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1. Introduction

For the Maximum Weighted Coverage problem (MCP) we are
asked to open a limited number of ‘bases’, each with their own
coverage, such that the combined coverage is maximised. The set
£ denotes the set of all possible bases and up to p € N bases can be
selected. The coverage is defined using a set of ‘demand points’ g.
Each opened base i € { covers a certain subset of demand points,
indicated by the parameters a; € B forj € ¢. Thatis, a; = 1if and
only if base i can cover point j. The demand parameter dj € Rxg
is the objective coefficient of point j € g. Note that we assume
non-negative demand weights.

The MCP is given by the following mathematical model:

maximise Z diz;,
j€d
subject to in <bp,
ied
> agxi > z Vieg.
ied
X,z €B Vield,jeg.

* Corresponding author.
E-mail addresses: kerkkamp@ese.eur.nl (R.B.O. Kerkkamp),
K.I.Aardal@tudelft.nl (K. Aardal).

http://dx.doi.org/10.1016/j.0rl.2016.03.001
0167-6377/© 2016 Elsevier B.V. All rights reserved.

The decision variable x; denotes whether we open (1) or close (0)
basei € {,and z; = 1 only if demand pointj € ¢ is covered.

In the emergency medical service (EMS) literature this model is
also known as the Maximal Covering Location problem (MCLP) [1],
where the bases correspond to ambulances or ambulance bases.
In other research fields demand points are called ‘elements’
in the universe g and bases are sets of those elements. Both
interpretations are equivalent and can be interchanged. Due to
increased demand on punctuality and efficiency, EMS providers
in many countries are using optimisation models to improve their
performance. The MCP is the basis for many advanced EMS location
models and is often used as a first assessment model.

The MCP is known to be NP-hard and Feige [2] proved that the
best possible performance guarantee in polynomial time is 1 —e™!
unless P = NP, see Theorem 1.

Theorem 1 (Feige [2]). For any € > 0 the MCP cannot be approxi-
mated in polynomial time with a guarantee of 1 — e~! + €, unless
P = NP.

Consequently, heuristics and approximation algorithms have
been designed for the MCP. In particular, the simple Greedy Search
attains the performance bound stated in Theorem 1, implying that
itis the best possible approximation method in this sense (see [6]).

We are interested in performance guarantees for another
typical heuristic: the Swap Local Search. Numerical results on both
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randomly generated and real-life MCP instances show that Swap
Local Search reliably outperforms Greedy Search (see Section 4.5
in [5]). For the random instances, the Greedy Search has an average
relative optimality gap of 2%, and the Swap Local Search 1% (1-
Swap neighbourhood) or 0.2% (2-Swap neighbourhood). For the
real-life instances, the relative improvement of the Swap Local
Search with respect to the Greedy Search is of the same order.

Since the Greedy Search method has the best possible worst-
case performance (unless P = NP), the Swap Local Search
cannot always strictly outperform it. However, the Swap Local
Search method could have the same worst-case performance. The
numerical results indicate that the Swap Local Search is superior
to Greedy Search, but what can be said about the worst-case?

1.1. Swap Local Search performance guarantees

To further discuss performance guarantees for the Swap Local
Search, we have to specify the method in more detail. The
Swap Local Search method iteratively improves an initial feasible
solution by closing a subset of opened bases and opening a different
subset of bases with strictly increased coverage. The two subsets
are chosen such that they have the same cardinality and that the
cardinality is at most o € Ns;. The resulting local maxima are
called p-Swap local maxima. Since there are no costs associated
with the bases in the MCP, it is optimal to open exactly p bases.
Therefore, we assume that we have an arbitrary initial feasible
solution with p opened bases. As a result, the total number of
opened bases will not change by the Swap Local Search.

Let £2 be the set of all MCP instances. For each MCP instance
w € £2 we have a set of p-Swap local maximum solutions £(w)
with objective values {8 (w) : L € £(w)}, and the global maximum
0*(w). We can analyse the worst possible gap when considering
all MCP instances and all corresponding local maxima. This tight
bound is called the relative locality gap « € [0, 1]:

sup  {(0% (@) — 6" (@) /0% (@)} = (1 —a).

weR,Le L(w)
The locality gap does not depend on which local maximum
is actually reached by the used Swap Local Search algorithm.
Therefore, the derived results are valid for any initial solution and
any improvement method used by the algorithm. In this context,
we call a performance bound tight if there exists a worst-case
instance w € £2 for which the bound is attained in a p-Swap local
maximum L € £(w).

