probabilistic mechanism can be implemented as a lottery over deterministic assignments.

Given two probabilistic assignments P and Q, we say that agent i prefers P to Q if Pi
4

stochastically dominates Qi according to i’s preferences. Formally,

Pi %i Qi ⇐⇒
∑

k:k%ij

pik ≥
∑

k:k%ij

qik, ∀j ∈ O.

We say that i strictly prefers P to Q, denoted by Pi ≻i Qi, if at least one of the inequalities in

the above definition is strict. Note that this definition is only a partial order, as an agent may not

be able to compare two probabilistic allocations. Finally, we say that P stochastically dominates

Q, denoted by P % Q, if Pi %i Qi for all i ∈ N , with Pi ≻i Qi for some i ∈ N . Again, this notion

of stochastic dominance defines a partial order on the set of doubly stochastic matrices.

2.2 Desirable Properties

We define some desirable properties of mechanisms that play an important role in the rest of the

paper.

Ordinal Efficiency. An assignment matrix P is ordinally efficient if it is not stochastically

dominated by any other random assignment matrix Q such that Q % P . It is well known that

any ordinally efficient matrix can be implemented as a lottery over deterministic Pareto efficient

assignments. Furthermore, checking whether or not a given assignment matrix is ordinally efficient

is computationally easy [7, 16].

Ex post Efficiency A weaker notion of efficiency that we will consider is ex post efficiency,

which is satisfied by the random priority mechanism. A bi-stochastic matrix P is ex post efficient

if it can be written as a convex combination of Pareto efficient assignments.

Envy-Freeness. An assignment matrix P is envy free if the probabilistic assignment of every

agent i stochastically dominates the probabilistic assignment of every other agent with respect to

agent i’s preference ordering. Let Pi denote the probabilistic assignment of agent i in the matrix

P . Then, P is envy-free if Pi %i Pi′ for all i, i
′ ∈ N .

Equal Treatment of Equals. An assignment matrix P satisfies equal treatment of equals if

agents with identical preferences get equivalent allocations. Formally, P satisfies equal treatment

of equals if for all i, i′ ∈ N such that %i=%i′=%, we have
∑

k:k%j

pik =
∑

k:k%j

pi′k, ∀j ∈ O.

4
Pi denotes the i-th row of P
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Strategyproofness. The properties defined so far pertain to the outcome on a single profile;

strategyproofness, however, is a property of the mechanism, in particular, on how the mechanism

behaves on pairs of profiles in which all but one of the agents report the same preference ordering.

A mechanism is strategyproof if it is a weakly dominant strategy for each agent to report their

true preference ordering. Formally, a mechanism is strategyproof if

Pi(%i,%−i) %i Pi(%
′
i,%−i),

for all agents i ∈ N , and for all preference profiles %−i of the other agents, and for every pair of

preferences %i,%
′
i that i could report. A random assignment mechanism is weakly strategyproof

if for each i ∈ N , and for each preference profile %−i of the other agents, there does not exist

preference ordering %′
i such that Pi(%

′
i,%−i) ≻i Pi(%i,%−i). In a strategyproof mechanism,

the assignment under truthful reporting stochastically dominates the assignment under any other

report; in a weakly strategyproof mechanism, however, reporting her preference ordering truthfully

will not result in an assignment that is stochastically dominated by the assignment under any

other report. It is clear from the definitions that strategyproofness implies weak strategyproofness,

but not vice-versa.

