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Abstract

Motivated by the need to better understand the properties of sparse cutting-planes used in mixed
integer programming solvers, the paper [2] studied the idealized problem of how well a polytope is
approximated by the use of sparse valid inequalities. As an extension to this work, we study the following
“less idealized” questions in this paper: (1) Are there integer programs, such that sparse inequalities do
not approximate the integer hull well even when added to a linear programming relaxation? (2) Are there
polytopes, where the quality of approximation by sparse inequalities cannot be significantly improved
by adding a budgeted number of arbitrary (possibly dense) valid inequalities? (3) Are there polytopes
that are difficult to approximate under every rotation? (4) Are there polytopes that are difficult to
approximate in all directions using sparse inequalities? We answer each of the above questions in the
positive.

1 Introduction

The paper [2] studied how well one can expect to approximate polytopes using valid inequalities that are
sparse. The motivation for this study came from the usage of cutting-planes in integer programming (IP)
solvers. In principle, facet-defining inequalities of the integer hull of a polytope can be dense, i.e. they
can have non-zero coefficients for a high number of variables. In practice, however, most state-of-the-art
IP solvers bias their cutting-plane selection towards the use of sparse inequalities. This is done, in part, to
take advantage of the fact that linear programming solvers can harness sparsity well to obtain significant
speedups.

The paper [2] shows that for polytopes with a polynomial number of vertices, sparse inequalities pro-
duce very good approximations of polytopes. However, when the number of vertices increase, the sparse
inequalities do not provide a good approximation in general; in fact with high probability the quality of ap-
proximation is poor for random 0-1 polytopes with super polynomial number of vertices (see details in [2]).

However the study in [2] is very “idealized” in the context of cutting-planes for IPs, since almost always
some dense cutting-planes are used or one is interested in approximating the integer only only along cer-
tain directions. In this paper, we consider some natural extensions to understand the properties of sparse
inequalities under more “realistic conditions”:

1. All the results in the paper [2] deal with the case when we are attempting to approximate the integer
hull using only sparse inequalities. However, in practice the LP relaxation may have dense inequalities.
Therefore we examine the following question: Are there integer programs, such that sparse inequalities
do not approximate the integer hull well when added to a linear programming relaxation?

2. More generally, we may consider attempting to improve the approximation of a polytope by adding a
few dense inequalities together with sparse inequalities. Therefore we examine the following question:
Are there polytopes, where the quality of approximation by sparse inequalities cannot be significantly
improved by adding polynomial (or even exponential) number of arbitrary valid inequalities?

1

http://arxiv.org/abs/1412.3765v1


3. It is clear that the approximations of polytopes using sparse inequalities is not invariant under affine
transformations (in particular rotations). This leaves open the possibility that a clever reformulation
of the polytope of interest may vastly improve the approximation obtained by sparse cuts. Therefore
a basic question in this direction: Are there polytopes that are difficult to approximate under every

rotation?

4. In optimization one is usually concerned with the feasible region in the direction of the objective
function. Therefore we examine the following question: Are there polytopes that are difficult to
approximate in almost all directions using sparse inequalities?

We are able to present examples that answer each of the above questions in the positive. This is perhaps
not surprising: an indication that sparse inequalities do not always approximate integer hulls well even in
the more realistic settings considered in this paper. Understanding when sparse inequalities are effective in
all the above settings is an important research direction.

The rest of the paper is organized as follows. Section 2 collects all required preliminary definitions. In
Section 3 we formally present all the results. In Sections 4-7 we present proofs of the various results.

2 Preliminaries

2.1 Definitions

For a natural number n, let [n] denote the set {1, . . . , n} and, for non-negative integer k ≤ n let
(

[n]
k

)

denote
the set of all subsets of [n] with k elements. For any x ∈ R

n, let ||x||1 denote the l1 norm of x and ||x|| or
||x||2 denote the l2 norm of x.

An inequality αx ≤ β is called k-sparse if α has at most k non-zero components. Given a polytope
P ⊂ R

n, P k is defined as the intersection of all k-sparse cuts valid for P (as in [2]), that is, the best
outer-approximation obtained from k-sparse inequalities.

Given two polytopes P,Q ⊂ R
n such that P ⊆ Q we consider the Hausdorff distance d(P,Q) between

them:
d(P,Q) := maxx∈Q (miny∈P ||x− y||) .

