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Abstract

The blocking probability of a finite-source bufferless queue is a fixed
point of the Engset formula, for which we prove existence and uniqueness.
Numerically, the literature suggests a fixed point iteration. We show that
such an iteration can fail to converge and is dominated by a simple Newton’s
method, for which we prove a global convergence result. The analysis yields
a new Turán-type inequality involving hypergeometric functions, which is
of independent interest.
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1 Introduction

The Engset formula is used to determine the blocking probability in a bufferless
queueing system with a finite population of sources. Applications to bufferless
optical networks [6, 20, 12, 14, 13] have sparked a renewed interest in the En-
gset model and its generalizations [5]. Sztrik provides a literature review of
applications [18], including multiprocessor performance modeling and the machine
interference problem, in which machines request service from one or more repair-
men. The analysis herein was inspired by a recent application in sizing vehicle
pools for car-shares [4].

The queue under consideration is the M/M/m/m/N queue [10].∗ This is
a bufferless queue with N sources that can request service, provided by one of
m identical servers. When all m servers are in use, incoming arrivals are blocked
and leave the system without queueing. The Engset formula is used to determine

∗Subject to some technical assumptions, the Engset formula remains valid under general distri-
butions (i.e. G/G/m/m/N) [19, Section 5.4].
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the probability P that any random arrival is blocked. The Engset formula is [11,
Equation (62)]

P = lim
P′→P

(N−1
m ) (M(P′))m

∑m
X=0 (

N−1
X ) (M(P′))X︸ ︷︷ ︸

f (P)

where M(P) =
α

1− α (1− P)

(Engset formula)
The number of sources N, the number of servers m, and the offered traffic
per-source† α are given as input.

It is not obvious if any value of P satisfies the Engset formula, or if multiple
values of P might satisfy it. To the authors’ best knowledge, this work is the
first to establish the existence and uniqueness of a solution (Section 2).

Remark. The limit appearing in the Engset formula is a technical detail to avoid
(for ease of analysis) the removable discontinuity at P = 1− 1/α. We mention
that f may admit nonremovable discontinuities at some negative values of P (at
which the limit does not exist), though this does not affect the analysis.

Remark. Let λ be the idle source initiation rate, the rate at which a free source (i.e.
one not being serviced) initiates requests, and 1/µ be the mean service time. If P
is the blocking probability, M(P) = λ/µ. This substitution removes P from the
right-hand side of the Engset formula [11, Equation (70)]. However, λ is often
unknown in practice, and hence this method is only applicable in special cases,
or subject to error produced from approximating λ.

2 Properties of the Engset formula

If the number of servers m is zero, any request entering the queue is blocked
(P = 1). If there are at least as many servers as there are sources (m ≥ N), any
request entering the queue can immediately be serviced (P = 0). Finally, the
case of zero traffic (α = 0) corresponds to a queue that receives no requests. We
assume the following for the remainder of this work:

Assumption. m and N are integers with 0 < m < N. α is a positive real number.

The following lemmas characterize f defined in the Engset formula and are
used to establish several results throughout this work:

Lemma 1. f is strictly decreasing on [0, ∞).

Lemma 2. f is convex on [1− 1/α, ∞) ⊃ [1, ∞).

Owing partly to Lemma 1, our first significant result is as follows:

Theorem 3. There exists a unique probability P? satisfying the Engset formula.

†Some sources represent the Engset formula using the total offered traffic E = Nα in lieu of α. In
this case, M(P) = E/(N − E(1− P)).

2



Proofs of these results are given in Appendix A. The proof of Theorem 3
establishes that f (0)− 0 and f (1)− 1 have opposite signs. Therefore, P? can be
computed via the bisection method on the interval [0, 1] applied to the map

P 7→ f (P)− P. (1)

3 Computation

3.1 Fixed point iteration

The literature suggests the use of a fixed point iteration [9, page 489]. This
involves picking an initial guess P0 for the blocking probability and considering
the iterates of f evaluated at P0. Specifically,

P0 ∈ [0, 1]
Pn = f (Pn−1) for n > 0. (fixed point iteration)

We characterize convergence in the following result:

Theorem 4. If α ≤ 1 and | f ′(0)| < 1, the fixed point iteration converges to P?.

While the first inequality appearing above is a restriction on the per-source
traffic, the second inequality is hard to verify, as it involves the derivative of f .
This inspires the following:

Corollary 5. If α ≤ 1 and N ≥ 2m, the fixed point iteration converges to P?.