2.3 The Extended Probabilistic Serial Mechanism

We end this section with a very brief description of the EPS mechanism [16]. The EPS mechanism,

like the PS mechanism, can be described as a “cake-eating” mechanism in which agents consume

their best object(s) at unit rate. Roughly, each agent simultaneously consumes her “best set”

of available objects at a unit rate at each point in time. If all the preferences are strict, this

determines a unique allocation for the agents; when agents have indifferences, this mechanism

is not well-defined as each agent has a choice on how her unit rate is apportioned across the

objects in her best set of objects. For instance, if agent i strictly prefers a to b, whereas agent

i′ is indifferent between a and b, letting both agents consume a initially will result in each agent

getting 1/2 of a and 1/2 of b, which is clearly inefficient in the ordinal sense; if i′ consumes b at rate

1, however, the outcome is ordinally efficient. Building on this intuition, Katta and Sethuraman

[16] proposed the EPS mechanism that:

1. Identifies a subset S⋆ of agents with the least collective claim over the union of their best

objects C(S⋆) (in terms of average claim per agent within the subset); (We will refer to S⋆

as the bottleneck set.)

2. Assigns each agent in S⋆ an amount of |C(S⋆)|
|S⋆| of their favorite object(s);

3. Promises the rest of the agents an amount of at least |C(S⋆)|
|S⋆| of their favorite object(s); and
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4. Removes the allocated objects, and recurses on the subproblem (agents in S⋆ now start

consuming their favorite objects(s) out of the remaining objects.)

The authors showed that the bottleneck sets can be identified by solving a sequence of parametric

max flow problems. We refer the reader to their paper for a complete description of the algorithm.

Note that in the full preference domain, an agent is insensitive to different probabilistic allo-

cations of objects within the same indifference class as long as the allocations sum up to the same

quantity for every indifference class. This motivates the following equivalence relation over the

set of assignment matrices. Given a preference profile %, let Ii be the collection of indifference

classes of objects for agent i. For every I ∈ Ii, let piI =
∑

oj∈I
pij. We say that two random

assignment matrices P and Q are equivalent if and only if

piI = qiI ∀i ∈ N, I ∈ Ii.

One can check that this defines an equivalence relation on the set of assignment matrices. An

assignment matrix is an EPS assignment if it is equivalent to the random assignment found by

the EPS mechanism5.

3 Main Results

Bogomolnaia and Moulin [8] showed that if the preference domain is further restricted so that the

acceptable set of objects for each agent i is the set {o1, o2 . . . , oki}, and if the agents have strict

(and uniform) preferences over their acceptable objects, then the PS outcome is characterized

by ordinal efficiency and envy-freeness, and that it is the only strategyproof mechanism that

guarantees ordinal efficiency and equal treatment of equals. We show that neither one of these

results holds when the agents have weak preferences.

3.1 Non-uniqueness of Ordinally Efficient and Envy Free Assignments

The EPS mechanism finds an equivalence class of ordinally efficient and envy free assignments

for each preference profile. However, there are other assignments with these properties. For the

preference profile

1: o1, {o2 o3}, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

5Katta and Sethuraman [16] do not discuss how Steps 2 and 3 described earlier are implemented; each allocation

satisfying the conditions of Steps 2 and 3 may give a different assignment matrix but these are all equivalent.
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the following assignment

o1 o2 o3 o4

1: 1
4 0 1

2
1
4

2: 1
4 0 1

2
1
4

3: 1
4

1
2 0 1

4

4: 1
4

1
2 0 1

4

is ordinally efficient and envy free. However, the EPS mechanism will not compute the above

assignment since agents 1 and 2 strictly prefers o1 to o2 whereas agents 3 and 4 are indifferent

between o1 and o2. Thus, in the EPS mechanism, agents 3 and 4 consume o2 first so as to not

compete with agents 1 and 2 for their unique best object. Consequently, EPS finds the following

assignment

o1 o2 o3 o4

1: 1
2 0 1

4
1
4

2: 1
2 0 1

4
1
4

3: 0 1
2

1
4

1
4

4: 0 1
2

1
4

1
4

Clearly the two assignments do not belong to the same equivalence class: agents 1 and 2 strictly

prefer the latter, whereas agents 3 and 4 strictly prefer the former.

