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Abstract

In the mid-eighties Tardos proposed a strongly polynomial algorithm for

solving linear programming problems for which the size of the coefficient

matrix is polynomially bounded by the dimension. Combining Orlin’s

primal-based modification and Mizuno’s use of the simplex method, we

introduce a modification of Tardos’ algorithm considering only the pri-

mal problem and using simplex method to solve the auxiliary problems.

The proposed algorithm is strongly polynomial if the coefficient matrix is

totally unimodular and the auxiliary problems are non-degenerate.

Keyword: Tardos’ algorithm, simplex method, strongly polynomial algorithm,
total unimodularity

1 Introduction

In the mid-eighties Tardos [1, 2] proposed a strongly polynomial algorithm for
solving linear programming problems min{c⊤x |Ax = b, x ≥ 0} for which the
size of the coefficients of A are polynomially bounded by the dimension. Such
instances include minimum cost flow, bipartite matching, multicommodity flow,
and vertex packing in chordal graphs. The basic strategy of Tardos’ algorithm
is to identify the coordinates equal to zero at optimality. The algorithm in-
volves solving several auxiliary dual problems by the ellipsoid or interior-point
methods. By successively identifying such vanishing coordinates, the problem is
made smaller and an optimal solution is obtained inductively. Orlin [6] proposed
a modification of Tardos’ algorithm considering only the primal problem; that
is, identifying the coordinates strictly positive at optimality. He observed that
the right-hand side coefficients of the auxiliary problems might be impractically
large.

In 2014, Mizuno [5] modified Tardos’ algorithm by using a dual simplex
method to solve the auxiliary problems. He observed that this approach is
strongly polynomial if A is totally unimodular and the auxiliary problems are
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non-degenerate; that is, the basic variables are strictly positive for every basic
feasible solution. The strong polynomiality is a consequence of Kitahara and
Mizuno [3, 4] results which extend in part Ye’s result [8] for Markov decision
problems and bounds the number of distinct basic feasible solutions generated
by the simplex method.

Combining Orlin’s and Mizuno’s approaches, we introduce a modification of
the algorithm proposed by Mizuno considering only the primal problem. The
proposed algorithm is strongly polynomial if A is totally unimodular and the
auxiliary problems are non-degenerate. As it involves only the primal and does
not suffer from impractically large right-hand side coefficients, the proposed
algorithm improves the implementability of the approach. While the proposed
algorithm and the complexity analysis is focusing on the case where A is totally
unimodular, the algorithm could be enhanced to handle general matrices. The
enhanced algorithm would be strongly polynomiality if the absolute value of any
subdeterminant of A is polynomially bounded by the dimension.

2 A primal-simplex based Tardos’ algorithm

2.1 Formulation and main result

Consider the following formulation:

minimize c⊤x

subject to Ax = b, x ≥ 0
(1)

where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n are given. The optimal solution of (1),

if any, is assumed without loss of generality to be unique. Otherwise c could be
perturbed by (ǫ, ǫ2, . . . , ǫn) for a sufficiently small ǫ > 0. Alternatively, the sim-
plex method can be performed using a lexicographical order if a tie occurs when
choosing an entering variable by Dantzig’s rule. Let K∗ ⊆ N = {1, 2, . . . , n}
be the optimal basis of (1). The proposed algorithm inductively builds a sub-
set K̄ ⊆ K∗ through solving an auxiliary problem. If K̄ = K∗ we obtained
the optimal solution. Otherwise, we obtain a smaller yet equivalent problem
by deleting the variables corresponding to K̄. Thus, the optimal solution is
obtained inductively. For clarity of the exposition of the algorithm and of the
proof of Theorem 1, we assume in the remainder of the paper that A is totally
unimodular; that is, all its subdeterminants are equal to either −1, 0 or 1.

Theorem 1. The primal-simplex based Tardos’ algorithm is strongly polynomial

if A is totally unimodular and all the auxiliary problems are non-degenerate; that

is, all the basic variables are strictly positive for every basic feasible solution.

Proof. See Section 3.
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2.2 A primal-simplex based Tardos’ algorithm

Step 0 (initialization):

Let K̄ := ∅ and its complement K := N .

Step 1 (reduction):

If K̄ 6= ∅, remove the variables corresponding to K̄ in the following way.
Let G ∈ R

m×m be a nonsingular submatrix of A such that its first |K̄|
columns form AK̄ and H = G−1. Let H1 consists of the first |K̄| rows of
H , H2 denote the remainder, and consider the following reduced problem:

minimize c′⊤x′

subject to A′x′ = b′, x′ ≥ 0,
(2)

where A′ = H2AK , b′ = H2b, c
′ = cK − (H1AK)⊤cK̄ , and x′ = xK .

If K̄ = ∅, set A′ := A, b′ := b, and c′ := c.
Go to Step 2.

Step 2 (scaling and rounding):

Let m′ = m − |K̄| and n′ = n − |K̄|. For a basis L ⊆ K of A′ and
L̄ = K \ L, rewrite (2) as:

minimize c′⊤x′

subject to x′

L
+ (A′

L
)−1A′

L̄
x′

L̄
= (A′

L
)−1b′, x′ ≥ 0.

