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Abstract

This paper is concerned with the rank constrained optimization problem whose
feasible set is the intersection of the rank constraint set R =

{
X ∈ X | rank(X) ≤ κ

}

and a closed convex set Ω. We establish the local (global) Lipschitzian type error
bounds for estimating the distance from any X ∈ Ω (X ∈ X) to the feasible set and
the solution set, respectively, under the calmness of a multifunction associated to
the feasible set at the origin, which is specially satisfied by three classes of common
rank constrained optimization problems. As an application of the local Lipschitzian
type error bounds, we show that the penalty problem yielded by moving the rank
constraint into the objective is exact in the sense that its global optimal solution
set coincides with that of the original problem when the penalty parameter is over a
certain threshold. This particularly offers an affirmative answer to the open question
whether the penalty problem (32) in [7] is exact or not. As another application, we
derive the error bounds of the iterates generated by a multi-stage convex relaxation
approach to those three classes of rank constrained problems and show that the
bounds are nonincreasing as the number of stages increases.
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1 Introduction

Let X denote the vector space R
n1×n2 of all n1×n2 real matrices or the vector space H

n

of all n× n Hermitian matrices, both endowed with the trace inner product 〈·, ·〉 and its
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induced norm ‖ · ‖F . Given a positive integer κ and a suitable continuous loss function
f : X→ R, we are concerned with the following rank constrained optimization problem

min
X∈X

{
f(X) | rank(X) ≤ κ, X ∈ Ω

}
, (1)

where Ω is a convex compact subset of X. Such a problem has many applications in
a host of fields including statistics, signal and image processing, system identification
and control, collaborative filtering, quantum tomography, finance, and so on (see, e.g.,
[2, 5, 6, 7, 17, 22, 25, 30]). In the sequel, we denote by F the feasible set of (1) and assume
that F 6= ∅, which implies that the solution set of (1), denoted by F∗, is nonempty.

Due to the combinatorial nature of rank function, problem (1) is generally NP-hard,
and it is almost impossible to seek a global optimal solution. A common way to resolve
this class of problems is to adopt convex relaxation technique, which yields a desirable
local optimal even feasible solution by solving a single or a sequence of tractable convex
optimization problems. The popular nuclear norm convex relaxation method proposed
in [5] belongs to the single-stage convex relaxation class, which received active research
in the past several years from many fields such as optimization, statistics, information,
computer science, and so on (see, e.g., [2, 3, 8, 11, 22, 23, 27]). Although the nuclear
norm promotes low rank solutions, it has a big difference from the rank function in a
general setting since the former is convex whereas the latter is nonconvex even concave (in
the positive semidefinite cone). Hence, when the set Ω is characterizing some structure
conflicted with low rank, such as the correlation or density matrix structure, the nuclear
norm relaxation method will fail in yielding a low rank solution. In view of this, many
researchers recently develop effective solution methods based on the sequential convex
relaxation models arising from the penalty problems [7, 12], the nonconvex surrogate
problems [6, 10, 18, 19], and the rank constrained optimization problem itself [16, 26, 28].
We notice that to measure the distance from any given point to the feasible set or the
solution set plays a key role in the analysis of these methods. Motivated by this, we in
this work take the first step towards the study on Lipschitzian type error bounds for (1).

In this paper, we show that the calmness of a multifunction associated to the feasible
set F at the origin is a sufficient and necessary condition for the local Lipschitzian error
bounds to estimate the distance from any X ∈ Ω to F , which is specially satisfied by
three classes of common rank constrained optimization problems (1) where Ω is a ball
set, a density matrix set or a correlation matrix set, and under this condition derive the
global error bound for estimating the distance from any X ∈ X to F . In addition, under
an additional mild assumption for the objective function f , we also establish the local
(global) Lipschitzian error bounds for estimating the distance from any X ∈ Ω (X ∈ X)
to the solution set F∗. To the best of our knowledge, this paper is the first one to study
the Lipschitzian type error bounds for low-rank optimization problems, though there are
many works on error bounds for the system of linear inequalities and (nondifferentiable)
convex inequalities (see, e.g., [13, 14, 15, 21, 31] and references therein). To illustrate the
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potential applications of the derived error bounds, we show that the penalty problem

min
X∈Ω

{
f(X) + ρ

n∑

i=κ+1

σi(X)
}

(2)

is exact in the sense that its global optimal solution set coincides with that of (1) when
the penalty parameter ρ is over a certain threshold. This does not only affirmatively
answer the open question proposed in [7] about whether the penalty problem (32) there
is exact or not for the rank constrained correlation matrix problem, but also provides a
platform for designing convex relaxation algorithms for (1). In addition, we also establish
the error bounds of the iterates generated by a multi-stage convex relaxation approach
to the rank constrained optimization problems with Ω being a ball set, a density matrix
set or a correlation matrix set, and show that the error bound sequence is nonincreasing.

To close this section, we provide a brief summary of notations used in this paper:

• H
n
+ denotes the cone of Hermitian positive semidefinite matrices. For X ∈ H

n, we
assume that its eigenvalue decomposition takes the form of X =

∑n
i=1 λi(X)uiu

T

i

where λ1(X) ≥ · · · ≥ λn(X) and all ui are complex orthonormal column vectors.