The condition N ≥ 2m requires there to be twice as many sources as there
are servers, satisfied in most (but not all) reasonable queueing systems.

Proofs of these results are given in Appendix A.

3.2 Newton’s method

Newton’s method uses first-derivative information in an attempt to speed up
convergence. In particular,

P0 ∈ [0, 1]

Pn = Pn−1 −
f (Pn−1)− Pn−1

f ′(Pn−1)− 1
for n > 0. (Newton’s method)

Often, convergence results for applications of Newton’s method are local in
nature: they depend upon the choice of initial guess P0. By using the convexity
established in Lemma 2, we are able to derive a global result for Newton’s
method:

Theorem 6. If α ≤ 1, Newton’s method converges to P?.

A proof of this result is given in Appendix A. Superficially, Theorem 6 seems
preferable to Corollary 5 as it does not place restrictions on N or m. In practice,
we will see that Newton’s method outperforms the fixed point iteration, and
that it performs well even when α > 1 (Section 4).
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(a) m = 10, N = 2m, α = 1, and P0 = 1/2: conver-
gent.
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(b) m = 15, N = 20 < 2m, α = 1, and P0 = 1/2:
divergent.

Figure 1: Oscillatory nature of the fixed point iteration.

4 Comparison of methods

Table 1 compares methods for a queueing system with N = 20 sources (though
we mention that the observed trends seem to hold independent of our choice of
N). The initial guess used is P0 = 1/2. The stopping criterion used is |Pn+1 −
Pn| ≤ tol = 2−24.

Bisection halves the search interval at each step, so that the maximum possi-
ble error at the n-th iteration is 2−n. It follows that to achieve a desired error
tolerance tol, bisection requires d− lg(tol)e = d− lg(2−24)e = 24 iterations in-
dependent of the input parameters (for this reason, it is omitted from the tables).
The fixed point iteration fails to converge or performs poorly (sometimes taking
hundreds of iterations) precisely when the sufficient conditions of Corollary 5
are violated. Newton’s method outperforms both algorithms by a wide margin,
often converging in just a few iterations.

Insight into the poor performance of the fixed point iteration is given by
Corollary 12 of Appendix A, which exploits the oscillatory nature of the
fixed point iteration (see Figure 1) to derive successively tighter upper bounds
on the number of iterations required for convergence up to a desired error
tolerance.

Remark. Naïve implementations computing f (and f ′) directly may take
more iterations than necessary due to floating point error. Lemma 9
of Appendix A shows that f is a reciprocal of a hypergeometric func-
tion so that standard computational techniques [16] can be used. A
quasi-Newton implementation has been made available by the authors:
https://github.com/parsiad/fast-engset/releases.
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Servers Probability Number of iterations

m P? Fixed point Newton

1 8.322e-01 6 3
2 6.725e-01 7 3
3 5.235e-01 7 3
4 3.879e-01 8 3
5 2.693e-01 9 3
6 1.714e-01 8 4
7 9.718e-02 8 4
8 4.753e-02 7 4
9 1.947e-02 6 4
10 6.554e-03 5 3
11 1.798e-03 4 3
12 4.005e-04 4 3
13 7.194e-05 3 3
14 1.028e-05 3 3
15 1.142e-06 3 3
16 9.518e-08 3 2
17 5.599e-09 2 2
18 2.074e-10 2 2
19 3.638e-12 2 2

(a) α = 1/4

Servers Probability Number of iterations

m P? Fixed point Newton

1 9.087e-01 7 3
2 8.187e-01 8 3
3 7.303e-01 9 3
4 6.436e-01 10 3
5 5.591e-01 11 3
6 4.773e-01 11 3
7 3.985e-01 14 3
8 3.235e-01 15 4
9 2.531e-01 16 4

10 1.885e-01 16 4
11 1.310e-01 14 4
12 8.259e-02 12 4
13 4.527e-02 10 4
14 2.041e-02 8 4
15 7.124e-03 6 4
16 1.827e-03 5 4
17 3.254e-04 4 3
18 3.623e-05 3 3
19 1.907e-06 3 3