When P,Q ⊂ [−1, 1]n, we have that d(P,Q) is upper bounded by 2
√
n, the largest distance between two

points in [−1, 1]
n
. In this case, if d(P,Q) ∝ √

n the error of approximation of P by Q is basically as
large as it can be and smaller d(P,Q) (for example constant or of the order of

√
logn) will indicate better

approximations.
Given a polytope P ⊆ R

n and a vector c ∈ R
n, we define

gapkP (c) = max
x∈Pk

cx−max
x∈P

cx,

namely the “gap” between P k and P in direction c. We first note that d(P, P k) equals the worst directional
gap between P k and P (the proof is presented in Appendix A).

Lemma 1. For every polytope P ⊆ R
n, d(P, P k) = maxc:||c||=1 gap

k
P (c).

For a set D = {α1x ≤ β1, . . . , αdx ≤ βd} of (possibly dense) valid inequalities for P , let P k,D denote the
outer-approximation obtained by adding all k-sparse cuts and the inequalities from D:

P k,D =

(

d
⋂

i=1

{x ∈ R
n : aix ≤ bi}

)

⋂

P k. (1)

Since P k,D ⊆ P k we have that d(P, P k,D) ≤ d(P, P k) for any set D of valid inequalities for P .
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2.2 Important Polytopes

Throughout the paper, we will focus our attention on the polytopes Pt,n ⊆ [0, 1]n defined as

Pt,n =

{

x ∈ [0, 1]
n
:

n
∑

i=1

xi ≤ t

}

. (2)

Notice that for t = 1 we obtain a simplex and for t = n/2 we obtain half of the hypercube. Moreover different
values to t yield very different properties regarding approximability using sparse inequalities, as discussed
in [2].

Proposition 2. The following hold:

1. d(P1,n,Pk
1,n) =

√
n
k − 1√

n
.

2. d(Pn/2,n,Pk
n/2,n) =

{ √
n/2 if k ≤ n/2

n
√
n

2k −
√
n
2 if k > n/2

.

We will also consider symmetrized versions of the polytopes Pt,n. To define this symmetrization, for
x ∈ R

n and I ⊂ [n] let xI denote the vector obtained by switching the sign of the components of x not in I:

xI
i =

{

xi if i ∈ I
−xi if i /∈ I.

More generally, for a set P ⊆ R
n we define P I =

{

xI ∈ R
n : x ∈ P

}

.

Definition 3. For a polytope P ⊆ R
n
+, we define its symmetrized version P = conv

(

⋃

I⊆[n] P
I
)

.

Note that P1,n is the cross polytope in dimension n; more generally, we have the following external
description of the symmetrized versions of Pt,n and Pk

t,n (proof presented in Appendix B).

Lemma 4.

Pt,n =







x ∈ [−1, 1]
n
: ∀I ⊂ [n] ,

∑

i∈I

xi −
∑

i∈[n]\I
xi ≤ t







(3)

Pt,n
k
=

{

x ∈ [−1, 1]n : ∀I ∈
(

[n]

k

)

, ∀I+, I− partition of I,

∑

i∈I+

xi −
∑

i∈I−

xi ≤ t

}

. (4)

3 Main results

In our first result (Section 4), we point out that in the worst case LP relaxations plus sparse inequalities
provide a very weak approximation of the integer hull.

Theorem 5. For every even integer n there is a polytope Qn ⊆ [0, 1]n such that:

1. Pn/2,n = conv(Qn ∩ Z
n)

2. d(Pn/2,n, (Pn/2,n)
k ∩Qn) = Ω (

√
n) for all k ≤ n/2.
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In Section 5 we consider the second question: How well does the approximation improve if we allowed a
budgeted number of dense valid inequalities. Notice that for the polytope Pn

2 ,n, while Proposition 2 gives

that d(Pn

2 ,n,Pk
n

2 ,n) ≥ Ω(
√
n), adding exactly one dense cut (ex ≤ n/2) to the k-sparse closure (even for

k = 1) would yield the original polytope Pn

2 ,n.

We consider instead the symmetrized polytope Pn

2 ,n. Notice that while this polytope needs 2n dense
inequality to be described exactly, it could be that a small number of dense inequalities, together with sparse
cuts, is already enough to provide a good approximation; we observe that in higher dimensions valid cuts
for Pn

2 ,n can actually cut off significant portions of [−1, 1]n in multiple orthants. We show, however, that in
this even exponentially many dense inequalities do not improve the approximation significantly.