• For X ∈ R
n1×n2 , we denote by ‖X‖∗ the nuclear norm of X, and assume that its

singular value decomposition (SVD) takes the form of X =
∑n

i=1 σi(X)uiv
T

i where
σ1(X) ≥ · · · ≥ σn(X) with n = min(n1, n2), and all ui ∈ R

n1 and vi ∈ R
n2 are

orthonormal column vectors.

• For a given vector x ∈ R
n, Diag(x) denotes the diagonal matrix with ith diagonal

entry being xi. For a vector u ∈ R
n
++, 1√

u
means the vector ( 1√

u1
, . . . , 1√

un
)T ∈ R

n.

• The notation BX denotes a closed unit ball of the space X centered at the origin.
For a closed subset S ⊆ X, ΠS(X) means a projection point of X onto the set S.

2 Lipschitzian type error bounds

Let Y and Z be the finite dimensional vector spaces which are both endowed with the
norm ‖ · ‖. Recall that a multifunction Υ: Y ⇒ Z is calm at y for z ∈ Υ(y) if there exist
a constant α ≥ 0 along with neighborhoods U of y and V of z such that

Υ(y) ∩ V ⊆ Υ(y) + α‖y − y‖BZ for all y ∈ U .

By [4, Exercise 3H.4], we know that there is no need at all to mention a neighborhood
U of y in the description of calmness, i.e., the following equivalent description holds.

Lemma 2.1 For a multifunction Υ : Y ⇒ Z, the calmness of Υ at y for z ∈ Υ(y) is
equivalent to the existence of a constant α ≥ 0 and a neighborhood V of z such that

Υ(y) ∩ V ⊆ Υ(y) + α‖y − y‖BZ for all y ∈ Y,
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or the existence of a constant α ≥ 0 and a neighborhood V of z such that

dist(z,Υ(y)) ≤ α dist(y,Υ−1(z)) for all z ∈ V.

Define a multifunction Γ: R ⇒ X associated to the feasible set of problem (1) as follows

Γ(ω) :=
{
X ∈ Ω |

n∑

i=κ+1

σi(X) = ω
}

for ω ∈ R. (3)

In this section, we show that the calmness of the multifunction Γ at 0 for each X ∈ Γ(0)
is a sufficient and necessary condition for the local Lipschitzian error bounds to estimate
the distance from any X ∈ Ω to the feasible set F , which is specially satisfied for three
classes of popular rank constrained optimization problems, and then establish the global
error bounds for estimating the distance from any X ∈ X to F under the calmness of Γ,
and derive the local and global Lipschitzian error bounds for estimating the distance to
F∗ under an additional restricted strong convexity for the objective function f .

2.1 Local error bounds

The following theorem states that the distance from any Z ∈ Ω to Γ(0) = Ω ∩R can be
bounded above by

∑n
i=κ+1 σi(Z) iff the multifunction Γ is calm at 0 for each X ∈ Γ(0).

Theorem 2.1 Let Γ be the multifunction defined by (3). The multifunction Γ is calm at
0 for each X ∈ Γ(0) if and only if there exists a constant c > 0 such that

dist(Z,Γ(0)) ≤ cdist(0,Γ−1(Z)) = c

n∑

i=κ+1

σi(Z) for all Z ∈ Ω. (4)

Proof: “=⇒”. By the calmness of Γ at 0 for each X ∈ Γ(0) = Ω ∩R and Lemma 2.1, it
follows that for each X ∈ Ω∩R, there exist constants α(X) ≥ 0 and ǫ(X) > 0 such that

dist(Y,Γ(0)) ≤ α(X) dist(0,Γ−1(Y )) ∀Y ∈ B(X, ǫ(X)), (5)

where B(X, ǫ(X)) is a closed ball of radius ǫ(X) centered at X. Notice that the compact

set Ω ∩R is covered by the set
⋃

X∈Ω∩R
(
X + ǫ(X)

2 B
◦
X

)
, where B

◦
X

denotes the open unit
ball around the origin in X. By the Heine-Borel theorem, there exist a finite number of

points X1,X2, . . . ,Xm ∈ Ω ∩R such that Ω ∩R ⊆ ⋃m
i=1

(
Xi + ǫ(Xi)

2 B
◦
X

)
. Write

ǫ := min{ǫ(X1), . . . , ǫ(Xm)} and α := max{α(X1), . . . , α(Xm)}.

Let Z be an arbitrary point from Ω. We proceed the arguments by two cases as below.

