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Abstract

Linear programming formulations for the discounted and long-run average MDPs have
evolved along separate trajectories. In 2006, E. Altman conjectured that the two linear
programming formulations of discounted and long-run average MDPs are, most likely, a
manifestation of general properties of singularly perturbed linear programs. In this note
we demonstrate that this is, indeed, the case.
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1. Introduction

The connection between linear programming and Markov Decision Processes (MDPs)
was launched in the 1960’s, with the papers by D’Epenoux [8], De Ghellinck [9] and
Manne [18]. While the linear programming formulation for the discounted MDP was
relatively straightforward, extension to the long-run average, multi-chain, MDP proved
challenging and required nearly two decades to arrive at a single linear program supplied,
by Hordijk and Kallenberg [11, 12], that completely solves such a multi-chain MDP. We
refer the reader to Kallenberg [15, 16], Puterman [21] and Altman [1] for excellent,
comprehensive, treatments of linear programming methods for discrete time Markov
decision processes. Even though the approaches to discounted and long-run average
MDPs evolved along separate trajectories, Tauberian theorems provided a theoretical
connection between the two cases with the discount parameter approaching unity from
below; e.g. see Blackwell [6] and Veinott [25, 26].
Parametric linear programming has a long history that is well documented in many

excellent textbooks (e.g., see Murty [19]). However, majority of the so-called sensitivity
analyses presented in operations research books focus on perturbations of the objective
function coefficients or of the right hand side vector; sometimes extending also to changes
in non-basic columns. To the best of our knowledge, Jeroslow [14] was, perhaps, the first
to consider perturbations of the entire coefficient matrix of a linear program. In the
context of MDP, the results of [14] have been applied to Blackwell optimality [13] and
to perturbed MDPs [2]. In Pervozvanskii and Gaitsgori [20] the authors focus on the
singularly perturbed case where a discontinuity can arise as the perturbation parameter
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approaches a critical value. In the latter and in the more recent book by Avrachenkov
et al [4] the main cause of that discontinuity has been the change in the rank of the
coefficient matrix at the critical value of the perturbation parameter. Hence, it was
perhaps surprising that such discontinuities can also arise when the rank does not change,
as shown very recently in [3].
In 2006, Eitan Altman conjectured that the two linear programming formulations

of discounted and long-run average MDPs must be a manifestation of some general
properties of singularly perturbed linear programs. In this note we demonstrate that
this is, indeed, the case by first extending the results in [3] and then formally applying
new singular perturbation results to the MDP problem.

2. General perturbed linear programming problem

Consider the family of linear programming problems parameterized by ε > 0:

max〈c(0) + εc(1), x〉
s. t. (A(0) + εA(1))x = b(0) + εb(1),

x ≥ 0,
(1)

where c(0), c(1) ∈ IRn, b(0), b(1) ∈ IRm and A(0), A(1) ∈ IRm×n. The optimal value, the
solution set and the feasible set of Problem (1) are denoted as F ∗(ε), θ∗(ε) and θ(ε),
respectively.
The goal of the perturbed linear programming approach is to construct, if possible,

a linear programming problem that does not depend on ε and such that its optimal
solutions are feasible limiting optimal for (1) in the sense prescribed below by Definition
1. The linear program with this property will be called a limiting LP.

Definition 1. A vector x ∈ IRn is called feasible limiting optimal for the perturbed linear
program (1) if x ∈ lim infε↓0 θ(ε) and limε↓0 F

∗(ε) = 〈c(0), x〉.

Let us introduce and discuss a set of assumptions:

Assumption (H0): There exists a positive γ0 and a bounded set B ⊂ IRn such that
θ(ε) ⊂ B for every ε ∈ (0, γ0].

Assumption (H∗
0 ): There exists a positive γ0 and a bounded set B ⊂ IRn such that

θ∗(ε) ⊂ B for every ε ∈ (0, γ0].

Assumption (H1): The matrix A(0) has rank m.

Assumption (H2): For all ε sufficiently small and positive, the rank of A(0) + εA(1) is
equal to m.

Note that Assumption (H1) implies Assumption (H2). Also, Assumption (H0) implies
Assumption (H∗

0 ).