Theorem 6. Consider an even integer n and the polytope P = Pn

2 ,n. For any k ≤ n/100 and any set D of

valid inequalities for P with |D| ≤ exp
(

n
6002

)

, we have

d
(

P, P k,D) ≥ 1

6

√
n.

In the proof of this theorem we use a probabilistic approach to count in how many orthants an inequality
can significantly cut off the box [−1, 1]n.

In Section 6 we consider the question of sparse approximation of a polytope when rotations are allowed.
We show that again Pn/2,n cannot be approximated using sparse inequalities after any rotation is applied
to it.

Theorem 7. Consider an even integer n and the polytope P = Pn

2
,n. For every rotation R : Rn → R

n and
k ≤ n

2003 , we have

d
(

R(P ), (R(P ))k
)

= Ω(
√
n).

The proof of this theorem relies on the intuition given by Theorem 6: since Pn

2 ,n required exponentially
many dense inequalities in order to be well approximated, no rotation is able to align all of them with the
axis so that they can be captured by sparse inequalities.

Finally, in Section 7 we show that P n

10
,n and its k-sparse approximation have a large gap in almost every

direction.

Theorem 8. Let n ≥ 1000 be an integer divisible by 10 and consider the polytope P = Pn/10,n. If C ∈ R
n

is a random direction uniformly distributed on the unit sphere, then for k ≤ n
10 we have

Pr

(

gapkP (C) ≥
√
n

20

)

≥ 1− 4

n
.

To prove this theorem we rely on the concentration of the value of Lipschitz functions on the sphere
(actually we work on the simpler Gaussian space).

4 Strengthening of LP relaxation by sparse inequalities

We now present a short proof of Theorem 5. Consider the polytope

Qn =

{

x ∈ [0, 1]n :
∑

i∈I

xi ≤
n

2
∀I ∈

(

[n]
n
2 + 1

)

}

.

It is straightforward to verify that Pn/2,n = conv(Qn ∩ Z
n).

From Part (2) of Proposition 2, Pk
n/2,n = [0, 1]

n
thus Qn ∩ Pk

n/2,n = Qn. Now x = n
n+2e belongs to Qn

and its projection onto Pn/2,n corresponds to y = 1
2e. Therefore,

d
(

Pn/2,n,Pk
n/2,n ∩Qn

)

=
n− 2

2n+ 4

√
n = Ω(

√
n).

This concludes the proof of the theorem.
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5 Strengthening by general dense cuts

Now we turn to the proof of Theorem 6. For that we will need Bernstein’s concentration inequality (stated
in a slightly weaker but more convenient form).

Theorem 9 ([3], Appendix A.2). Let X1, X2, . . . , Xn be independent random variables such that E [Xi] = 0
and |Xi| ≤ M ∀i. Let X =

∑n
i=1 Xi and σ2 = Var(X) ≤ U . Then:

Pr (|X | > w) ≤ exp

(

−min

{

w2

4U
,
3w

4M

})

.

Notice that to prove the theorem it suffices to consider the case k = n
100 , which is what we do. Recall that

P = Pn/2,n, consider any set D of valid inequalities for P with ‖D| ≤ exp( n
6002 ); for convenience let d = |D|.

From Lemma 4 we know P k contains all the points in {−1, 1}n. Also note that for any x̄ ∈ {−1, 1}n achieves
the maximal distance in P k from P , namely d(P, P k) = d(P, x̄) = 1

2

√
n. We then consider a random such

“bad” point X , namely X is uniformly distributed in {−1, 1}n (equivalently, the Xi’s are independent and
uniformly distributed over {−1, 1}). We will show that there exist an instantiation of the scaled random 2X

3
which belongs to P k,D, which will then lower bound the distance d(P, P k,D) by d(P, 2x̄

3 ) = 1
6

√
n (for some

x̄ ∈ {−1, 1}n) and thus prove the result.
To achieve this, consider a single inequality ax ≤ b from D (we assume without loss of generality that

‖a‖1 = 1). We claim that with probability more than 1 − 1
d , the point 2X

3 satisfies this inequality. By
symmetry of X , we can assume without loss of generality that a ≥ 0. To prove this, let ā be the vector
obtained by keeping the k largest components of a and zeroing out the other components (ties are broken
arbitrarily), and let a = a− ā. Since āx ≤ b is a k-sparse valid inequality for P and X ∈ P k, we have that

aX = āX + aX ≤ b+ aX. (5)

Claim 10. Var(aX) ≤ b(n−k)
k2 .