(3)

If (A′

L
)−1b′ = 0, stop. Otherwise, consider the following scaled problem:

minimize c′
⊤
x′

subject to x′

L
+ (A′

L
)−1A′

L̄
x′

L̄
= (A′

L
)−1b′/k, x′ ≥ 0,

(4)

where k = ‖A′⊤(A′A′⊤)−1b′‖2/(m′ + (n′)2). Then, consider the following
rounded problem:

minimize c′
⊤
x′

subject to x′

L
+ (A′

L
)−1A′

L̄
x′

L̄
= ⌈(A′

L
)−1b′/k⌉, x′ ≥ 0.

(5)

If (5) is infeasible, stop. Otherwise, solve (5) using the simplex method
with Dantzig’s rule. If (5) is unbounded, stop. Otherwise, let x′′ denote
the optimal solution and L′′ the optimal basis. If K̄ ∪ L′′ is an optimal
basis of the original problem (1), stop. Otherwise, go to Step 3.

Step 3 (iteration):

Set K̄ := K̄ ∪ J and K := K \ J where J = { i |x′′

i
≥ n′, i ∈ K }.

If |K| = n−m, stop. Otherwise, go to Step 1.
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2.3 Annotations of the proposed algorithm

If K̄ ⊆ K∗ and the optimal solution of (1) is unique, we can remove the non-
negativity constraints for xi for i ∈ K̄. In Step 1, the reduced problem (2) is
obtained by expressing xK̄ as H1b−H1AKxK and substituting H1b−H1AKxK

for xK̄ in the objective function. Therefore, the optimal solution for (2) yields
the optimal solution for (1) via xK̄ = H1b −H1AKxK . The constant term in
the objective function is removed for simplicity. Note that the matrices A′ and
[I, (A′

L
)−1A′

L̄
] involved in (2), (3), (4), and (5) are totally unimodular if A is

totally unimodular, see Theorem 19.5 in Schrijver [7].

In step 2, the scaling factor k is strictly positive if (A′

L
)−1b′ 6= 0 and, see

Lemma 2, ‖⌈(A′

L
)−1b′/k⌉‖∞ is polynomially bounded above in m′ and n′, which

is a key fact for showing the strong polynomiality. Although the proposed algo-
rithm builds the simplex tableau associated to (3) and the reduced problem (2)
from scratch at each iteration, it is essentially for clarity of the exposition and
can be ignored. In particular, one can observe that L′′ \ J can be used as the
basis L for (3) at the next iteration, thus enabling a warm start. By performing
Phase one of the two-phase simplex method for the rounded problem (5), we
can check the feasibility of (5) and compute an initial basic feasible solution,
unless it is infeasible.

In Step 3, J 6= ∅ by Lemma 1; that is, the size of K is strictly decreasing.
Thus, the proposed algorithm terminates after at most m iterations. If (1) has
an optimal solution, K̄ ⊆ K∗ by Corollary 1.

The stopping conditions of the proposed algorithm are:

◦ if (A′

L
)−1b′ = 0, the simplex tableau associated to (3) yields either the

optimality of x′ = 0 or the unboundedness of the reduced problem (2).

◦ since the rounded problem (5) is a relaxation of the scaled problem (4),

– the scaled problem (4) and the original problem (1) are both infeasi-
ble if (5) is infeasible

– the scaled problem (4) is unbounded or infeasible if (5) is unbounded.
In both cases, the original problem (1) has no optimal solution.

◦ if |K| = n − m in Step 3, the problem (1) is infeasible as otherwise the
algorithm finds an optimal basis in Step 2.

3 Proof of Theorem 1

Lemma 1 states that the set J = {i |x′′

i
≥ n′, i ∈ K} used in Step 3 is never

empty and thus, the proposed algorithm solves the rounded problem (5) at most
m times.
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Lemma 1. J 6= ∅ as any solution x′′ of the rounded problem (5) satisfies

‖x′′‖∞ ≥ n′.

Proof. Let x′′ be any solution of the rounded problem (5). Then

A′x′′ = A′

L⌈(A
′

L)
−1b′/k⌉.

Since, for any g, the minimal l2-norm point satisfyingA′x′ = g is A′T (A′A′T )−1g,
we have

‖x′′‖2 ≥ ‖A′T (A′A′T )−1A′

L
⌈(A′

L
)−1b′/k⌉‖2

≥ ‖A′T (A′A′T )−1b′/k‖2 − ‖A′T (A′A′T )−1A′

L
d‖2

= (m′ + (n′)2)− ‖A′T (A′A′T )−1A′

(

d

0L̄

)

‖2

≥ (n′)2 +m′ − ‖d‖2,

where k = ‖A′⊤(A′A′⊤)−1b′‖2/(m′ + (n′)2) and d = (A′

L
)−1b′/k−⌈(A′

L
)−1b′/k⌉.