The unperturbed problem is said to satisfy Slater condition if

θ(0) ∩ IRn
++ 6= ∅ , where IRn

++

def

= {x ∈ IRn : x > 0}. (2)
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In [20], it has been shown that if Assumptions (H0) and (H1) are valid and if the Slater
condition (2) is satisfied, then the unperturbed LP is the limiting problem for the per-
turbed program (1). That is, every optimal solution of the former is limiting optimal for
the latter. In [20] it has also been shown that if Assumption (H1) is not satisfied, the
discontinuity of θ(ε) at ε = 0 may occur. This is a case of so-called singular perturbation.
The authors of [20] proposed a limiting LP to deal with the case of singular perturbation.
Then, in [3] it has been demonstrated that if the Slater condition is not satisfied for the
unperturbed LP, the discontinuity of θ(ε) at ε = 0 may occur with Assumptions (H0)
and (H1) being satisfied. The authors of [3] have constructed a limiting LP for the case
when the Slater condition is not satisfied for the unperturbed problem. Below we show
that a result similar to that obtained in [3] can be established with the replacement of
(H0) by (H∗

0 ).
Assume that (H1) is satisfied and define the set

J0 := {i ∈ {1, . . . , n} : ∃x ∈ θ(0) such that xi > 0}. (3)

According to this definition, if j 6∈ J0, then xj = 0 for every x ∈ θ(0). Moreover, if
J0 6= ∅, convexity of θ(0) implies that there exists x̂ ∈ θ(0) such that x̂j > 0 for every
j ∈ J0. Note that J0 can be determined by solving n independent linear programming
problems maxx∈θ(0) xj , with j = 1, . . . , n.
Consider the following linear program

max{〈c(0), x0〉 : x0 ∈ θ1}
def

= F ∗
1 , (4)

where
θ1

def

= {x0 : ∃ (x0, x1) ∈ Θ1}, (5)

and

Θ1 = {(x0, x1) ∈ IRn × IRn : x0 ∈ θ(0), A(0)x1 +A(1)x0 = b(1), x1
j ≥ 0 ∀j 6∈ J0}. (6)

Note that,
θ1 ⊂ θ(0) and therefore F ∗

1 ≤ F ∗(0).

Slater condition (2) is equivalent to having J0 = {1, 2, . . . , n}. If this is the case, then
θ1 = θ(0) (provided that Assumption (H1) is satisfied), and the problem (4) is equivalent
to the unperturbed problem. If the Slater condition is not satisfied, these two problems
are not equivalent.
Following [3], let us introduce the following extended version of the Slater condition.

Definition 2. We shall say that the extended Slater condition of order 1 (or, for brevity,
ES-1 ) is satisfied if there exists (x̂0, x̂1) ∈ Θ1 such that x̂1

j > 0 for every j 6∈ J0 and

x̂0
j > 0 for every j ∈ J0.

Theorem 1. Let Assumptions (H∗
0 ) and (H2) be satisfied. Then

lim sup
ε↓0

θ∗(ε) ⊂ θ1 (7)

and
lim sup

ε↓0
F ∗(ε) ≤ F ∗

1 . (8)
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If, in addition, Assumption (H1) and the ES-1 condition are satisfied, then

lim sup
ε↓0

θ∗(ε) ⊂ θ∗1 , (9)

where θ∗1 is the set of optimal solutions of problem (4), and

lim
ε↓0

F ∗(ε) = F ∗
1 . (10)

Also, any optimal solution x0 of the problem (4) is limiting optimal for the perturbed
problem (1).

Proof. Most steps of the proof are similar to the corresponding steps of the proof of
Theorem 2.1 in [3], and we will only indicate the steps that differ from those used in the
aforementioned proof.
Let us introduce the following notations. Given a finite set S, denote by |S| the number

of elements of S. Let Sm := {J ⊂ {1, 2, . . . , n} : |J | = m}, so |Sm| =
(

n
m

)