Case 1: dist(Z,Ω∩R) ≤ ǫ/2. Since the set Ω∩R is closed, there must exist Z ∈ Ω∩R
such that ‖Z − Z‖F ≤ ǫ/2. Since Z ∈ Ω ∩ R, there exists a k ∈ {1, 2, . . . ,m} such that
‖Z−Xk‖F <ǫ(Xk)/2. Consequently, ‖Z−Xk‖F ≤‖Z−Z‖F+‖Z−Xk‖F ≤ǫ(Xk). Together
with (5), dist(Z,Γ(0)) ≤ αdist(0,Γ−1(Z)). This shows that (4) holds with c = α.
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Case 2: dist(Z,Ω∩R) > ǫ/2. Now there must exist an η > 0 such that
∑n

i=κ+1 σi(Y ) ≥ η

for all Y ∈ Ω with dist(Y,Ω ∩ R) > ǫ/2. If not, one may select a sequence {Zk} ⊆ Ω
with dist(Zk,Ω ∩ R) > ǫ/2 such that

∑n
i=κ+1 σi(Z

k) ≤ ηk for all k, where {ηk} is a

sequence of positive numbers with limk→+∞ ηk = 0. Since Ω is compact, we without loss
of generality assume that {Zk} converges to Z∗ ∈ Ω. Then, from the locally Lipschitz
continuity of σi(·), it follows that

∑n
i=κ+1 σi(Z

∗) ≤ 0, and then Z∗ ∈ Ω ∩ R. On the

other hand, from dist(Zk,Ω ∩R) > ǫ/2 for all k, we have dist(Z∗,Ω ∩ R) > ǫ/2. Thus,
we obtain a contradiction, and the above statement holds. Since Ω is bounded, it follows
that dist(·,Ω ∩ R) is bounded above on Ω, say, by some M > 0. Thus, for all Z ∈ Ω
with dist(Z,Ω ∩ R) > ǫ/2, one has that dist(Z,Ω ∩R) ≤M ≤ (M/η)

∑n
i=κ+1σi(Z). By

taking c = M/η, the desired inequality (4) then follows.

“⇐=. Let X be an arbitrary point from Γ(0) and ǫ ∈ (0, 1) be an arbitrary constant. By
Lemma 2.1, we only need to argue that there must exist a constant c′ > 0 such that

dist(Z,Γ(0)) ≤ c′ dist(0,Γ−1(Z)) ∀Z ∈ B(X, ǫ). (6)

Indeed, for any Z ∈ B(X, ǫ), if Z /∈ Ω, then Γ−1(Z) = ∅ by noting that domΓ−1 ⊆ Ω,
and inequality (6) holds for any c′ > 0; if Z ∈ Ω, then by taking c′ = c, inequality (6)
follows directly from (4). Until now, the proof is completed. ✷

Next, we show that the sufficient and necessary condition in Theorem 2.1 is especially
satisfied by three classes of common rank constrained optimization problems in which Ω
is a ball, a density matrix set or a correlation matrix set, and provide the Lipschitzian
type error bounds to estimate the distance from any X ∈ Ω to Ω ∩R for them.

(1) Rank constrained optimization problems over a ball. The feasible set of
this class of rank constrained optimization problems takes the following form

F :=
{
X ∈ R

n1×n2 | rank(X) ≤ κ, |‖X‖| ≤ γ
}
, (7)

where |‖ · ‖| is a matrix norm and γ > 0 is a given constant. The following proposition
provides a Lipschitzian type bound for the error dist(X,F) with |‖X‖| ≤ γ.

Proposition 2.1 Let Ω =
{
X ∈ R

n1×n2 | |‖X‖| ≤ γ
}
. Then, for any X ∈ Ω, by

assuming that X has the SVD of the form
∑n

i=1 σi(X)uiv
T

i , it holds that

dist(X,F) ≤
√

1 + c2u/c
2
l

∥∥X −ΠR(X)
∥∥
F

with ΠR(X) :=
κ∑

i=1

σi(X)uiv
T

i , (8)

where cl and cu are positive constants such that cl‖ · ‖F ≤ |‖ · ‖| ≤ cu‖ · ‖F . In particular,

Γ(t) ⊆ Γ(0) +
√

1 + c2u/c
2
l |t|BRn1×n2 ∀t ∈ R. (9)

When |‖ · ‖| is unitarily invariant, the above constant
√

1 + c2u/c
2
l can be replaced by 1.
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Proof: Let X be an arbitrary point in Ω with the SVD given by
∑n

i=1 σi(X)uiv
T

i . Define

X̂F :=
γ

max(γ, |‖ΠR(X)‖|)ΠR(X). (10)

It is easy to verify that X̂F ∈ F = Γ(0). Thus, to establish (8), it suffices to argue that

‖X − X̂F‖F ≤
√

1 + c2u/c
2
l

∥∥X −ΠR(X)
∥∥
F
. (11)

When |‖ΠR(X)‖| ≤ γ, inequality (11) holds since
∥∥X − X̂F

∥∥
F

= ‖X − ΠR(X)‖F . We
next consider the case where |‖ΠR(X)‖| > γ. Now we have that

∥∥X − X̂F
∥∥2
F
=

∥∥∥X −ΠR(X) + ΠR(X)
(
1− γ

|‖ΠR(X)‖|
)∥∥∥

2

F

= ‖X −ΠR(X)‖2F + ‖ΠR(X)‖2F
( |‖ΠR(X)‖| − γ

|‖ΠR(X)‖|
)2

≤ ‖X −ΠR(X)‖2F +
(cu‖X−ΠR(X)‖F ‖ΠR(X)‖F

|‖ΠR(X)‖|
)2

≤ ‖X −ΠR(X)‖2F +
(cu‖X−ΠR(X)‖F

cl

)2

where the second equality is by 〈X −ΠR(X),ΠR(X)〉 = 0, the first inequality is since