Performance guarantees (bounds on the relative locality gap)
for the Swap Local Search method are known for a broad class of
optimisation problems related to submodular functions. A function
¢ : 2¥ — R for some finite discrete set  is called submodular
ifp(U) + (V) —d(UNTV) > dp(UU V) forall U,V C N.A
submodular function has a decrease in marginal gain in function
value in the sense that ¢ (U U {e}) — ¢p(U) > ¢(V U {e}) — d(V)
foralle € ## and U € V C N\ {e}. Theorem 2 states performance
guarantees for such optimisation problems.

Theorem 2 (Nemhauser, Wolsey, Fisher [6]). Let ¢ : 2¥ — R be a
non-decreasing submodular function and p € N. Consider applying
the p-Swap Local Search to the problem max{¢(U) : |U| < p,
U C N} with an arbitrary initial feasible solution, wherep = ap — b
with p,a € N>y and b € {0, ..., p — 1}. The following bound holds
for any p-Swap local maximum 6* and the global maximum 6*:

o* — ot p—p+b
0 —¢p@) — 2p—p+b’
If b = 0, then this bound is tight.

As the MCPis a special case of the maximisation of a submodular
function, the above result gives a bound on the locality gap for the
MCP. Using the notation of Theorem 2, it holds for all MCP instances
that (* — 61)/6* < (p — p +b)/(2p — p + b), since ¢(¥) = 0.

1.2. Contribution

Our main contribution is the technique used to prove tight
bounds for the Swap Local Search method. This technique
gradually builds an explicit description of the worst-case class of
MCP instances. We use a sequence of instance transformations for
which a ‘worse’ instance is obtained after each transformation.
In particular, each transformation simplifies the structure and
reduces the number of parameters of the instance. The procedure
provides additional insight into the structure of ‘worse’ or worst-
case MCP instances, namely that these instances have a certain
symmetry as we will show.

This technique distinguishes itself from other approximation
proofs, such as in [6,3], in the following way. Typical proofs first
use optimality conditions and properties of the solution method
to derive a performance bound. Instances do not play a role in
this derivation. Then they find instances that reach the derived
bound to show that the analysis is tight. Both steps together prove
that these are worst-case instances. In contrast, our technique
builds provably worst-case instances from the ground up. Here, we
determine bounds and find worst-case instances simultaneously,
not in two separate steps.

We show that with our technique the performance guarantee
of Theorem 2 can be (slightly) improved for the MCP. We derive a
tight bound based on the number of matching bases between the
optimum and the p-Swap local maximum solution. In particular,
the p-Swap Local Search method for the MCP has a locality gap
of @ = 1/2. Note that in terms of approximation ratios, this
bound of 1/2 for the Swap Local Search is known [6,4]. The tight
performance guarantee for the Swap Local Search method is given
in Theorem 3.

Theorem 3. Consider an arbitrary MCP instance w € £2 with global
maximum 6*(w) and optimal solution x*(w). Let x*(w) be any p-
Swap local optimum (p € Ns) for w with objective value 6% (w).

Suppose x* (w) and x* (w) differ in exactly 2k(w) elements for some
k(w) € N.,, thatis, >, [x} (@) — xH(w)| = 2k(w). Then we can
bound the relative optimality gap by

0* () — 0" () _ k@) —p
0*(w) = 2k(w) — p’
and this bound is tight.

We place two remarks on the result of Theorem 3. First, when
applying Theorem 3 we typically do not know the value of k(w) and
need to take k(w) = p as a safe upper bound. As such, it provides
only a slight improvement to Theorem 2 for the case b # 0. Second,
in [6] the authors mention that they have established the bound
(p—p)/(2p— p) for the maximisation version of the Uncapacitated
Location problem. Unfortunately, no proof or further reference is
given. Therefore, we could not compare our approach to theirs.