(b) α = 1/2

Servers Probability Number of iterations

m P? Fixed point Newton

1 9.523e-01 7 3
2 9.047e-01 8 3
3 8.574e-01 10 3
4 8.102e-01 12 3
5 7.633e-01 14 4
6 7.166e-01 17 4
7 6.702e-01 20 4
8 6.241e-01 25 4
9 5.782e-01 33 4
10 5.327e-01 45 3
11 4.874e-01 79 3
12 4.424e-01 556 4
13 3.976e-01 FAIL 4
14 3.530e-01 FAIL 4
15 3.084e-01 FAIL 5
16 2.636e-01 FAIL 5
17 2.181e-01 FAIL 6
18 1.708e-01 FAIL 7
19 1.187e-01 FAIL 7

(c) α = 1

Servers Probability Number of iterations

m P? Fixed point Newton

1 9.756e-01 7 3
2 9.512e-01 9 3
3 9.268e-01 10 3
4 9.025e-01 13 4
5 8.781e-01 15 4
6 8.538e-01 19 4
7 8.295e-01 24 4
8 8.053e-01 33 4
9 7.810e-01 54 4

10 7.568e-01 136 4
11 7.325e-01 FAIL 4
12 7.083e-01 FAIL 4
13 6.840e-01 FAIL 4
14 6.597e-01 FAIL 4
15 6.353e-01 FAIL 4
16 6.107e-01 FAIL 4
17 5.859e-01 FAIL 5
18 5.604e-01 FAIL 5
19 5.336e-01 FAIL 5

(d) α = 2

Table 1: Comparison under N = 20. FAIL indicates divergence.
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5 A Turán-type inequality

Turán-type inequalities are named after Paul Turán, who proved the result
(Ln(x))2 > Ln−1(x)Ln+1(x) on −1 < x < 1 for the Legendre Polynomials {Ln}.
Such inequalities appear frequently for hypergeometric functions and are often
a direct consequence of their log-concavity/convexity. There exists a maturing
body of work characterizing the log-concavity/convexity and associated Turán-
type inequalities of generalized hypergeometric functions (see, e.g., [2, 3, 8, 7]).

The analysis used to prove Lemma 2 gives rise to a new Turán-type inequal-
ity. Letting 2F1 denote the ordinary hypergeometric function [1], we have the
following result, whose proof is given in Appendix A:

Theorem 7 (A Turán-type inequality). Let b be a positive integer, c a positive real
number, and

hn(x) = 2F1(1 + n,−b + n; c + n;−x).

Then, the map x 7→ h1(x)/(h0(x))2 is strictly decreasing on [0, ∞) and

b (c + 1) · (h1(x))2 ≥ (b− 1) c · h0(x)h2(x) for x ≥ 0. (2)

6 Future work

Numerical evidence suggests that Lemma 2 can be relaxed:

Conjecture 8. f is convex on [0, ∞).

This result would remove the requirement α ≤ 1 from all claims in this work.
In particular, this would yield unconditional convergence for Newton’s method.

A Proofs of results

Let (·)X denote the Pochhammer symbol:

(c)X =

{
c (c + 1) · · · (c + X− 1) , if X is a positive integer;
1, if X = 0.

(Pochhammer symbol)
The ordinary hypergeometric function [1] satisfies

2F1(a, b; c; z) =
∞

∑
X=0

(a)X (b)X
(c)X

zX

X!
if b ∈ {−1,−2, . . .} or |z| < 1.

(hypergeometric function)
The Pochhammer symbol can also be used to represent the falling factorial c(X):

c(X) = c (c− 1) · · · (c− X + 1)

= (−c) (−1) (−c + 1) (−1) · · · (−c + X− 1) (−1) = (−c)X (−1)X .
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Lemma 9. f (P) defined in the Engset formula satisfies

1/ f (P) = 2F1(1,−m; N −m; 1− P− 1/α).

Proof. If P = 1− 1/α, the claim is trivial. Otherwise, the reciprocal of M(P) in
the Engset formula is

1/M(P) = − (1− P− 1/α) . (3)

We can write the binomial coefficients in the Engset formula in terms of
Pochhammer symbols as follows:(

N − 1
X

)
/
(

N − 1
m

)
=

m!
X!

(N − 1−m)!
(N − 1− X)!