γ < |‖ΠR(X)‖|≤|‖X‖|+|‖X−ΠR(X)‖|≤γ+cu‖X−ΠR(X)‖F ,

and the second one is due to cl‖ΠR(X)‖F ≤ |‖ΠR(X)‖|. The last inequality implies (11).
We next prove that (9) holds. Indeed, if t ∈ (−∞, 0), then the inclusion (9) immediately
holds since Γ(t) = ∅. Now let t be an arbitrary point from [0,+∞). Let Z be an arbitrary
point from Γ(t) and define ẐF as in (10). Then, by noting that Γ(t) ⊆ Ω, we have

dist(Z,Γ(0)) ≤ ‖Z − ẐF‖F ≤
√

1 + c2u/c
2
l ‖Z −ΠR(Z)‖F

≤
√

1 + c2u/c
2
l ‖Z −ΠR(Z)‖∗ =

√
1 + c2u/c

2
l t, (12)

where the equality is due to ‖Z−ΠR(Z)‖∗=
∑n

i=κ+1 σi(Z) and Z ∈ Γ(t). Equation (12)

means that Z ∈ Γ(0) +
√

1 + c2u/c
2
l tBRn1×n2 . Thus, (9) follows by the arbitrariness of t

in R.

When |‖·‖| is unitarily invariant, it is easy to check that ΠR(X) ∈ Γ(0) for any X ∈ Ω
(see [9, Corollary 3.5.9]). Then, by letting X̂F = ΠR(X) and using the same arguments
as above, we have the second part of conclusions. The proof is completed. ✷

The result of Proposition 2.1 is not trivial when |‖·‖| is not unitarily invariant. Taking
|‖ · ‖| = ‖ · ‖∞, the infinity norm of matrices, since 1√

n1n2
‖ · ‖F ≤‖ · ‖∞≤‖ · ‖F , we have

dist(X,F) ≤
√
1 + n1n2

n∑

i=κ+1

σi(X) for ‖X‖∞≤ γ.

6



(2) Rank constrained density matrix optimization problems. The feasible
set of this class of rank constrained optimization problems takes the following form

F :=
{
X ∈ H

n
+ | rank(X) ≤ κ, tr(X) = 1

}
, (13)

we provide a Lipschitzian bound for the error dist(X,F) with X ∈ H
n
+ and tr(X) = 1.

Proposition 2.2 Let Ω =
{
X ∈ H

n
+ | tr(X) = 1

}
. Then, for any X ∈ Ω, by assuming

that X has the eigenvalue decomposition of the form
∑n

i=1 λi(X)uiu
T

i , it holds that

dist(X,F) ≤
√
‖X −ΠR(X)‖2F + ‖X −ΠR(X)‖2∗ with ΠR(X) :=

κ∑

i=1

λi(X)uiu
T

i .

In particular, the inclusion Γ(t) ⊆ Γ(0) +
√
2 |t|BHn holds for any t ∈ R.

Proof: Let X be an arbitrary point from Ω with X =
∑n

i=1 λi(X)uiu
T

i . Define

X̂F :=
ΠR(X)

tr(ΠR(X))
. (14)

Notice that tr(ΠR(X)) > 0 since λ1(X) > 0. Hence, X̂F is well defined and X̂F ∈ F .
Thus, by the definition of X̂F , we have

(dist(X,F))2 ≤ ‖X − X̂F‖2F =
∥∥∥X −ΠR(X) + ΠR(X)

(
1− 1

tr(ΠR(X))

)∥∥∥
2

F

= ‖X −ΠR(X)‖2F + ‖ΠR(X)‖2F
(
1− 1

tr(ΠR(X))

)2

= ‖X −ΠR(X)‖2F +
(‖ΠR(X)‖F (1− tr(ΠR(X)))

tr(ΠR(X))

)2

≤ ‖X −ΠR(X)‖2F + ‖X −ΠR(X)‖2∗
where the inequality is due to tr(ΠR(X))=‖ΠR(X)‖∗≥‖ΠR(X)‖F and 1−tr(ΠR(X)) =
‖X‖∗ − ‖ΠR(X)‖∗ = ‖X −ΠR(X)‖∗. Thus, we complete the proof of the inequality.

Now let Z be an arbitrary point from Γ(t). Noting that Z ∈ Γ(t) ⊆ Ω, we have

dist(Z,Γ(0)) ≤ ‖Z − ẐF‖F ≤
√
2‖Z −ΠR(Z)‖∗ =

√
2

n∑

i=κ+1

σi(Z) =
√
2t

where ẐF is defined as in (14), and the second equality is due to Z ∈ Γ(t). This shows
that Z ∈ Γ(0) +

√
2tBHn . From the arbitrariness of t, the desired inclusion follows. ✷

(3) Rank constrained correlation matrix optimization problems. The feasi-
ble set of this class of rank constrained optimization problems takes the following form

F :=
{
X ∈ H

n
+ | rank(X) ≤ κ, diag(X) = e

}
(15)

where e ∈ R
n is the vector of all ones. The following proposition provides a Lipschitzian

bound for the error dist(X,F) with X ∈ H
n
+ and diag(X) = e.