. Given a

matrix D ∈ IRm×n and an index set J ∈ Sm, the matrix DJ ∈ IRm×m is constructed by
extracting from D the set of m columns indexed by the elements of J . In a similar way,
given a vector x ∈ IRn and J ∈ Sm, we denote by xJ the vector of IRm constructed by

extracting from x the coordinates xj , j ∈ J (that is, xJ
def

= {xj}, j ∈ J).
In Lemmas 3.1 and 3.2 of [3] it was established that

Sm = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅,

where Ω1 and Ω2 are defined by the equations

Ω1 := {J ∈ Sm : (A(0) + εA(1))J is nonsingular for ε ∈ (0, γ)} 6= ∅,

Ω2 := {J ∈ Sm : (A(0) + εA(1))J is singular for all ε ∈ [0, γ)}

(here and in what follows, γ stands for a positive number small enough).
Also, it was established that, if

xJ (ε) := [(A(0) + εA(1))J ]
−1(b0 + εb1) (11)

(J ∈ Ω1) and if
lim sup

ε↓0
‖xJ(ε)‖ < ∞, (12)

then xJ (ε) allows the power series expansion

xJ (ε) =

∞
∑

l=0

εlxl
J , ∀ε ∈ (0, γ). (13)

Let Ω∗
1 ⊂ Ω1 be such that J ∈ Ω∗

1 if and only if there exists a subsequence ε′ → 0 such
that the vector x(ε) = {xj(ε)}, j = 1, ..., n, the non-zero elements of which are equal to
the corresponding non-zero elements of xJ (ε)) = {xj(ε)}, j ∈ J (with xJ (ε) being as in
(11)) satisfies the inclusion

x(ε′) ∈ θ∗(ε′).
4



Since (due to Assumption (H∗
0 )) (12) is satisfied, xJ (ε)) allows the expansion (13), and

hence

x(ε) =

∞
∑

l=0

εlxl , ∀ε ∈ (0, γ), (14)

where non-basic components (j /∈ J) are equal to zero in both left and right hand sides.
From (14) it follows, in particular, that

lim
ε→0

x(ε) = x0 (15)

By substituting (14) into the constraints of the perturbed problem (1), one can readily
verify that (x0, x1) ∈ Θ1. Hence x0 ∈ θ1.
The argument above proves that any partial limit (cluster point) of any basic optimal

solution of the problem is contained in θ1. Since any element of θ∗(ε) can be presented
as a convex combination of the optimal basic solutions and since θ1 is convex, this proves
the validity of (7), which, in turn, implies (8).
Let us now establish the validity of the second part of the theorem. Let x0 ∈ θ∗1 and

let x1 be such that (x0, x1) ∈ Θ1. Define (x0(δ), x1(δ)) by the equation

x0(δ)
def

= (1 − δ)x0 + δx̂0, x1(δ)
def

= (1− δ)x1 + δx̂1, δ ∈ (0, 1), (16)

where (x̂0, x̂1) are as in the ES-1 condition. Note that (x0(δ), x1(δ)) ∈ Θ1 (due to
convexity of Θ1) and also that

x0
j(δ) ≥ δx̂0

j ≥ δa ∀j ∈ J0 , x1
j (δ) ≥ δx̂1

j ≥ δa ∀j /∈ J0, (17)

where
a

def

= min{min
j′∈J0

x̂0
j′ , min

j′ /∈J0

x̂1
j′} > 0. (18)

In the proof of Theorem 2.1 in [3], it has been established that there exists x2(δ, ε) such
that

x(δ, ε)
def

= x0(δ) + εx1(δ) + ε2x2(δ, ε) ∈ θ(ε) ∀δ ∈ [c1ε, 1), ∀ε ∈ (0, γ) (19)

and such that
||x2(δ, ε)|| ≤ c2 ∀δ ∈ (0, 1), ∀ε ∈ (0, γ), (20)

where c1 and c2 are sufficiently large constants. Take δ(ε)
def

= c1ε. Then

x̃(ε)
def

= x(δ(ε), ε) ∈ θ(ε) ∀ε ∈ (0, γ), (21)

and
lim
ε→0

x̃(ε) = x0. (22)

Since
〈c(0) + εc(1), x̃(ε)〉 ≤ F ∗(ε),

from (22) it follows that
F ∗
1 = 〈c(0), x0〉 ≤ lim inf

ε→0
F ∗(ε) (23)
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(the equality being due to the fact that x0 was chosen to be an optimal solution of (4)).
The validity of (23) and (8) implies the validity of (10). The latter along with (7) imply
(9). Finally, the fact that any optimal solution x0 of the problem (4) is limiting optimal
in the perturbed problem (1) follows from (22) and from that

lim
ε→0

〈c(0) + εc(1), x̃(ε)〉 = 〈c(0), x0〉 = F ∗
1 = lim

ε→0
F ∗(ε).