The rest of this paper consists of illustrating our technique by
proving Theorem 3, which is split over several lemmas. For a more
elaborate version of the proof, we refer to Section 4.4.2 of [5].

2. The swap locality gap

The proof of Theorem 3 is based on constructing a new MCP
instance with the same or a larger relative optimality gap than the
original instance, but with a simplified structure. This process of
simplification is repeated until a family of (worst-case) instances
remains for which the locality gap is trivial.

The simplification steps, and the resulting instance transforma-
tions, can be characterised as follows:

1. remove unnecessary bases and demand points,

2. create a bijection between bases and demand points,
3. use the inherent symmetry of the coverage problem,
4. simplify the structure of the instance.
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These instance transformations satisfy a specific set of properties.
Let p € N>7 and k € N. Consider an arbitrary MCP instance w € £2
where x*(w) and x' () differ in exactly 2k elements (k swaps), see
also the statement in Theorem 3. Note that k > p 4+ 1 must hold.
The proof sequentially transforms w into a new instance ' such
that the following four properties are preserved:

. X*(w) is an optimal solution for «’,

. xt(w) is a p-Swap local optimum for o',

. X' (w) differs from x*(w) in exactly 2k elements for o/,

. the corresponding optimality gap for «' is as least as large as
that for w.

DN wWN =

In the end, we obtain a family of worst-case instances for which we
can derive the tight bound on the relative optimality gap.

2.1. Step 1: clean-up

The first transformation ¢; : £ — £ removes redundant
demand points and bases (a projection to a lower dimension). We
transform the instance w to a new instance where some of the
common coverage between the global and p-Swap local maxima
is eliminated.

Let §*(w) = {i € {(w) : X;(w) = 1} be the optimal set of
opened bases and likewise #'(w) = {i € L(w) : x(w) = 1}
Construct a new MCP instance ' = ¢(w) where: the demand
points not covered by any base in 4* (@) U 4! (w) are removed; the
demand points covered by any base in 4*(w) N 4! (w) are removed;
the bases in {i € J(w) : X/ (0) = xiL(w)} are removed; and the
number of opened bases is reduced to p(«') = p(w) — [4*(w) N
4L (w)|. No other changes are performed. See Fig. 1 for an example
of this transformation. Bases are depicted as squares and demand
points as black dots. The circles indicate the coverage of the bases.

The solution %} (w’) = x](w) fori € 4(’) is optimal for &’ and
xH(w') = xH(w) fori € (') is a p-Swap local optimum. As in the
original instance, x* (') and x'(w') differ in exactly 2k elements.
Furthermore, the relative optimality gap of @’ is as least as large as
that of w. Hence, the four properties mentioned above still hold.

2.2. Step 2: create a bijection

Consider a new arbitrary MCP instance w € ¢1(§2) where x*(w)
and x!(w) differ in exactly 2k elements. Note that |{(w)| = 2k, so
the two solutions have no matching elements. For the remainder
of the proof, we fix the set of bases, {(w) = J, as well as both
solutions, x*(w) = x* and x!(w) = x.

Each demand point can be covered by a certain subset of bases
in 4. Thus, we can project each point to the largest subset of bases
that can cover it, denoted by 7 : ¢(w) — 2*.This projection is not
guaranteed to be an injection nor a surjection.

The second instance transformation will merge certain demand
points and add new artificial demand points. We can divide the
demand points into several sets, where two pointsji, j; € $(w) are
in the same set if and only if both are covered by the same bases:
m(j;1) = m(jp). Construct a new MCP instance by merging the
demand points in each of these sets. Note that 7 is injective for this
new instance. Next, add artificial demand points with zero demand
to the new instance in such a way that 7 becomes bijective. Call this
transformation ¢, : ¢1(£2) — ¢1(£2). It is trivial that ¢, does not
affect feasibility or objective values, thus the four properties still
hold.