3.2 Impossibility Results

Theorem 1. For n ≥ 3, any mechanism that is both ex-post efficient and envy-free is not even

weakly strategyproof in the uniform preference domain.

Proof. We first show the impossibility result for n = 3. Consider Profile 1 (below). Clearly, the

set of envy-free (EF) assignments at this profile is as described for some 0 ≤ y ≤ 1/6.

Profile 1

1: o1, o2, o3

2: o1, {o2 o3}

3: o1, o2, o3

o1 o2 o3

1: 1
3

1
2 − y 1

6 + y

2: 1
3 2y 2

3 − 2y

3: 1
3

1
2 − y 1

6 + y

By the structure of the preferences in Profile 1, agent 2 cannot receive object o2 in any Pareto

efficient assignment, as there is always a Pareto improvement with the agent who is assigned o3.

Thus y = 0 in any ex-post efficient (EPE) assignment.

Similarly, in Profile 2 below, the set of envy-free assignments is as described for some 0 ≤ w ≤ 1
6
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and 0 ≤ z ≤ 1
12 .

Profile 2

1: o1, o2, o3

2: o1, {o2 o3}

3: {o1 o2}, o3

o1 o2 o3

1: 1
2 − w 1

4 + w − z 1
4 + z

2: 1
2 − w w + 2z 1

2 − 2z

3: 2w 3
4 − 2w − z 1

4 + z

Again, agent 2 cannot be assigned o2 in any Pareto efficient assignment, as there is always a

Pareto improvement with the agent assigned o3, so w = z = 0 in any ex-post efficient assignment.

Observe that the properties of ex-post efficiency and envy-freeness determine a unique assign-

ment in both Profile 1 and Profile 2. Furthermore, agents 1 and 2 have the same preferences in

both profiles, but agent 3’s allocation in Profile 1 stochastically dominates his allocation in Profile

2, implying a failure of weak strategyproofness.

For n ≥ 4, extend each of the profiles as follows: the first 3 agents have exactly the same

preference ordering over the first 3 objects; and they have strict preferences over the objects

o4, o5, . . . , on; finally, agent i (for i ≥ 4) is indifferent between the first i objects, after which he

has strict preferences over the others. That is, i’s preference ordering is

j : {o1 . . . oi}, oi+1, . . . , on.

It is straightforward to check that agent i receives object oi in every Pareto efficient assignment,

and so the first 3 agents must be allocated the first 3 objects, leading to the same two profiles

analyzed earlier.

As the EPS mechanism is ordinally efficient (and so ex-post efficient as well) and envy-free, an

immediate consequence is that the EPS mechanism is not weakly strategyproof on the uniform

domain. The Random Priority (RP) mechanism, adapted to the setting of indifferences, is both

strategyproof and ex-post efficient, and so fails envy-freeness. For the domain considered by

Bogomolnaia and Moulin, neither of these results hold, as the PS mechanism is strategyproof and

the RP mechanism is envy-free.

Next, we show that if we relax envy freeness to equal treatment of equals, but strengthen weak

strategyproofness and ex-post efficiency to strategyproofness and ordinal efficiency respectively,

a similar impossibility result holds for the uniform preference domain.

Theorem 2. For n ≥ 4, any mechanism that satisfies ordinal efficiency and equal treatment of

equals is not strategyproof in the uniform preference domain.
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Proof. We first show the result for n = 4. Consider the following 8 profiles

Profile 1

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

Profile 2

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

Profile 3

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

Profile 4

1: {o1 o2}, o3, o4

2: o1, o2, o3, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

Profile 5

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

Profile 6

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

Profile 7

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

Profile 8

1: {o1 o2}, o3, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

We shall show that in profile 8 there is no probabilistic assignment that simultaneously satisfies

ordinal efficiency (OE), equal treatment of equals (ETE), and strategyproofness (SP) in relation

to the first seven profiles.