=
m(m−X)

(N −m)m−X
. (4)

Substituting (3) and (4) into the reciprocal of f (P) yields

1
f (P)

=
m

∑
X=0

m(m−X)

(N −m)m−X
(1/M(P))m−X =

m

∑
X=0

m(X)

(N −m)X
(1/M(P))X

=
m

∑
X=0

(−m)X
(N −m)X

(1− P− 1/α)X =
∞

∑
X=0

(−m)X
(N −m)X

(1− P− 1/α)X .

The upper bound of summation is relaxed to ∞ in the last equality since
(−m)X = 0 if X > m. The desired result then follows from multiplying each
summand in the series by (1)X/X! = 1. �

The following identity should be understood subject to the convention
0 = 0 ·∞ = ∞ · 0 (∞ denotes complex infinity):

Lemma 10 (Hypergeometric binomial theorem). Suppose b is a negative integer
and c is not an integer satisfying b ≤ c ≤ 0. Then,

2F1(a, b; c; z + w) =
∞

∑
Y=0

(a)Y (b)Y
(c)Y

zY

Y! 2F1(a + Y, b + Y; c + Y; w).

Proof. An application of the binomial theorem yields

2F1(a, b, c; z + w) =
∞

∑
X=0

(a)X (b)X
(c)X

(z + w)X

X!

=
∞

∑
X=0

(a)X (b)X
(c)X

1
X!

X

∑
Y=0

(
X
Y

)
zYwX−Y =

∞

∑
Y=0

zY

Y!

∞

∑
X=Y

(a)X (b)X
(c)X

wX−Y

(X−Y)!

=
∞

∑
Y=0

(a)Y (b)Y
(c)Y

zY

Y!

∞

∑
X=Y

(a + Y)X−Y (b + Y)X−Y
(c + Y)X−Y

wX−Y

(X−Y)!
.

The desired result follows by shifting the index of summation to X = 0. �
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Lemma 10 can also be extended to the case where b is not a negative integer,
but care must be taken to ensure that the various power series are convergent.

Proof of Lemma 1. To establish this, we show that P 7→ 1/ f (P) is a polynomial
with positive coefficients. That is,

1
f (P)

=
m

∑
Y=0

cYPY where cY > 0. (5)

An application of Lemma 10 to the form in Lemma 9 reveals that

cY =
m(Y)

(N −m)Y
dY. (6)

where dY = 2F1(1+Y,−(m−Y); N−m+Y; 1− 1/α). To arrive at (5), it suffices
to show dY > 0. Another application of Lemma 10 along with the identity

2F1(a,−b; c; 1) =
(c− a)b
(c)b

if b is a nonnegative integer

yields

dY =
m−Y

∑
Z=0

(1/α)Z

Z!
(1 + Y)Z (m−Y)(Z)

(N −m + Y)Z

(N −m− 1)m−Y−Z
(N −m + Y + Z)m−Y−Z

, (7)

which is trivially positive. �

Remark. A concise proof of dY > 0 for the case of α > 1 (α ≤ 1 is trivial) is given
by the Euler transform: 2F1(a, b; c; z) = (1− z)c−a−b

2F1(c− a, c− b; c; z).

The following is found in [8, Lemma 1]:

Lemma 11. Let

A(Q) =
N

∑
X=0

aXQX and B(Q) =
N

∑
X=0

bXQX

be distinct polynomials with nonnegative coefficients satisfying aXbX−1 ≤ aX−1bX
for 0 < X ≤ N and bX > 0 for 0 ≤ X ≤ N. Then, the map Q 7→ A(Q)/B(Q) is
strictly decreasing on [0, ∞).

Proof of Lemma 2. The derivative of the hypergeometric function is

∂

∂z 2F1(a, b; c; z) =
ab
c 2F1(a + 1, b + 1; c + 1; z). (8)

This fact combined with the representation in Lemma 9 yields

f ′(P) = − m
N −m

A(P + 1/α− 1)
B(P + 1/α− 1)

(9)
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where

A(Q) = 2F1(2,− (m− 1) ; N −m + 1;−Q)

and B(Q) = (2F1(1,−m; N −m;−Q))2 .

To arrive at the desired result, we seek to show that the map

Q 7→ A(Q)/B(Q) (10)

is strictly decreasing on [0, ∞).
For notational succinctness, let S = N −m. We can write (10) as a quotient

of polynomials by noting that

A(Q) =
m−1

∑
X=0

(X + 1) (m− 1)(X)

(S + 1)X
QX

and (expanding using the Cauchy product)

B(Q) =

(
m

∑
X=0

m(X)

(S)X
QX

)2

=
2m

∑
X=0

QX
X

∑
Y=0

m(Y)

(S)Y

m(X−Y)

(S)X−Y
.