Proof. Since Var(Xi) = 1 for all i ∈ [n], we obtain that

Var(aX) =
∑n

i=1 a
2
i Var(Xi) = ||a||2. (6)

Note that the kth largest component of a is at most 1/k (otherwise ‖a‖1 > 1), hence aiXi ≤ 1
k for all i, so

we have

||a||2 =

n
∑

i=1

(aiXi)
2 ≤ 1

k

n
∑

i=1

aiXi. (7)

Moreover, by comparing averages of the components of ā and a and then using āe ≤ b, we have that

n
∑

i=1

ai
n− k

≤
n
∑

i=1

āi
k

≤ b

k
. (8)

Now by using (6)-(8), we obtain the bound Var(aX) ≤ b(n−k)
k2 , thus concluding the proof. ⋄

Now using the fact that |aiXi| ≤ 1
k , E(aX) = 0 and the above bound on Var(aX), we obtain by an

application of Bernstein’s inequality (Theorem 9) with w = 30b
√
log d√
k

:

Pr

(

aX ≥ 30b ·
√
log d√
k

)

≤ exp

(

−min

{

302b · k · log d
4(n− k)

,
30

4
· 3b ·

√

k log d

})

. (9)

5



To upper bound the right-hand side of this expression, first we employ our assumption d ≤ exp( n
6002 ) and

k = n
100 to obtain

√

log d ≤ 1

600

√
n ≤ 3 · 99

30 · 10
√
n =

3

30

(

n− k

k

)√
k.

With this at hand, we have that the minimum in the right-hand side of (9) is achieved in the first term.
Moreover, notice that b ≥ 1/2: the point p = (12 , . . . ,

1
2 ) belongs to P and hence b ≥ ap = 1

2‖a‖1 = 1/2.
Putting these observations together gives

Pr

(

aX ≥ 30b ·
√
log d√
k

)

≤ exp

(

− 302

4 · 99b · log d
)

< exp(− log d) =
1

d
.

Then using (5) and the above inequality, we obtain that with probability more than 1− 1
d we have

aX ≤ b

(

1 + 30

√
log d√
k

)

= b

(

1 +
1

2
· 600

√
log d√
n

)

≤ b
3

2
, (10)

where the first equality uses k = n
100 and the second inequality uses the assumption that

√
log d ≤ 1

600

√
n.

Now note that (10) implies that the point 2X
3 satisfies ax ≤ b with probability more than 1− 1

d .
Since |D| = d, we can then take a union bound over the above argument to get that with strictly positive

probability 2X
3 satisfies all the inequalities in D. Hence with strictly positive probability 2X

3 belongs to P k,D

and in particular there is a point x ∈ {−1, 1}n such that 2x
3 ∈ P k,D.

This gives the lower bound d(P, P k,D) ≥ d
(

P, 2x
3

)

; now we lower bound the right-hand side. It is easy

to see that the closest point in P to 2x/3 is x/2, the projection onto P . Since ||2x/3 − x/2|| = 1
6 ||x||, we

obtain that d(P , x) ≥ 1
6

√
n which concludes the proof.

6 Sparse approximation of rotations of a polytope

In this section we prove Theorem 7; for that we need to recall some standard definitions from convex
geometry.

Definition 11. Given a set P ⊆ R
n:

• We say that P is centrally symmetric if ∀x ∈ P : −x ∈ P .

• For any α ∈ R we define the set αP := {αx : x ∈ P}.

• The polar of P is the set P ◦ = {z ∈ R
n : zx ≤ 1 ∀x ∈ P}.

We also need the following classical result about approximating convex set by polytopes with few vertices
(see for instance Lemma 4.10 of [1] and [6])

Theorem 12. For every centrally symmetric convex set S ⊆ R
k, there is a polytope S′ with at most (3ǫ )

k

vertices such that S ⊆ S′ ⊆ (1 + ǫ)S

By applying this result to the polar we obtain approximations with bounded number of facets instead of
vertices.