We fix this set of demand points for the remainder of the proof,
d(w') = . As a result, the bijection 7 for ' = ¢,(w) has an
inverse 7! : 2¢ — ¢, see also Lemma 4 and Fig. 2. For example,
demand point 77 ~'({i}) can only be covered by base i € 4, demand
point 7 ~1({i;, i}) can be covered by exactly two bases (i; and i),
etcetera. For clarity, we omit the bijection in demand values, i.e.,
)(w) is abbreviated to d;, 1,3 (w) and similarly for the
sets of bases.

iq,i

A1 i
({ir.ip}
other suT)

Lemma 4. For each MCP instance w € 2 there exists an MCP
instance o' € £ with the bijective mapping = : J(') — 24",
that maps each demand point to the largest subset of bases that can
cover it.

For the new MCP instance o', x* (w) is still the global optimum and
x-(w) is still a p-Swap local optimum, although a projection to a lower
dimension can be required. Furthermore, the relative optimality gap of
o' is as least as large as that of w.

Proof. The proof has been given above by taking ' = ¢,(¢;
(w)). O

The constructed bijection allows us to explicitly express our
situation as linear constraints. Let w € ¢, (¢1(£2)) be an arbitrary
instance, where x* and x differ in exactly 2k elements. Define the
disjoint sets £* = {i € £ : xf = 1}and 4" = {i € 4 : x} = 1}. We
can express the global and local maxima by

9L(w) = Z Z d(yluy*)(a))’ (1

PAYLcyl Yrca®

@)= D Y dyy ().

DEY*CI* ylcgl

In the definition of 8" (), the first summation selects a non-empty
subset Y of bases in 4" and the last selects a possibly empty subset
Y* of £*. The corresponding demand point is a point covered by at
least one base in 4%. Thus, the local maximum is equal to all demand
from the points that are covered by at least one base in 4L. Likewise,
for the global maximum at least one base from {* is required.

For example, consider Fig. 2(b). Omitting demand terms equal
to zero, we have the local maximum: ' = (dgay + ds)) +
(dacy + dqp.cy + das.op) + (dqs.c.op) + (deary) + dyascy)-
Here, we have grouped the terms according to the cardinalities of
Yl and Y* as in Eq. (1).

What remains is the expression of the properties of the
p-Swap local maximum and the global maximum. Since the global
maximum is equivalent to a k-Swap local maximum, we can focus
on expressing Swap local maxima as constraints. Consider the
p-Swap local optimum (x') and the swap where i* € 4! is replaced
by i* € 4*. The following demand is the net loss of this swap:

Z d({iL]Uy*) ((1))

Yoot}

The expression is equal to the demand of all points covered by base
i and simultaneously covered by any base or multiple bases in
J*\ {i*}. Similarly, the following demand is the net gain:

D dgmuyn (@)

Yoot}

The net gain is equal to the demand of all points covered by i* and
simultaneously covered by any base or multiple bases in £* \ {i*}.
The net effect of each swap must be non-positive, since x* is in
particular a 1-Swap local optimum. Thus, forall i* € £*and it e 4!

Z (d((,‘*}uy*)(a)) — d({,-L]Uy*)(a))) <0.

Yot}

For example, in the situation of Fig. 2(b), we can swap base B
from 4! with base C. The corresponding constraint is given by
(dey — dsy) + (de.pp — dsop) < 0.

In general, consider swapping R € {1,..., p} bases in 4* with
bases in 4*. We swap U € 4- with U* € 4*, both with cardinality
R.The effect of the swap is as follows. We keep any demand covered
by bases in 4! \ U'. We lose demand that is covered only by bases
in U! and gain demand that will be covered only by bases in U*.
For the net effect, we have to take into account that the coverage
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(a) Instance w € £2.

(b) New instance ¢4 (w).

Fig. 1. First instance transformation ¢;, assuming {(w) = {A, B, C, D, E, F}, p(w) = 3, k(w) = 2, i*(w) = {A, B, F}, and *(w) = {C, D, F}.

(a) Instance w € ¢1(£2).

(b) New instance o' = ¢ (w).

Fig. 2. Second instance transformation ¢,, assuming {(w) = {A, B, C, D}, p(w) = 2, *(w) = {A, B}, and 4*(w) = {C, D}. Artificial demand points are not shown.

of U' and U* can overlap. Thus, the net loss is

Yo Y dauyn @),

p#zlcul Yo\ u*

and the net gain is

Z d(z+uy*) ().