We seek to apply Lemma 11 on the polynomials A and B, whose coefficients we
denote aX and bX , respectively. Note that A and B are distinct since 0 = aX < bX
for m ≤ X ≤ 2m. One can easily check that a1 = a1b0 ≤ a0b1 = b1. We thus
need only verify aXbX−1 ≤ aX−1bX for X > 1.

Fix X > 1. It is easy to check that

aX = aX−1

(
1
X

+ 1
)

m− X
S + X

.

Using Gauss summation, we can rewrite bX as

bX = 1{X is even}

(
m(X/2)

(S)X/2

)2

+ 2
b(X−1)/2c

∑
Y=0

m(Y)

(S)Y

m(X−Y)

(S)X−Y
.

Suppose X is even. Then,

aXbX−1 = 2aX−1

(
1
X

+ 1
)

m− X
S + X

(
X/2−1

∑
Y=0

m(Y)

(S)Y

m(X−Y−1)

(S)X−Y−1

)

≤ 2aX−1

(
1
X

m− X
S + X

X/2−1

∑
Y=0

(
m(X/2−1)

(S)X/2−1

m(X/2)

(S)X/2

)
+

X/2−1

∑
Y=0

m(Y)

(S)Y

m(X−Y)

(S)X−Y

)

≤ aX−1

(m(X/2)

(S)X/2

)2

+ 2
X/2−1

∑
Y=0

m(Y)

(S)Y

m(X−Y)

(S)X−Y


≤ aX−1bX .

A similar approach can be taken if X is odd. �
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Proof of Theorem 3. We first show that f (1) < 1, or equivalently, 1/ f (1) > 1. By
the positivity of (7), the map α 7→ 1/ f (P; α) is strictly decreasing. Passing to the
limit and dropping higher order terms involving 1/αZ with Z > 0 yields

1
f (P; α)

> lim
α′→∞

1
f (P; α′)

=
m

∑
Y=0

PY (m)(Y)

(N −m)Y

(N −m− 1)m−Y
(N −m + Y)m−Y

.

One can verify that if P = 1, the above sum is exactly one, yielding 1/ f (1) > 1
(for all 0 < α < ∞), as desired.

By Lemma 1, the map (1) is strictly decreasing on [0, ∞). Furthermore, since
f (1) < 1, f (1)− 1 and f (0)− 0 > 0 have opposite signs. Because (1) is also
continuous, the desired result follows by the intermediate value theorem. �

Proof of Theorem 4. Let I = [0, 1]. (5) establishes that f is positive on I. Since
α ≤ 1, d0 appearing in (6) satisfies d0 ≥ 1. It follows that f (0) = 1/d0 ≤ 1
(see (5)). Letting I = [0, 1], these facts and Lemma 1 yield f (I) ⊂ I. Since
f is continuously differentiable on I, it suffices to show that there exists a
nonnegative constant L < 1 such that | f ′| ≤ L on I (implying that f is a
contraction on I).

Since P + 1/α − 1 ≥ 0 whenever α ≤ 1, (9) reveals that − f ′ = | f ′| on I.
Owing to Lemma 2, f is convex on I so that− f ′ is nonincreasing on I. Therefore,
| f ′(0)| ≥ | f ′| on I, and the desired result follows by taking L = | f ′(0)|. �

Proof of Corollary 5. We begin by considering the case of α < 1; α = 1 is handled
separately. Recall that the proof of Lemma 2 shows that map (10) is strictly
decreasing on [0, ∞). Since 1/α− 1 > 0 and 2F1(a, b; c; 0) = 1,

∣∣ f ′(0)∣∣ = m
N −m

A(1/α− 1)
B(1/α− 1)

<
m

N −m
A(0)
B(0)

=
m

N −m
, (11)

and the desired result follows (N ≥ 2m is equivalent to m/(N −m) ≤ 1).
Suppose now α = 1. We modify our approach, as the strict inequality in (11)

no longer holds. By (5) and (6),

f (0) = 1/2F1(1,−m, N −m; 0) = 1.