Lemma 13. For every centrally symmetric conver set C ⊆ R
k, there is a polytope C′ with at most (3ǫ )

k

facets such that C ⊆ C′ ⊆ (1 + ǫ)C.

6



Proof. Consider the (centrally symmetric) convex set 1
1+ǫC

◦; applying the above result, we get S with (3/ǫ)k

vertices and 1
1+ǫC

◦ ⊆ S ⊆ C◦. Taking polars (and noticing that (λA)◦ = (1/λ)A◦), we get C ⊆ S◦ ⊆ (1+ǫ)C

and S◦ has at most (3/ǫ)k facets. This concludes the proof.

The key ideas used in our proof of Theorem 6 is twofold (recall that P = Pn/2,n):

1. Roughly speaking, (RP )k is the intersection of (rotations of) k-dimensional polytopes. This allow us
to use Lemma 13 above (with n set to k) to get a good approximation H of (RP )k using fewer than
exp( n

6002 ) inequalities.

2. Then argue that d(RP, (RP )k) ≈ d(RP,H) = Ω(
√
n) since d(P,R−1(H)) = Ω(

√
n) due to the number

of facets of H and Theorem 6.

Proof of Theorem 7. Note that it is sufficient to prove the result for k = n
2003 , which is what we do. To

make the above ideas precise, observe that (RP )k =
⋂

K∈([n]
k
)QK , where QK = RP + 0K × R

K̄ (we use

K̄ := [n]\K). To approximate each QK , using Lemma 13, let hK ⊆ R
k be a polytope such that projKQK ⊆

hK ⊆ (1+ǫ)projKQK and hK has at most (3/ǫ)k facets. LetHk = hK+0K×R
K̄ ; then QK ⊆ HK ⊆ (1+ǫ)QK

and HK has at most (3/ǫ)k facets.
Now notice that for convex sets A,B, we have ((1 + ǫ)A) ∩ ((1 + ǫ)B) ⊆ (1 + ǫ)(A ∩B). This gives that

if we look at the intersection
⋂

K∈([n]
k )

HK , we obtain

(RP )k =
⋂

K∈([n]
k )

QK ⊆
⋂

K∈([n]
k )

HK ⊆ (1 + ǫ)
⋂

K∈([n]
k )

QK

= (1 + ǫ)(RP )k. (11)

Notice
⋂

K∈([n]
k )

HK has at most
(

n
k

) (

3
ǫ

)k ≤
(

en
k

)k ( 3
ǫ

)k
=
(

3en
kǫ

)k
facets. Thus, setting ǫ = 1

10 we get

(

3en

kǫ∗

)k

=
(

30 · e · 2003
)

n

2003

=
(

exp(log(30 · e · 2003))
)

n

2003

=
(

exp
(

log(30 · e · 2003) · n

2003

))

< exp
( n

6012

)

. (12)

Then define H :=
⋂

K∈([n]
k )

HK , so that (RP )k ⊆ H ⊆ (1 + ǫ)(RP )k.

In order to control the relationship between this multiplicative approximation and the distance d(., .), we
introduce the set C = R([−1, 1]n). Notice that by construction RP ⊆ H ∩ C.

Claim 14. d(RP,H ∩ C) ≥ 1
6

√
n

Proof. Assume by contradiction that d(RP,H ∩ C) < 1
6

√
n. Then since distances between points and

number of facets of a polytope are invariant under rotation, we obtain that d(P,R−1(H ∩C)) < 1
6

√
n where

R−1(H ∩C) is defined using at most exp(n/(600)2) inequalities (because C has 2n facets, using (12) H has
at most exp(n/(601)2) and for sufficiently large n, exp(n/(601)2) + 2n ≤ exp(n/(600)2)). However notice

that this contradicts the result of Theorem 6, since k =
√
n

100 ≤ n
100 and R−1(H ∩C) is defined using at most

2n/(600)
2

inequalities. ⋄

But from (11) we have (1 + ǫ)(RP )k ∩ C contains H ∩ C, and hence

d(RP, (1 + ǫ)(RP )k ∩ C) ≥ 1

6

√
n. (13)

7



Claim 15. d(RP, (RP )k ∩ C) ≥ d(RP, (1 + ǫ)(RP )k ∩ C)− ǫ
√
n

Proof. Take x̄ ∈ (1 + ǫ)(RP )k ∩C and ȳ ∈ RP that achieve d(x̄, ȳ) = d((1 + ǫ)(RP )k ∩C,RP ). Look at the
point 1

1+ǫ x̄ and notice it belongs to (RP )k ∩ C; let ỹ be the point in RP closest to 1
1+ǫ x̄. Then since ȳ is

the point in RP closest to x̄,

d(RP, (1 + ǫ)(RP )k ∩ C) = d(x̄, ȳ) ≤ d(x̄, ỹ).