7



Proposition 2.3 Let Ω = {X ∈ H
n
+ | diag(X) = e}. Then, for any X ∈ Ω, by assuming

that X has the eigenvalue decomposition of the form
∑n

i=1 λi(X)uiu
T

i , it holds that

dist(X,F) ≤ (1 + 2n)‖X −ΠR(X)‖∗ with ΠR(X) :=
κ∑

i=1

λi(X)uiu
T

i . (16)

In particular, the inclusion Γ(t) ⊆ Γ(0) + (1 + 2n) |t|BHn holds for any t ∈ R.

Proof: Let X be an arbitrary point from the set Ω with X =
∑n

i=1 λi(X)uiu
T

i . Define

X̂F :=

{
D(X)ΠR(X)D(X) if diag(ΠR(X))>0

eeT otherwise
(17)

with D(X) = Diag
(

1√
diag(ΠR(X))

)
. From the expression of ΠR(X), it follows that

[diag(ΠR(X))]j=1−
n∑

i=κ+1

λi(X)|uij |2 ≥ 0, j=1, 2, . . . , n (18)

where uij means the jth entry of ui. It is easy to check that X̂F ∈ F , which implies that

dist(X,F) ≤ ‖X − X̂F‖F . Thus, to prove the desired result, we only need to argue that

‖X − X̂F‖F ≤ (1 + 2n)‖X −ΠR(X)‖∗. (19)

If there is an index j such that [diag(ΠR(X))]j = 0, by the definition of X̂F we have

‖X − X̂F‖F = ‖X − eeT‖F ≤ ‖X‖F + ‖eeT‖F ≤ n+ n ≤ 2n
∑n

i=κ+1 λi(X),

where the last inequality is since
∑n

i=κ+1 λi(X) ≥ ∑n
i=κ+1 λi(X)|uij |2 = 1. Thus, (19)

follows. We next consider the case where diag(ΠR(X)) > 0. For convenience, we denote
D(X) by D and write its ith diagonal entry as Dii. From (18), it is clear that Djj ≥ 1

for all j. Notice that (X̂F )kl = (DΠR(X)D)kl = DkkDll(ΠR(X))kl. Then,

∥∥X̂F −ΠR(X)
∥∥2
F
=

n∑

k=1

n∑

l=1

(
(X̂F )kl−(ΠR(X))kl

)2
=

n∑

k=1

n∑

l=1

(
DkkDll−1

)2
[(ΠR(X))kl]

2

≤ max
1≤j≤n

(
D2

jj − 1
)2∥∥ΠR(X)

∥∥2
F
≤ n2 max

1≤j≤n

(
D2

jj − 1
)2
, (20)

where the last inequality is due to ‖ΠR(X)‖F ≤ ‖X‖F ≤ n. By using (20), we have

‖X − X̂F‖F ≤ ‖X −ΠR(X)‖F + ‖ΠR(X)− X̂F‖F
≤ ‖X −ΠR(X)‖F + n max

1≤j≤n

(
D2

jj − 1
)

= ‖X −ΠR(X)‖F + n max
1≤j≤n

( 1

[diag(ΠR(X))]j
− 1

)

≤ ‖X −ΠR(X)‖F +
n
∑n

i=κ+1λi(X)

min1≤j≤n[diag(ΠR(X))]j

≤
n∑

i=κ+1

λi(X)
(
1 +

n

min1≤j≤n[diag(ΠR(X))]j

)
, (21)
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where the third inequality is due to |uij | ≤ 1. If
∑n

i=κ+1 λi(X) ≤ 0.5, equation (18)
implies that [diag(ΠR(X))]j ≥ 0.5 for all j. Then by using (21) we obtain

‖X − X̂F‖F ≤ (1 + 2n)
∑n

i=κ+1 λi(X).

Now, we assume that
∑n

i=κ+1 λi(X) > 0.5. Since (X̂F )kl = DkkDll(ΠR(X))kl and

Dkk ≥ 1 for all k, we have ‖X̂F −ΠR(X)‖F ≤ ‖X̂F‖F ≤ n. Consequently,

‖X − X̂F‖F ≤ ‖X −ΠR(X)‖F + ‖ΠR(X) − X̂F‖F ≤ ‖X −ΠR(X)‖∗ + n,

which along with
∑n

i=κ+1 λi(X) > 0.5 implies that ‖X−X̂F‖F ≤ (1+2n)
∑n

i=κ+1 λi(X).
Thus, we show that inequality (19) holds. The first part of the conclusions follows. By
inequality (19), using the same arguments as those for the second part of Proposition
2.2, we obtain the desired inclusion. The proof is completed. ✷

From Propositions 2.1-2.3, we see that for the above three class of rank constrained
problems, there exists a constant α such that the associated multifunction Γ satisfies

Γ(t) ⊆ Γ(0) + α |t|BX ∀t ∈ R.