✷

Instead of problem (4), it may be more convenient to deal with the following problem

max〈c(0), x0〉
s. t. A(0)x0 = b(0),
A(0)x1 +A(1)x0 = b(1),

x0 ≥ 0,
x1 ≥ 0,

(24)

the statement of which does not involve the set J0. Let us give a sufficient condition,
under which the problems (4) and (24) are equivalent in the sense of Definition 3 intro-
duced below (the latter makes use of the fact that the objective function in (4) and (24)
do not explicitly depend on x1).

Definition 3. We will say that the problems (4) and (24) are equivalent when the sets
θ1 and θ̃1,

θ̃1
def

= {x0 ∈ θ(0) : there exists x1 ∈ IRn such that A(0)x1 +A(1)x0 = b(1), x1 ≥ 0}, (25)

coincide.

A sufficient condition for problems (4) and (24) to be equivalent is provided by the
following result.

Proposition 1. Let J0 be as in (3). If there exists α := {αj}j∈J0
such that

A
(0)
J0

α = 0, with αj > 0 ∀ j ∈ J0. (26)

Then problems (4) and (24) are equivalent.

Proof. We must show that θ̃1 = θ1. The definitions readily imply that θ̃1 ⊂ θ1. Let
us prove the opposite inclusion. Take x0 ∈ θ1. From the definition of θ1 it follows that
x0 ∈ θ(0). From this definition it also follows that there exists x1 = (x1

j ) ∈ IRn such that

x1
j ≥ 0, ∀ j 6∈ J0, A(0)x1 +A(1)x0 = b(1). (27)

If x1 ≥ 0, then by definition x0 ∈ θ̃1. Otherwise, there exist a component (or components)
of x1 such that x1

j < 0 for j ∈ J0. In this case, we can take

t > max
j∈J0, x1

j
<0

{−x1
j/αj} > 0,

6



where {αj}j∈J0
are as in (26). Define x̂ ∈ IRn as

x̂j :=

{

tαj + x1
j if j ∈ J0,

x1
j if j 6∈ J0,

The definition of t ensures x̂ ≥ 0. Using (26) and (27), we also have

A(0)x̂+A(1)x0 = A
(0)
J0

(tα+ x1
J0
) +A

(0)

JC
0

[x1]JC
0

+A(1)x0

= tA
(0)
J0

α+A(0)x1 +A(1)x0 = b(1),

where we used the notation JC
0 := {i : i 6∈ J0}. The above expression implies that

x0 ∈ θ̃1, because we found a vector x̂ ∈ IRn such that x̂ ≥ 0 and A(0)x̂ + A(1)x0 = b(1).
✷

Corollary 1. If b(0) = 0, then problems (4) and (24) are equivalent.

Proof. By the very definition of J0, there exists xJ0
> 0 such that

A
(0)
J0

xJ0
= b(0) = 0.

Thus, the role of α is played by xJ0
in the present case. ✷

3. Application to Markov Decision Processes

Let us consider a discrete-time Markov Decision process (also called a Controlled
Markov Chain) with a finite state space X = {1, ..., N} and a finite action space
A(i) = {1, ...,mi} for each state i ∈ X. At any time point t the system is in one of
the states i ∈ X and the controller or “decision-maker” chooses an action a ∈ A(i); as
a result the following occur: (a) the controller gains an immediate reward ria, and (b)
the process moves to a state j ∈ X with transition probability piaj , where piaj ≥ 0 and
∑

j∈X
piaj = 1.

A decision rule πt at time t is a function which assigns a probability to the event that
any particular action a is taken at time t. In general, πt may depend on all history ht =
(i0, a0, i1, a1, ..., at−1, it) up to time t. The distribution πt(at|ht) defines the probability
of selecting the action at at time t given the history ht.