By triangle inequality, d(x̄, ỹ) ≤ d( 1
1+ǫ x̄, ỹ) + d( 1

1+ǫ x̄, x̄) ≤ d(RP, (RP )k ∩ C) + d( 1
1+ǫ x̄, x̄). To bound

d( 1
1+ǫ x̄, x̄), notice it is equal to ǫ

1+ǫ‖x̄‖; since x̄ belongs to C, we can upper bound ‖x̄‖ ≤ √
n (this is why

we introduced the set C in the argument). Putting these bounds together we obtain the result. ⋄

Using (13) and Claim 2 we obtain that d(RP, (RP )k) ≥ d(RP, (RP )k ∩C) ≥ d(RP, (1 + ǫ)(RP )k ∩C)−
ǫ
√
n ≥ (16 − 1

10 )
√
n. This concludes the proof of the theorem.

7 Lower bounds on approximation along most directions

We now prove Theorem 8. The main tool we use in this section is concentration of Lipschitz functions on
Gaussian spaces.

Theorem 16 (Inequality (1.6) of [4]). Let G1, G2, . . . , Gn be independent standard Gaussian random vari-
ables, and let f : Rn → R be an L-Lipschitz function, namely for all x, x′ ∈ R

n, |f(x)− f(x′)| ≤ L · ‖x− x′‖.
Then letting Z = f(G1, G2, . . . , Gn), for t > 0 we have

Pr (|Z − E(Z)| ≥ t) ≤ 2 exp

(

− t2

2L2

)

To prove Theorem 8, recall that P = Pn/10,n. Let G = (G1, G2, . . . , Gn) be a random vector whose

components are independent standard Gaussians. It is well-known that G
‖G‖2

is uniformly distributed in

the sphere (see for instance [4], page 55). Notice that gapkP (·) is positive homogeneous, so gapkP

(

G
‖G‖

)

=
1

‖G‖ · gapkP (G).

Our first step is to lower bound gapkP (G) with high probability, starting by lower bounding the maxi-
mization of G over P k.

Claim 17. With probability at least 1− 1
n , maxx∈Pk Gx ≥ 0.7n.

Proof. Since k = n
10 , we have that P k = [−1, 1]

n
(Proposition 4). It then follows that

max
x∈Pk

Gx =

n
∑

i=1

|Gi|. (14)

The random variables |Gi| have folded normal distribution [5], for which is known that E[|Gi|] =
√

2/π ≥
0.79. Since the function (x1, . . . , xn) 7→ ∑n

i=1 |xi| is
√
n-Lipschitz, we can use Theorem 16 to obtain the

bound

Pr

(

n
∑

i=1

|Gi| < 0.7n

)

≤ 2 exp

(

−0.092n

2

)

≤ 1

n
,

where the last inequality holds if n ≥ 1000. Equation (14) then concludes the proof. ⋄

Next we upper bound the maximization of G over P .

Claim 18. With probability at least 1− 2
n , maxx∈P Gx ≤ 0.6n.
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Proof. Letting ext(P ) denote the set of extreme points of P , notice that maxx∈P Gx = maxv∈ext(P ) Gv, so
it suffices to upper bound the latter. Also notice that the extreme points of P are exactly the points in
{−1, 0, 1}n with at most n

10 non-zero entries (Proposition 4).
Consider v ∈ ext(P ); we verify that Gv ≤ 0.6n with probability at least 1 − 2e−0.6n. One way of seeing

this, is by noticing that since v has at most n
10 non-zero entries, Gv =

∑

i:vi=1 Gi +
∑

i:vi=−1 −Gi is a

function of G that has at most n
10 terms and is

√

n
10 -Lipschitz, so Theorem 16 gives

Pr (Gv > 0.6n) = Pr (Gv − E[Gv] > 0.6n) ≤ 2e−0.6n, (15)

and the result follows. (Another way to see this is to use that fact that Gv is a centered Gaussian with
variance at most n

10 and use a tail bound for the latter.)