By [24, Definition 1], this is actually the upper Lipschitzian at 0 of Γ with respect to the
set R, which clearly implies the calmness of Γ at 0 for each X ∈ Γ(0).

Next, we establish a local error bound for estimating the distance dist(X,F∗) with
X ∈ Ω, under the calmness of Γ at 0 for each X ∈ Γ(0) and a suitable assumption on f .

Theorem 2.2 Suppose that the multifunction Γ in (3) is calm at 0 for each X ∈ Γ(0),
and f is a smooth convex function such that

ϑ := inf
X∈F ,Y ∈F∗,X 6=Y

f(X)− f(Y )− 〈∇f(Y ),X − Y 〉
‖X − Y ‖2F

> 0. (22)

Then, there exists a constant c > 0 such that for any X ∈ Ω,

dist(X,F∗) ≤ c
n∑

i=κ+1

σi(X) +
1

ϑ
‖∇f(ΠF (X)) −∇f(X∗)‖F , (23)

where X∗ is an arbitrary point from F∗. When F takes the form of (7), (13) and (15),

respectively, the constant c can be specified as c=
√

1+c2u/c
2
l ,
√
2 and 1+2n, respectively.

Proof: From the definition of ϑ and the convexity of the function f , it follows that

ϑ‖X∗ −ΠF (X)‖2F ≤ f(ΠF (X)) − f(X∗)− 〈∇f(X∗),ΠF (X)−X∗〉
≤

〈
∇f(ΠF (X)) −∇f(X∗),ΠF (X)−X∗〉

≤ ‖∇f(ΠF (X))−∇f(X∗)‖F ‖ΠF (X)−X∗‖F ,

9



which implies that ‖X∗ −ΠF (X)‖F ≤ 1
ϑ
‖∇f(ΠF (X))−∇f(X∗)‖F . Thus, we have that

dist(X,F∗) ≤ ‖X −X∗‖F ≤ ‖X −ΠF (X)‖F + ‖X∗ −ΠF (X)‖F

≤ c

n∑

i=κ+1

σi(X) +
1

ϑ
‖∇f(ΠF (X)) −∇f(X∗)‖F , (24)

where the last inequality is using Theorem 2.1. By Propositions 2.1-2.3, when F is given

by (7), (13) and (15), c can be specified as
√

1+c2u/c
2
l ,
√
2 and 1+2n, respectively. ✷

Remark 2.1 (a) The assumption ϑ > 0 in Theorem 2.2 is a kind of restricted strong
convexity condition, which extends the sparse reconstruction condition used for the anal-
ysis of sparse constrained optimization problems (see, e.g., [1, 29]). One can check that

0 < inf
1≤rank([X Y ])≤2κ,X 6=Y

f(X)− f(Y )− 〈∇f(Y ),X − Y 〉
‖X − Y ‖2F

(25)

implies ϑ > 0, where (25) is an extension of sparse reconstruction condition in [1, 29].

(b) When f is twice continuously differentiable, it is not difficult to check that

1

ϑ
‖∇f(ΠF (X)) −∇f(X∗)‖F ≤

ϑmax

ϑmin
‖ΠF (X)−X∗‖F

where ϑmin = minX∈F λmin(∇2f(X)) and ϑmax = maxX∈F λmax(∇2f(X)). This shows
that the bound in (23) is related to the condition number of the Hessian matrix ∇2f(X)
restricted over the set F , which is clearly smaller than the condition number of ∇2f(X)
restricted over the set R. Together with Theorem 2.1, we actually have that

1

ϑ
‖∇f(ΠF (X)) −∇f(X∗)‖F ≤

ϑmax

ϑmin

(
c

n∑

i=κ+1

σi(X) + ‖X−X∗‖F
)
∀X ∈ Ω.

2.2 Global error bounds

Generally, for a nonconvex feasible set, it is almost impossible to get a global error bound
for estimating the distance of any point to the feasible set (see [21]). However, under
the calmness of Γ at 0 for each X ∈ Γ(0), we can establish a global error bound for
estimating the distance from any X ∈ X to the feasible set F and the solution set F∗.

Theorem 2.3 Suppose that the multifunction Γ in (3) is calm at 0 for each X ∈ Γ(0).
Then, there exists a constant c > 0 such that for any X ∈ X,

dist(X,F) ≤ (1 + c
√
n)dist(X,Ω) + c

n∑

i=κ+1

σi(X). (26)

When F takes the form of (7), (13) and (15), respectively, the constant c can be specified

as
√

1 + c2u/c
2
l ,
√
2 and 1+2n, respectively. In particular, for the set F in (7), when |‖ · ‖|

is unitarily invariant, one may take c = 1.
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Proof: Let X be an arbitrary point from X. Then, the following inequalities hold

dist(X,F) ≤ ‖X −ΠF (ΠΩ(X))‖F
≤ ‖X −ΠΩ(X)‖F + ‖ΠΩ(X) −ΠF (ΠΩ(X))‖F
≤ ‖X −ΠΩ(X)‖F + c

∥∥ΠΩ(X)−ΠR(ΠΩ(X))
∥∥
∗

= ‖X −ΠΩ(X)‖F + c min
rank(Y )≤κ

∥∥ΠΩ(X) − Y
∥∥
∗

≤ ‖X −ΠΩ(X)‖F + c
(
‖ΠΩ(X) −X‖∗ + ‖X −ΠR(X)‖∗

)