First, we compute the probability assignment for profile 1. Notice that the only assignment

that satisfies ETE is

Profile 1

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

o1 o2 o3 o4

1: 1
4

1
4

1
4

1
4

2: 1
4

1
4

1
4

1
4

3: 1
4

1
4

1
4

1
4

4: 1
4

1
4

1
4

1
4

Now we consider profile 2. Let pij be the probability that agent i is assigned the object oj. By

ordinal efficiency, p41 = 0. For otherwise p42 < 1, which means that one of p12, p22, p32 is strictly
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positive; this agent can exchange a small amount of o2 for an equal amount of o1 from agent 4,

without altering any of the other allocations to obtain a new allocation matrix that stochastically

dominates the current one, and this violates ordinal efficiency.

By strategyproofness, we must have that p41 + p42 = 1
2 , because if it were not the case, then

there is a profitable deviation of agent 4 either from profile 1 to profile 2 or vice versa. Thus, we

get that p42 =
1
2 since p41 = 0. Similarly, by strategyproofness, we have that p41 + p42 + p43 =

3
4 ,

which implies that p43 =
1
4 and p44 =

1
4 .

Finally by ETE, we know the probability assignment of the first three agents must be identical,

thus we get the following assignment:

Profile 2

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
3

1
6

1
4

1
4

2: 1
3

1
6

1
4

1
4

3: 1
3

1
6

1
4

1
4

4: 0 1
2

1
4

1
4

Now we consider profile 3. In profile 3, by SP in relation to profile 2, we must have that

p31 + p32 = 1
2 , p33 = 1

4 , and p34 = 1
4 . By ETE, the same assignment for agent 4 satisfy the

same constraints as that of agent 3. By OE, p31 = p41 = 0, because either p31 > 0 or p41 > 0

would imply that p32 + p42 < 1 (as p31 + p32 + p41 + p42 = 1) or equivalently that p12 + p22 > 0.

Then again we have a situation where agent 1 or 2 can exchange a small amount of o2 for an

equal amount of o1 from agent 3 or 4, which leads to a new assignment matrix that stochastically

dominates the current one, violating OE. Thus, OE and SP together determines the probabilistic

assignment for agents 3 and 4. Now, we can fill in the assignments for agents 1 and 2 via ETE to

get:

Profile 3

1: o1, o2, o3, o4

2: o1, o2, o3, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
2 0 1

4
1
4

2: 1
2 0 1

4
1
4

3: 0 1
2

1
4

1
4

4: 0 1
2

1
4

1
4

Now we consider profile 4. By SP in relation with profile 3 and ETE, we must have that

p11 + p12 = p31 + p32 = p41 + p42 =
1
2 , p13 = p33 = p43 =

1
4 , and p14 = p34 = p44 = 1

4 . Since p12+

p32 + p42 ≤ 1, in order to satisfy the unit demand for agents 1, 3, and 4, we must have that at

least one of p11, p31, p41 is strictly positive. Thus by OE, we must have p22 = 0 and p21 = 1
2 .

Although we cannot pin down a single assignment for this profile, any feasible assignment must
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be of the form:

Profile 4

1: {o1 o2}, o3, o4

2: o1, o2, o3, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: x 1
2 − x 1

4
1
4

2: 1
2 0 1

4
1
4

3: y 1
2 − y 1

4
1
4

4: 1
2 − x− y x+ y 1

4
1
4

for some x, y ≥ 0 and x+ y ≤ 1
2 .

Now we consider profile 5. Applying the same argument of ordinal efficiency for agent 4 in

profile 2 to agent 2 in profile 5, we get that p22 = 0. By strategyproofness in relation to profile 1,

we must have that p21 =
1
4 and that p21+ p22+ p23 =

3
4 . Hence, we get that p23 =

1
2 and p24 =

1
4 .