Now notice that P has
∑n/10

i=1

(

n
i

)

2i ≤ n
10

(

n
n/10

)

2n/10 extreme points. Since
(

n
t

)

≤ ( ent )
t for all 0 < t < n,

the number of extreme points of P can be upper bounded by

exp
(

ln
( n

10

)

+
n

10
(ln 10e+ ln 2)

)

≤ 2

n
e0.6n,

where the last inequality uses n ≥ 30.
Then taking a union bound of (15) over all extreme points of P gives that with probability at least 1− 2

n
for all v ∈ ext(P ) we have Gv ≤ 0.6n. This concludes the proof. ⋄

Finally, standard results give that ‖G‖2 ≤ 2
√
n with probability at least 1− 2e−0.5n (for instance, notice

by Jensen’s inequality E[‖G‖]2 ≤ E[‖G‖2] = n and apply Theorem 16 to ‖G‖). Using the fact n ≥ 30, we then
get Pr(‖G‖ ≤ 2

√
n) ≥ 1− 1

n . Then taking a union bound over this event and the events maxx∈Pk Gx ≥ 0.7n

and maxx∈P Gx ≤ 0.6n gives that with probability at least 1− 4
n we have gapkP

(

G
‖G‖
)

= 1
‖G‖ ·gapkP (G) ≥

√
n

20 .

This concludes the proof of Theorem 8.
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Appendix A

Proof of Lemma 1. It is not difficult to see that for P k = P , the lemma holds, since d(P, P k) = gapkP (c) =
0 ∀c : ||c|| = 1. When, P k 6= P , we have that d(P, P k) = d(x0, y0) > 0 is attained at x0 ∈ ext(P k) and
y0 ∈ P , the orthogonal projection of x0 onto P (see [2]). Thus, y0 ∈ F = {z ∈ R

n : az = b} ∩ P , a face
of P such that a = (x0 − y0), b = (x0 − y0)y0 and P ⊆ {z ∈ R

n : az ≤ b}. Let c = (x0 − y0)/||x0 − y0||,
we have: maxx∈P cx = cy0. On the other hand, maxz∈Pk cz = cx0, since otherwise, if ∃x̄ ∈ P k with
cx̄ > cx0, let ȳ denote the orthogonal projection of x̄ onto {z ∈ R

n : az = b}. Then, for all z ∈ P we
have d(x̄, z) ≥ d(x̄, ȳ) > d(x0, y0) (the last inequality follows from the fact that cx̄ > cx0, cȳ = cy0 and
x̄− ȳ/||x̄− ȳ|| = c), a contradiction. So, we obtain

d(P, P k) = ||x0 − y0|| = c(x0 − y0)

= max
x∈Pk

cx−max
x∈P

cx = gapkP (c).

Now, assume by contradiction that ∃c′ s.t. gapkP (c
′) > gapkP (c) and ||c′|| = 1. Let x′ ∈ P k, y′ ∈ P denote

the points at which gapkP (c
′) is attained. Using the definition of d(P, P k) and the relation between c and c′

d(P, P k) ≥ ||x′ − y′|| = (x′ − y′)

||x′ − y′|| (x
′ − y′)

= max
c:||c||=1

c(x′ − y′) ≥ c′(x′ − y′)

= gapkP (c
′) > gapkP (c) = d(P, P k),

a contradiction. Thus, we must have d(P, P k) = maxc:||c||=1 gap
k
P (c).

Appendix B

A polytope P ⊆ R
n
+ is called down-monotone if whenever x ∈ P and 0 ≤ y ≤ x, we have y ∈ P . We begin

with some preliminary results about the symmetrization we employ.

Lemma 19. For a down-monotone polytope P ⊆ R
n
+ we have P =

⋃

I⊆[n] P
I .