A control (or policy) is a sequence of decision rules π = (π0, π1, ..., πt, ...). A policy π
is called Markov if πt(·|ht) = πt(·|it). If πt(·|i) = πt′(·|i) for all t, t

′ ∈ IN then the Markov
policy π is called stationary. It is defined by a distribution πia, where πia is the probability
of choosing action a when the system is in state i. Furthermore, a deterministic policy
π is a stationary policy whose single decision rule is nonrandomized. It can be defined
by the function f(i) = a, a ∈ A(i).

Let U , US and UD denote the sets of all policies, all stationary policies and all de-
terministic policies, respectively. It is known that, in many contexts, there is no loss
of generality in restricting consideration to stationary or even deterministic policies (see
e.g., [21]).

7



For any stationary policy π ∈ US we can define the corresponding transition matrix
P (π) = {pij(π)}

N
i,j=1 and the reward vector r(π) = {ri(π)}

N
i=1

pij(π) :=
∑

a∈A(i)

piajπia, ri(π) :=
∑

a∈A(i)

riaπia.

The expected average reward gi(π) and the expected discounted reward vαi (π), associated
with policy π, can be expressed as follows:

gi(π) := lim
T→∞

1

T

T
∑

t=1

[

P t−1(π)r(π)
]

i

and

vαi (π) := (1− α)

∞
∑

t=1

αt−1
[

P t−1(π)r(π)
]

i
= (1− α)

[

(I − αP (π))−1r(π)
]

i
,

respectively, where i ∈ X is an initial state and α ∈ (0, 1) is a discount factor.

Often an interest rate ρ = (1 − α)/α is used instead of the discount factor. We note
that the interest rate is close to zero when the discount factor is close to 1.

The following power series expansion, so-called Blackwell series expansion [6, 21], helps
to establish a relation between discount optimality and average optimality

vαi (π) = (1− α)

[

gi(π)

1− α
+ hi(π) + ...

]

= gi(π) + (1− α)hi(π) + ... , (28)

where h(π) = (I − P (π) + P ∗(π))−1(I − P ∗(π))r(π) is a so-called bias vector. We note
that often the expected discount reward vector is introduced without the factor (1− α).
In that case the power series (28) becomes a Laurent power series. However, the factor
(1−α) makes exposition of the results easier in the context of our singular perturbation
approach.

We now introduce the discount optimality and the average optimality criteria in MDP
optimization problem.

Definition 4. The stationary policy π∗ is called the discount optimal for fixed α ∈ (0, 1)
if

vαi (π∗) ≥ vαi (π)

for each i ∈ X and all π ∈ US.

Definition 5. The stationary policy π∗ is called the average optimal if

gi(π∗) ≥ gi(π)

for each i ∈ X and all π ∈ US.

The power series (28) suggests another equivalent definition of the average optimality.
8



Definition 6. The stationary policy π∗ is called the average optimal if

lim
α↑1

[vαi (π∗)− vαi (π)] ≥ 0

for each i ∈ X and all π ∈ US.

We note that this definition corresponds to the concept of limiting optimality in the
context of perturbed linear programming.
In the case of discount optimality, the optimal value vector can be found as a solution

of the following LP (see e.g., [1, 21]).

min
γ

∑

j

γj ṽj (29)

subject to
∑

j

[δij − αpiaj ]ṽj ≥ ria, ∀(i, a) ∈ X× A,

where γj > 0 and can be chosen as elements of some probability distribution. Without
loss of generality, we may assume that the additional non-negativity constraints

ṽj ≥ 0, ∀ j,

are satisfied. The latter can be induced by adding a sufficiently large value r0 > 0 to all
immediate rewards ria. This transformation does not change the structure of optimal
policies.
In the case of long-run average optimality, the optimal value vector can be found as a

solution of another LP (see e.g., [1, 21]).

min
γ

∑

j

γj ṽj (30)

subject to
∑

j

[δij − piaj ]ṽj ≥ 0 ∀(i, a) ∈ X× A,

ṽi +
∑

j

[δij − piaj ]ũj ≥ ria ∀(i, a) ∈ X× A.