PAZFCUF Y*CI*\U*

The expressions simply keep track of the demand values using
the bijection . As before, the summations select subsets, where
zl ¢ ul and Z* € U* must be non-empty. Compare these
expressions to Eq. (1).

Therefore, the following p-Swap optimality constraints must
hold forallR € {1, ..., p}, Ut € 4! with |U!| = R, and U* C 1*
with |U*| =R:

Y deuyn (@)
@#Z*gu* y*gl*\u*
- > ) dguy@ =0 2)
p#ZLcul Yoo\ u*

The constraints for the global optimum (x*) are similar, but

the roles of U’ and U* are interchanged. Therefore, the following

constraints must hold for allR € {1, ..., k}, Ut € 4" with |U}| =
R,and U* C £* with |U*| = R:

Yo dggy(©)

w#ng‘U" nglL\‘uL

- YY) dpu@ <o (3)

P#ZF U™ ylcphut

In the case of Fig. 2(b), the constraint when swapping £* with 4¢
is: (day + dgap + dasp) — (dqcy + dqoy) + dgc.op) < 0.

All derived linear constraints completely describe our situation
with the global and Swap local optima.

2.3. Step 3: use symmetry

The third instance transformation constructs a more symmetric
instance and will be defined below (see also Fig. 3). With this
transformation we can prove the following lemma.

Lemma 5. Consider an MCP instance w € ¢,(¢1(§2)) where the
global optimum x*(w) and p-Swap local optimum xt(w) differ at 2k
elements. There is a modified MCP instance ' € ¢, (¢(82)) with the
symmetric properties that for all n,m € {0, ..., k}, Y& € 4 ')
with |Y| = n, and Y* C 1* (o) with |Y*| = m:

d(yluy*) (a)/) = d(n,m) ((U/) .

For the new instance o', X* (w) is still the global optimum and x" ()
still a p-Swap local optimum. Furthermore, the relative optimality gap
of o' is equal to that of w.

Proof. Let w € ¢,(¢1(£2)) be an arbitrary instance where the
global optimum and p-Swap local optimum differ at 2k elements.
Let o* 4* — J1* be a permutation of the bases in £* and
ol : g8 — gl asimilarly defined permutation. Note that 0 * and o't
are disjoint. If we combine the two permutations there are k!k! per-
muted instances o (w), withs € {1, ..., k'k!}. The solutions x* and
xb are global and local optima for all permuted instances o (w), as
only the labels of the bases are changed within each set 4* and 4*.

Construct a new MCP instance ' by taking the average demand
of the permuted instances in the following way. For Y C 4! and
Y* C g* define

k'k!

eyt (@) = P Z]: dytuys) (03(@))
S=
1 kk!

= e Zd(as(yluy*))(w)-
T os=1
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As all constraints (2) and (3) are linear in d and valid for each o (w),
these are also valid for the new instance «'. Furthermore, it holds
that0*(0') = 6*(w) and 8% («') = 6*(w), so the relative optimality
gap is the same.

Finally, notice that diyiyy+ (@) = dum(@’) for n,m €
{0,...,k}, Yyt € gf with |Y}| = n,and Y* C £* with |Y*| = m.
This completes the proof. We capture this transformation by ¢s :

$2($1(82)) = ¢2($1(£2)). O

We can simplify the derived expressions for ® € ¢3(¢2(dq
(£2))), since only the cardinality of the subset is important. The
maxima are given by:

k k k k
ZOEDSY (n> (m)d(n,m> (@),

n=1 m=0
. LS K [k
0*(w) = din,m) ().
m=1 n=0 m n
ForallR € {1, ..., k}, the global maximum constraints are:
RO/R\ &R /k—R
> ( ) > ( ) (dintr.0) (@) = dnry(@)) < 0. (4)
— \1 ) &= n
r=1 n=0

Likewise, for all R € {1,...
constraints are:

R R k—R k—R
Z (r) Z ( m ) (d<0,m+r) (@) — d.m) (w)) <0. (5)

r=1 m=0

, p} the p-Swap local maximum

2.4. Step 4: simplify the structure

The final transformation ¢4 : ¢3(¢2(¢1(2))) — P3(d2(d
(£2))) combines demand in a weighted manner. To be specific, the
demand of the new instance o’ is set to

1 (k
da,0(@) = % > (n) d(n,0) (@),

n=1
1 k k k k
day(@) == ( )( )d(n,m)(w)a
k2 ;; n/\m
1 [k
d N =— dom ,
o1 (@) P n; (m) o,m) (@)

and zero otherwise. No other changes are performed. We prove in
Lemma 6 that this transformation preserves global optimality of x*
and p-Swap local optimality of x*.