≤ ‖X −ΠΩ(X)‖F + c
(√

n‖ΠΩ(X)−X‖F + ‖X −ΠR(X)‖∗
)

= (1 + c
√
n)dist(X,Ω) + c‖X −ΠR(X)‖∗,

where the third inequality is using Theorem 2.1 and the fourth one is due to the inequality
minrank(Y )≤κ ‖ΠΩ(X)− Y ‖∗ ≤ ‖ΠΩ(X)−ΠR(X)||∗. The proof is completed. ✷

Remark 2.2 For the term dist(X,Ω) in (26), when the set F is given by (7), we have

dist(X,Ω) ≤ 1

cl
max(|‖X‖| − γ, 0) for any X ∈ R

n1×n2 ;

when F takes the form of (13), using [31, Theorem 2.1] with L = {Y ∈ H
n | tr(Y ) = 0},

B = 1
n
I and K = H

n
+ shows that there exists a constant ν ≥ 1 such that

dist(X,Ω) ≤ ν
(
dist(X,B + L) + ‖X −ΠHn

+
(X)‖F

)

=
ν√
n

∣∣1− tr(X)
∣∣ + ν‖X −ΠHn

+
(X)‖F for any X ∈ H

n;

and when F takes the form of (15), using [31, Theorem 2.1] with L = {Y ∈ H
n | diag(Y ) =

0}, B = I and K = H
n
+ yields that there exists a constant ν ≥ 1 such that

dist(X,Ω) ≤ ν
(
dist(X,B + L) + ‖X −ΠH

n

+
(X)‖F

)

= ν
(
‖e− diag(X)‖ + ‖X −ΠHn

+
(X)‖F

)
for any X ∈ H

n.

Now following the same arguments as for inequality (24) and using Theorem 2.3 to
bound ‖X−ΠF (X)‖F , we can establish a global error bound for estimating the distance
from any point X ∈ X to the solution set F∗ under the assumptions of Theorem 2.2.

Theorem 2.4 Suppose that the multifunction Γ in (3) is calm at 0 for each X ∈ Γ(0),
and f is a smooth convex function such that ϑ > 0, where ϑ is defined by (22). Then,
there exists a constant c > 0 such that for any X ∈ X,

dist(X,F∗)≤(1+c
√
n)dist(X,Ω) + c

n∑

i=κ+1

σi(X)+
1

ϑ
‖∇f(ΠF (X)) −∇f(X∗)‖F ,

where X∗ is an arbitrary point from F∗. When F takes the form of (7), (13) and (15),

respectively, the constant c can be specified as
√
1 + c2u/c

2
l ,
√
2 and 1 + 2n, respectively.
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3 Applications of local error bounds

This section illustrates the applications of the local Lipschitzian type error bounds in
establishing the exact penalty for the rank constrained optimization problem (1), and
deriving an error bound for a multi-stage convex relaxation approach to problem (1) in
which Ω is a ball set, a density matrix set and a correlation matrix set, respectively.

3.1 Exact penalty for problem (1)

With the help of the local error bounds in Theorem 2.1, we show that (2) is an exact
penalty problem of (1) in the sense that the global optimal solution set of (2) coincides
with that of problem (1) when the penalty parameter is over a threshold. This result is
stated in the following theorem. Its proof technique is similar to that of [13, Theorem
2.1.2]. Notice that the latter focuses on the subanalytic compact set and employs an error
bound derived by the Lojasiewicz’ inequality for subanalytic function, but our result is
stated for a general compact set Ω ∩R. For completeness, we here include the proof.

Theorem 3.1 Suppose that the multifunction Γ in (3) is calm at 0 for each X ∈ Γ(0).
Let L > 0 be the Lipschitz constant of the function f over Ω. Then, when ρ > cL with c
same as the one in Theorem 2.1, the following statements hold.

(a) The global optimal solution set of (1) coincides with that of (2);

(b) X ∈ F is a local optimal solution of (1) if and only if X is locally optimal to (2).

Proof: (a) Since Ω is compact and f is continuous, the optimal solution set of (2) is
nonempty. Let X∗ be an arbitrary optimal solution of (1). Then, for any X ∈ Ω,

f(X) + ρ
n∑

i=κ+1

σi(X) ≥ f(X) + cL
n∑

i=κ+1

σi(X) ≥ f(X) + L‖X −ΠF (X)‖F

≥ f(ΠF (X)) ≥ f(X∗) = f(X∗) + ρ

n∑

i=κ+1

σi(X
∗) (27)

where the second inequality is due to Theorem 2.1. The last inequality shows that X∗

is an optimal solution of (2). Now, let X be an arbitrary optimal solution of (2). From
the feasibility of X∗ to (2) and Theorem 2.1, it follows that

f(X∗) ≥ f(X) + ρ

n∑

i=κ+1

σi(X) ≥ f(X) + cL

n∑

i=κ+1

σi(X)

≥ f(X) + L‖X −ΠF (X)‖F ≥ f(ΠF (X)) ≥ f(X∗). (28)

This means that f(X∗)=f(X)+ρ
∑n

i=κ+1σi(X) and ρ
∑n

i=κ+1σi(X)=cL
∑n

i=κ+1σi(X).