Proof. It is sufficient to prove that the set
⋃

I⊆[n] P
I is convex. For that, consider y1, y2 ∈ ⋃I⊆[n] P

I ; by

definition, let x1, x2 ∈ P be such that there are sets I1, I2 giving (x1)I1 = y1 and (x2)I2 = y2. For any
λ ∈ [0, 1], consider y = λy1 + (1 − λ)y2; we show y ∈ ⋃I⊆[n] P

I .
By construction we have:

yi =















λx1
i + (1− λ)x2

i i ∈ I1 ∩ I2

λx1
i − (1− λ)x2

i i ∈ I1\I2
−λx1

i + (1− λ)x2
i i ∈ I2\I1

−λx1
i − (1− λ)x2

i i ∈ [n] \I1 ∪ I2

Now, let Ī = {i ∈ [n] : yi ≥ 0}. Then define x := yĪ , which is nonnegative by construction. By non-negativity
of the xi’s, we have |λx1

i − (1 − λ)x2
i | ≤ λx1

i + (1 − λ)x2
i and | − λx1

i + (1 − λ)x2
i | ≤ λx1

i + (1 − λ)x2
i , thus

x ≤ x1 + (1 − λ)x2 ∈ P . Since P is down-monotone, we have that x belongs to P . Since y = xĪ , this gives
that y belongs to

⋃

I⊆[n] P
I , concluding the proof.

Lemma 20. For a down-monotone polytope P ⊆ R
n
+ we have (P )k = P k.

Proof. We break the proof into a couple of claims.

Claim 21. (P )k ∩ R
n
+ = P k = P k ∩ R

n
+.
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Proof. For the first equality, notice that since P
k ⊇ P k it suffices to prove (P )k ∩ R

n
+ ⊆ P k. For any

x ∈ (P )k ∩ R
n
+ and I ⊆

(

[n]
k

)

, there exists y ∈ P such that y|I = x|I . Moreover, using the fact that x ≥ 0

and the symmetry in the definition of P , there is one such y which is non-negative, and hence y ∈ P . But
again using x|I = y|I , we get that x ∈ P k.

For the second equality, since P is down-monotone we have that P k is down monotone. Therefore, from
Lemma 19 P k =

⋃

I⊆[n](P
k)I , which implies P k ∩ R

n
+ = P k. ⋄

Claim 22. Consider z ∈ (P )k and let y = zI for some I ⊆ [n]. Then y ∈ (P )k.

Proof. First note that it is straight forward to verify that if αx ≤ b is a valid inequality for P , then for every
I ⊆ [n] the inequality aIx ≤ b is also a valid inequality for P . Then the point y must belong to (P )k, since
otherwise y would be separated by some k-sparse cut ax ≤ b and so z would be separated by the k-sparse
cut aIx ≤ b. ⋄

Now we conclude the proof of the lemma. For the direction (P )k ⊆ P k, let z ∈ (P )k and let I =
{i ∈ [n] : zi ≥ 0} and x = zI . Then using Claim 22 we get x ∈ (P )k ∩ R

n
+. Thus by Claim 21 we have

x ∈ P k and hence z ∈ P k, concluding this part of the proof. For the direction P k ⊆ (P )k, let z ∈ P k. Let

I = {i ∈ [n] : zi ≥ 0} and x = zI . The point x ∈ P k ∩R
n
+. Thus, by Claim 21 we have that x ∈ (P )k ∩ R

n
+.

However, by Claim 22 we have that z ∈ (P )k. This concludes the proof.

The next result together with Lemma 20 implies Lemma 4.

Proposition 23. Consider non-negative vectors a1, . . . , am ∈ R
n
+ and define the polyhedron P = {x ∈

R
n
+ | aix ≤ bi ∀i ∈ [m]}. Then P = {x | (ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]}.

Proof. (P ⊆ {x | (ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]}) Consider z ∈ P and define I = {i ∈ [n] : zi ≥ 0}. Then
zI ∈ P ∩ R

n
+ and thus zI ∈ P (from Lemma 19). Now observe that (ai)Iz = aiz

I ≤ bi where the last
inequality follows from that fact that zI ∈ P . This concludes this part of the proof.

({x | (ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]} ⊆ P ) Consider z ∈ {x | (ai)Ix ≤ bi ∀I ⊆ [n], ∀i ∈ [m]}. Let
I = {i ∈ [n] : zi ≥ 0}. Then observe that aiz

I = (ai)Iz ≤ bi for all i ∈ [m] and zI ∈ R
n
+. Thus, zI ∈ P or

equivalently, z ∈ P . This concludes the proof.
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