Lemma 6. Consider an MCP instance w € ¢3(¢,(¢p1(82))) where the
global optimum x*(w) and p-Swap local optimum x*(w) differ at 2k
elements. There exists an MCP instance ' € ¢3(¢p2(¢1(82))) such
that x*(w) is still the global optimum and x"(w) still a p-Swap local
optimum. The maxima satisfy the following relations:

0" (') = kd1,0)(@') + Kd1.1) (@),
0* () = kd(o,1)(@) + K*d(1,1) (),
with the necessary and sufficient constraints
do.1 (@) = d1,0/(@) >0,
do.1y (@) — d1,0(@) = (k= p)d,1 (@) <0,
do.n (@), da,0) (@), d1.1) (@) € Rxo.

Furthermore, the relative optimality gap of «' is equal to that of w.

Proof. Let w € ¢3(¢(¢1(£2))) be an arbitrary instance where the
global optimum and p-Swap local optimum differ at 2k elements.
Apply the final transformation to w: o’ = ¢4(w). By substituting
the defined demand weights, we see that the objective values of x*
and x* are unaffected.

Since many d; m) (") of the new instance are zero, the global
maximum constraints (4) simplify by definition to:

R (dg1.0)(@') — do.1)(@) — (k = R)d(1,1y (")) <0,

which must hold for allR € {1, ..., k}. Notice that the constraint
for R = k is the most restricting, i.e., the global maximum
constraints are satisfied if and only if d(1,0) (') — d(o.1)(@") < 0.
This constraint is indeed valid for ':

1
di,0 (@) —do1(@) = % (0" () — 6*(w)) < 0.

We conclude that x* is still a global optimum for «’'.

The final step is to check if the p-Swap constraints are valid
for x* and «'. Unfortunately, this part of the proof is somewhat
cumbersome and is given in the Appendix. The corresponding
constraint follows again from the defined demand weights,
similarly to the global maximum constraints. O

2.5. Step 5: combining the results

We can now prove Theorem 3 by using the four instance
transformations and the three lemmas. In the proof we derive the
maximum relative optimality gap of a p-Swap local maximum
under the conditions stated in Theorem 3.

Proof of Theorem 3. Sequentially apply the instance transforma-
tions ¢4, . . ., ¢4 to the original MCP instance w, resulting in a new
instance w’. We have shown that each transformation preserves
the four mentioned properties. Hence, the transformation results
in a family of worst-case instances with symmetric properties. This
family can be described by the (abstract) relations from Lemma 6.
Therefore, we are interested in the following optimisation model to
determine the Swap locality gap. Maximise the relative optimality

gap:
(9* - 9") /0% = (d<o,1) - d(1,0)) / (d(0,1) + kd(],l)) )
subject to
do,1y —da.o =0,
do,y — da,0 — (k—p)da,y <0,
do.1» da,0)» da,1y € Rxo.

The maximum (k — p) / (2k — p) is attained by setting do,1y > 0,
di1,00 =0,and d(1,1y = d.1)/(k — p).See also Fig. 4. O

Although the proof of Theorem 3 describes how the worst-case
MCP instances can be constructed, it is useful to give an explicit
description. For p € N> and k € Nwith k > p + 1, the worst-case
MCP instance has the following parameters. The number of opened
bases p is equal to k and there are in total |{| = 2p = 2k bases.
The first p bases correspond to a p-Swap Local Search optimum
(48 = {1,...,p}) and the last p bases to the optimal solution
(L*={p+1,...,2p}). There are p(p + 1) demand points, where
the first p? points are covered by exactly one p-Swap base and one
optimal base. These points have demand (k — p)~!. The final p
demand points are covered by exactly one optimal base and have
demand 1.