Again, by adding a sufficiently large value r0 > 0 to all immediate rewards and noticing
that

∑

j

δij =
∑

j

piaj = 1 ∀ (i, a), (31)

one may assume, without loss of generality, that the non-negativity constraints

ṽj ≥ 0, ũj ≥ 0 ∀ j,

are satisfied.
Our aim is to demonstrate that LP (30) for the log-run average MDP can be derived

from LP (29) for the discounted MDP by the formal singular perturbation methods
[3, 20].
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Take ε
def

= (1−α)/α. By making a change of variables vj = ε/(1+ ε)ṽj, one can rewrite
the LP problem (29) in the form

min
γ

∑

j

γjvj (32)

subject to
∑

j

[(1 + ε)δij − piaj ]vj ≥ εria, ∀(i, a) ∈ X× A,

vj ≥ 0, j = 1, ..., n.

Since Theorem 1 is stated for the linear programs with equality constraints, let us intro-
duce additional variables σia to transform (32) to

min
γ

∑

j

γjvj (33)

subject to
∑

j

[(1 + ε)δij − piaj ]vj − σia = εria ∀(i, a) ∈ X× A,

vj ≥ 0, σia ≥ 0.

Note that the linear program above is just a particular case of (1) with A(0) = {δij −
Piaj | − I}, A(1) = {δij | 0}, b(0) = {0}, b(1) = {ria}, and c(0) = {γj}, c(1) = 0. The
problem (24) (which is equivalent to (4) due to the fact that b(0) = {0}; see Corollary 1)
can in this case be written as follows

min
γ

∑

j

γjv
0
j (34)

subject to
∑

j

[δij − piaj ]v
0
j − σ0

ia = 0 ∀(i, a) ∈ X× A, (35)

v0i +
∑

j

[δij − piaj ]v
1
j − σ1

ia = ria ∀(i, a) ∈ X× A, (36)

v0j ≥ 0, σ0
ia ≥ 0, v1j ≥ 0, σ1

ia ≥ 0.

Note that this problem is equivalent to (30) (with v0j and v1j playing the roles of ṽj and
ũj respectively).

Theorem 2. The Assumptions (H∗
0 ), (H1) and the ES-1 condition are satisfied and,

hence, the problem (34) is limiting LP for the problem (33) in the sense that (9) and (10)
are satisfied.

Proof. Since we consider the discounted reward vector normalized by 1 − α = ε(1 + ε)
(see (28)), the optimal value of the problem (33) remains bounded as ε → 0. Hence,
since also γj are assumed to be positive, Assumption (H∗

0 ) is satisfied. Assumption (H1)
is obviously satisfied as well (as the matrices of constraints contain the identity matrix).
Let us now prove that the ES-1 condition is satisfied. Denote by J0,v and J0,σ the sets
of indices such that from the fact v0 = (v0j ) ≥ 0 and σ0 = (σ0

j ) ≥ 0 satisfy (35) it follows
that

v0j = 0 ∀j /∈ J0,v, σ0
j = 0 ∀j /∈ J0,σ.

10



To verify the ES-1 condition, one needs to show that there exist

v̂0 = (v̂0j ) ≥ 0, σ̂0 = (σ̂0
j ) ≥ 0, v̂1 = (v̂1j ) ≥ 0, σ̂1 = (σ̂1

j ) ≥ 0 (37)

that satisfy (35), (36) as well as the property that

v̂0j > 0 ∀j ∈ J0,v, σ̂0
j > 0 ∀j ∈ J0,σ, v̂1j > 0 ∀j /∈ J0,v, σ̂1

j > 0 ∀j /∈ J0,σ. (38)

Note that Jc
0,v = ∅, due to the fact that

∑

j [δij −piaj ]M = 0 for any M > 0 and any pair

(i, a). Also, if v0 = (v0j ) ≥ 0, σ0 = (σ0
j ) ≥ 0, v1 = (v1j ) ≥ 0, σ1 = (σ1

j ) ≥ 0 satisfy (35),

(36) and the inequalities v0j > 0 ∀j, σ0
j > 0 ∀j ∈ J0,σ, are valid, then v̂0, σ̂0, v̂1, σ̂1,

with the components defined as follows

v̂0j
def

= v0j +M ∀j, σ̂0
j

def

= σ0
j ∀j, v̂1j

def

= v1j ∀j, σ̂1
j

def

= σ1
j +M ∀j, (39)

will satisfy (35), (36) and (38), provided that M is chosen large enough. This completes
the proof.
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