Since ‖d‖∞ < 1, we obtain that

‖x′′‖∞ ≥ ‖x′′‖2/n
′ > ((n′)2 +m′ −m′)/n′ = n′.

Corollary 1 is a direct consequence of Theorem 2 and shows that K̄ ⊆ K∗.

Theorem 2 (Theorem 10.5 in Schrijver [7]). Let A be an m×n-matrix, and let

∆∗ be such that for each nonsingular submatrix B of A all entries of B−1 are at

most ∆∗ in absolute value. Let c be a column n-vector, and let b′′ and b∗ be col-

umn m-vectors such that P ′′ : max{c⊤x |Ax ≤ b′′} and P ∗ : max{c⊤x |Ax ≤
b∗} are finite. Then, for each optimal solution x′′ of P ′′, there exists an optimal

solution x∗ of P ∗ with ‖x′′ − x∗‖∞ ≤ n∆∗‖b′′ − b∗‖∞.

Corollary 1. Let x′′ be an optimal solution of the rounded problem (5), and
J = {i |x′′

i
≥ n′, i ∈ K} as defined in Step 3 of the proposed algorithm. If the

scaled problem (4) is feasible, the i-th coordinate of the optimal solution of the

scaled problem (4) is strictly positive for i ∈ J . Furthermore, the same holds for

the reduced problem (2) and the original problem (1) as the scaling factor k is

strictly positive.

Proof. Define Ã ∈ R
(2m′+n

′)×n
′

, b̃′′, and b̃∗ ∈ R
2m′+n

′

as:

Ã =





E
−E
−I



 , b̃∗ =





(A−1
L

b′)/k
−(A−1

L
b′)/k

0



 , and b̃′′ = ⌈b̃∗⌉.

where E = [I, (A′

L
)−1A′

L̄
]. With this notation, the rounded problem (5), respec-

tively the scaled problem (4), can be restated as P ′′ : max{−c′
⊤
x | Ãx ≤ b̃′′},

respectively P ∗ : max{−c′
⊤
x | Ãx ≤ b̃∗}. Since E is totally unimodular, Ã is

totally unimodular, and thus ∆∗ = 1 in Theorem 2. In addition, note that
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‖b̃′′ − b̃∗‖∞ < 1. Recall that the scaled problem (4) and P ∗ share the same
unique optimal solution x∗ as the optimal solution of the original problem (1)
is assumed to be unique. Therefore, since x′′ is an optimal solution of P ′′, we
observe that ‖x′′ − x∗‖∞ < n′ by Theorem 2 and thus, x∗

i
> 0 for i ∈ J .

Finally, we show the strong polynomiality of the proposed algorithm using
Kitahara and Mizuno [3, 4] results showing that the number of different basic
feasible solutions generated by the primal simplex method with the most neg-
ative pivoting rule – Dantzig’s rule – or the best improvement pivoting rule is
bounded by:

n⌈m
γ

δ
log(m

γ

δ
)⌉

where m is the number of constraints, n is the number of variables, and γ and
δ are, respectively, the minimum and the maximum values of all the positive
elements of the primal basic feasible solutions. Thus, we need to estimate the
values γ and δ for the introduced auxiliary problems.

Since the coefficient matrices used in the proposed algorithm are totally
unimodular and the right hand side vector of the rounded problem (5) is integer,
we have δ = 1. For γ, we use Lemma 2.

Lemma 2. For the auxiliary problem (5), we have γ ≤ γ∗ = m(mn(m+n2)+1).

Proof. Note that the right-hand side vector for (5) is ⌈(A′

L
)−1b′/k⌉. By the

total unimodularity, we observe that

‖⌈(A′

L
)−1b′/k⌉‖∞ ≤ ‖(A′

L
)−1b′/k‖∞ + 1 ≤ m′‖b′‖∞/k + 1.

The numerator ‖A′⊤(A′A′⊤)−1b′‖2 of k is bounded below by ‖b′‖∞/n′ implying
‖⌈(A′

L
)−1b′/k⌉‖∞ ≤ m′n′(m′+(n′)2)+1. Thus, by Cramer’s rule and the total

unimodularity of the coefficient matrix of (5), the l∞-norm of a basic solution
of (5) is bounded above by m′(m′n′(m′ + (n′)2) + 1).

The two-phase simplex algorithm is called at most m times. Thus, the number
of auxiliary problems solved by the proposed algorithm is bounded above by 2m
as each call corresponds to 2 auxiliary problems : one for each phase. Therefore,
if all the auxiliary problems are non-degenerate, the total number of basic so-
lutions generated by the algorithm is bounded above by 2m[n⌈mγ∗ log(mγ∗)⌉];
that is by

2mn⌈(m4n+m3n3 +m2) log(m4n+m3n3 +m2)⌉

which completes the proof of Theorem 1. Alternatively, since m ≤ n, this bound
can be restated as O(m4n4 log n). While assuming the non-degeneracy of the
auxiliary problems is needed to use Kitahara-Mizuno’s bound, the number of
degenerate updates of bases at a single basic solution is typically not too large
in practice.
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