Our proof gradually builds a description of worst-case in-
stances, which has the potential to be used for other combinato-
rial optimisation problems as well. In particular, we note that we
reduce the number of demand parameters from 2! to (k + 1) by
symmetry, followed by another reduction to 3 demand parame-
ters, and finally only one parameter remains. Since the worst-case
instances are very symmetric, it would be interesting to see the ef-
fect on the optimality gap of small perturbations in the symmetry.
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(a) Instance w € ¢, (£2). Artificial
demand points are not shown.

(b) New instance o' = ¢3(w). Two
points, d(2,0) and d o »), are not displayed.

Fig. 3. Third instance transformation ¢, assuming £(w) = {A, B, C, D}, p(w) = 2, 4*(w) = {A, B}, and 4*(w) = {C, D}.

(a) Instance w € ¢4(£2).

(b) Worst-case instance.

Fig. 4. Worst-case demand values, assuming {(w) = {A, B, C, D}, p(w) = 2, 1*(w) = {A, B}, and 4*(w) = {C, D}.
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Appendix. Proof of swap local optimality

We give the details to show that ¢4 preserves the p-Swap local
optimality of x*, see also Lemma 6. LetR € {1,..., p} and recall
the p-Swap constraint:

R (do,1)(«') — dg1,0)(@") — (k= R)d1,1) (@)

R & (k) R & (k)

= - d m (w) — — d(n,0)(w)
kn; m @.m) k; n @.0)
R(k — R) <& < [k [k

SR Y (1) )dam@

n=1 m=1

which must be non-positive. First, we focus on the two negative
terms:

R k k R(k —R) k Kk K K
_ E ; <n>d(n,0) (w) — T HXZ]: Z (Tl) (m)d(n,m) (w)
RS /1
=% > <;>d<n.0) (w)
n=1
R(k—R) R k=R k k
)

R R /R (k—R
s-—}j(n)¢mmum-—§: (n)<‘m )dMMww)

n=1 n=1 m=1
R\ ¥R /k—R
:—Z()Z( )%mm (A1)
r=1 r m=0 m

Second, suppose we can bound the positive term of the p-Swap
constraint as follows:

R k k R R k—R I _ R
X n; <m>d(o,m)(w) < Z <r> Z << - )d(o.m+r)(w)~ (A2)

r=1 m=0
Combining (A.1) and (A.2) shows that the p-Swap constraints are
valid for «’, since constraints (5) hold for w.

Thus, only the proof of Eq. (A.2) remains. First apply an identity,
also known as the Chu-Vandermonde identity:

R k k R k m R k—R
k n; (m>d(o.m)(w) =% Z Z <r> (m _ r)d(o*’”)(w)' (A.3)

m=1r=0

Next, we split the summation in (A.3) into two parts, corresponding
tor = 0andr > 0. Furthermore, we switch the order of
summation and delete terms with binomial coefficients equal to
zero. Consequently, (A.3) is equal to

Ry~ (k=R RSN (R (k—R
E Z ( m >d(0,m)(a)) + E Z Z <r> <;l _ r)d(oqm)(a))

r=1 m=r

m
R R k—R+r R k—R
— d
+y Z (r) (m B r) ©,m (@)
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R¥R /k—R
=% m do,m) (@)

m=1
k — R k—R k—
LD o

Notice that we have been able to obtain the right-hand side of
Eq. (A.2), but there are some additional terms. Therefore, consider
these additional terms:

Rk‘R<k-R>
- do,m ()
k; m
k—R SR R\ (k—R
- d m+r
e 22 ()5, onne

r=1 m=0

RER /k—R k—R*&E! k—R
< - do.m - — R do.m
T kA ( m ) om (@) k Z (m—l) om (@)

m=1

=1
REE ((k—R k—R

< - — (k=R do,m(w) <0.
k £~ m m—1

As the sum of these extra terms is non-positive, we have shown
that Eq. (A.2) is valid. Hence, the p-Swap optimality conditions
hold for x* and «’. Note that only the most restricting p-Swap local
maximum constraints need to be included.
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