Finally by ETE, we know the probability assignment of the agents 1, 2 and 4 must be identical,

thus we get the following assignment:

Profile 5

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: o1, o2, o3, o4

o1 o2 o3 o4

1: 1
4

1
3

1
6

1
4

2: 1
4 0 1

2
1
4

3: 1
4

1
3

1
6

1
4

4: 1
4

1
3

1
6

1
4

Now we consider profile 6. By SP in relation with profile 2, we must have that p21 = 1
3 ,

p22 + p23 = 5
12 , and p24 = 1

4 . By OE, we must have that p22 = 0, which implies that p23 = 5
12 .

By SP in relation with profile 5, we must have that p41 + p42 = 7
12 , p43 = 1

6 , p44 = 1
4 . Again, by

OE, we must have that p41 = 0, which implies that p42 = 7
12 . Subsequently, we can fill in the

assignments for agents 1 and 3 via ETE to get:

Profile 6

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: o1, o2, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 1
3

5
24

5
24

1
4

2: 1
3 0 5

12
1
4

3: 1
3

5
24

5
24

1
4

4: 0 7
12

1
6

1
4

Now we consider profile 7. By SP in relation with profile 3, we must have that p21 = 1
2 ,

p22 + p23 = 1
4 , and p24 = 1

4 . By OE, we must have that p22 = 0, which implies that p23 = 1
4 . By

SP in relation with profile 6, we have that p31 + p32 =
13
24 , p33 =

5
24 and p34 =

1
4 . By ETE, agent

4 gets an equivalent assignment as agent 3. Notice that in this case, we must have that p31 > 0

and p41 > 0 as p32 + p42 ≤ 1 and p31 + p32 + p41 + p42 = 13
12 > 1, so either p31 or p41 is strictly

positive. This implies that p12 = p22 = 0 in order to satisfy OE. Thus, we get an assignment of

12



the following form:

Profile 7

1: o1, o2, o3, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: 5
12 0 1

3
1
4

2: 1
2 0 1

4
1
4

3: z 13
24 − z 5

24
1
4

4: 1
12 − z 11

24 + z 5
24

1
4

Finally, we consider profile 8. By SP in relation with profile 4, we must have that p21 = 1
2 ,

p22 + p23 = 1
4 , p24 = 1

4 . By OE, we must have that p22 = 0, which implies that p23 = 1
4 . By SP

in relation with profile 7 and ETE, we must have that p11 + p12 = p31 + x32 = x41 + x42 = 5
12 ,

p13 = p33 = p43 =
1
3 , p14 = p34 = p44 =

1
4 . Now consider the partially filled assignment below

Profile 8

1: {o1 o2}, o3, o4

2: o1, {o2 o3}, o4

3: {o1 o2}, o3, o4

4: {o1 o2}, o3, o4

o1 o2 o3 o4

1: ? ? 1
3

1
4

2: 1
2 0 1

4
1
4

3: ? ? 1
3

1
4

4: ? ? 1
3

1
4

Notice that this assignment violates the fact that p13 + p23 + p33 + p43 = 1. Since we used the

necessary conditions induced by SP, OE, ETE to pin down all possible assignments for each of

the profiles 1-7, and all of possible combinations of the first 7 profiles lead to this contradiction,

it is impossible to write down a random assignment in profile 8 that simultaneously satisfy ETE,

OE, and SP in relation to the other 7 profiles.

The following graph indicates how the profiles are linked via strategyproofness. (Profile i is

denoted Pi.)

For general n ≥ 5, we extend each of the 8 profiles as follows: agents 1 through 4 have the

same preference for objects o1 through o4; moreover, these agents have strict preference for the

rest of the objects. For every j = 5, . . . , n, agent j is indifference amongst objects o1 through oj

and has strict preference for the rest of the objects. Similar to the argument made for general

n in theorem 1, we see that by OE, every agent j = 5, . . . , n receives object oj with probability

1. Consequently, the first 4 agents must be allocated the first 4 objects, leading to the same 8

profiles analyzed earlier.
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