This along with the fact that f is strictly decreasing (Lemma 1) and 0 < f (1) < 1
implies that the iterates of f evaluated at some probability P0 (i.e. f k(P0) for k >
0) reside in [ f (1), 1]. We can thus relax the sufficient condition for convergence
in Theorem 4 to | f ′( f (1))| < 1 in lieu of | f ′(0)| < 1. Then

m
N −m

A( f (1))
B( f (1))

<
m

N −m
A(0)
B(0)

=
m

N −m
,

and the desired result follows. �

Let f k denote the k-th iterate of f . The proof above reveals that we can
replace the condition | f ′(0)| < 1 with | f ′( f 2k(0))| < 1 for some nonnegative

10



integer k. Owing to this, we derive a relaxation of Theorem 4 along with a
family of bounds (parameterized by k) on the number of iterations required for
convergence up to a desired error tolerance ε:

Corollary 12. Let k be a nonnegative integer and P? denote the solution of the
Engset formula. Suppose α ≤ 1 and

q =
∣∣∣ f ′( f 2k(0))

∣∣∣ < 1.

Given 0 < ε ≤ 1 and {Pn} as defined by the fixed point iteration, |P2k+` − P?| ≤ ε
whenever

` ≥
⌈

logq(ε− εq)
⌉

.

Proof. (5) establishes f (0) > 0 and f 2(0) > 0. Using the fact that f is strictly
decreasing (Lemma 1), it follows by induction that

[0, 1] ⊃ [ f 0(0), f 1(0)] ) [ f 2(0), f 3(0)] ) · · ·

and P2k+` is in the interval [ f 2k(0), f 2k+1(0)] for all ` ≥ 0. The contraction
mapping principle [15] characterizes the speed of convergence:

|P2k+` − P?| ≤ q`

1− q
|P2k+1 − P2k| ≤

q`

1− q
for ` > 0.

The desired result follows. �

The proof of Theorem 6 requires the following result (a simple modification
of [17, chapter 22, exercise 14b]):

Lemma 13. Let I be an interval and g : I → R be a convex and differentiable function
satisfying g′ < 0 and g(x?) = 0 for some x? in I. Then, given x0 ∈ I with g(x0) ≥ 0,
the sequence {xn} defined by

xn = xn−1 − g(xn−1)/g′(xn−1) for n > 0

converges from below (i.e. x0 ≤ x1 ≤ · · · ) to x?.

Proof. Since g(x0) ≥ 0 and g′(x0) < 0, it follows that x0 ≤ x1. Since (x1, 0) is on
a tangent line of g and a convex function lies above its tangent lines, g(x1) ≥ 0.
Hence, x1 ≤ x?. Repeating this argument establishes x0 ≤ x1 ≤ · · · ≤ x?.

It follows that xn → x for some x in I. Taking limits on both sides of
g′(xn−1)(xn−1 − xn) = g(xn−1) and using the facts that g is continuous and g′

is monotone due to the assumption of convexity, we arrive at g(x) = 0. Since a
strictly decreasing function cannot have two distinct roots, x = x?. �

Proof of Theorem 6. First, consider the case f (P0)− P0 ≥ 0. Lemma 1 implies that
f ′ ≤ 0 and hence f ′ − 1 < 0 on I = [0, 1]. Lemma 2 establishes that f is convex
on I. Theorem 3 guarantees the existence of P? in I such that f (P?)− P? = 0.
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Letting g : I → R be defined by g(P) = f (P)− P, we can directly apply Lemma
13.

Now, consider the case of f (P0)− P0 < 0. Note that

P1 = P0 −
f (P0)− P0

f ′(P0)− 1
=

f (P0) + P0 | f ′(P0)|
1 + | f ′(P0)|

> 0.

Since the point (P1, 0) is on a tangent line of P 7→ f (P) − P and a convex
function lies above its tangent lines, f (P1)− P1 ≥ 0. We can now repeat the
argument in the first paragraph with the initial guess P1 in lieu of P0. �

Proof of Theorem 7. That x 7→ h1(x)/(h0(x))2 is strictly decreasing follows di-
rectly from the proof of Lemma 2. The derivative of this map is C(x)/(h0(x))3

where

C(x) = −2h1(x)h′0(x) + h0(x)h′1(x) = −2b
c
(h1(x))2 +

2 (b− 1)
c + 1

h0(x)h2(x)

(the last equality is a consequence of (8)). Since h0 is positive on H = [0, ∞), it
follows that C is nonpositive on H, yielding (2). �
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