Since ρ>cL, we must have
∑n

i=κ+1σi(X)=0, and then X∈F . Along with f(X∗)=f(X),

it follows that X is an optimal solution of problem (1). Thus, part (a) follows.

12



(b) Since X ∈ F , it is easy to show that if X is a local optimal solution of (2), then X is
locally optimal of (1). Now, we assume that X is a local optimal solution of (1). Then
there exists a neighborhood of X, denoted by N (X, ε) with ε > 0, such that

f(X) ≤ f(X) for all X ∈ N (X, ε) ∩ F . (29)

Notice that
∑n

i=κ+1σi(X) is continuous and
∑n

i=κ+1σi(X) = 0. Hence, there must exist

ε̃ > 0 such that
∑n

i=κ+1σi(X) < ε
2c for all X ∈ N (X, ε̃). In the following, we show that

for any X ∈ N (X, ε̂) ∩Ω where 0 < ε̂ ≤ min( ε2 , ε̃), it holds that

f(X) + ρ

n∑

i=κ+1

σi(X) = f(X) ≤ f(X) + ρ

n∑

i=κ+1

σi(X).

Notice that for any X∈N (X, ε̂)∩Ω, by Theorem 2.1 and ‖X−X‖F ≤ ε̂ we have

‖ΠF (X)−X‖F ≤ ‖ΠF (X)−X‖F + ‖X −X‖F ≤ c
n∑

i=κ+1

σi(X) + ε̂ ≤ ε.

Thus, it holds ΠF (X) ⊆ N (X, ε) ∩ F . This, together with inequality (29), yields that

f(X) = f(X)+ ρ

n∑

i=κ+1

σi(X) ≤ f(ΠF (X)) ≤ f(X)+ ρ

n∑

i=κ+1

σi(X) ∀ X ∈ N (X, ε̂)∩Ω,

where the last inequality is due to (27). Then X is a local optimal solution of (2). ✷

3.2 Error bound for a multi-stage convex relaxation method

Let Ω be one of the sets in Propositions 2.1-2.3 and f be a convex function. By Theorem
3.1, when ρ > cL with L > 0 being the Lipschitz constant of f over Ω, problem (2), i.e.

min
X∈Ω

{
f(X) + ρ(‖X‖∗ − ‖X‖κ)

}
(30)

has the same global optimal solution set as that of (1), where ‖X‖κ means the Ky Fan κ-
norm, i.e., the sum of the κ-largest singular values of X. Motivated by this, at the current
iterate Xk−1 we replace the concave function −‖X‖κ in (30) by a linear majorization
function −〈W k−1,X〉, and transform the solution of (1) or its exact penalty problem (30)
into the solution of a sequence of convex minimization problems. This leads to a multi-
stage convex relaxation approach to problem (1). The idea of replacing −‖X‖κ by the
linear majorization function −〈W k−1,X〉 first appears in the majorized penalty approach
proposed in [7], where W k−1 ∈ ∂‖ · ‖κ(Xk−1) is used. Here we consider the multi-stage
convex relaxation approach where the linear majorization function −〈W k−1,X〉 is given
with W k−1 ∈ ∂‖ · ‖κ(X̂k−1

F ), where X̂k−1
F is defined by (10), (14) and (17) respectively

with X = Xk−1. Also, different from the majorized penalty approach [7], our multi-stage
convex relaxation approach is using f itself instead of its majorization function.

13



Multi-stage convex relaxation approach for problem (1)

(S.0) Let ρ0 > 0 be given. Choose a starting point X0 ∈ X. Set k := 0.

(S.1) Compute X̂k
F by (10), (14) and (17) with X = Xk and the associated Ω.

(S.2) Seek W k ∈ ∂‖ · ‖κ(X̂k
F ) where ∂‖ · ‖κ is the subdifferential map of ‖ · ‖κ.

(S.3) Find Xk+1 ∈ argminX∈Ω
{
f(X) + ρk(‖X‖∗ − 〈W k,X〉)

}
.

(S.4) Set ρk+1 := τkρk with τk ≥ 1. Let k ← k + 1, and go to Step (S.1).

Assume that X̂k
F for k ≥ 0 has the SVD of the form X̂k

F =
∑n

i=1 σi(X̂
k
F )u

k
i (v

k
i )

T and

let Uk
1 = [uk1 uk2 · · · ukκ] and V k

1 = [vk1 vk2 · · · vkκ]. Then, W k = Uk
1 (V

k
1 )

T ∈ ∂‖ · ‖κ(X̂k
F ).

The above multi-stage convex relaxation approach generates the sequences {X̂k
F}k≥1 ⊆ F

and {Xk}k≥1 ⊆ Ω. In the following, we bound the distance from X̂k
F (respectively, Xk)

to the solution set F∗ with a bound sequence nonincreasing as the number of stages.

Theorem 3.2 Suppose that f is a nonnegative smooth convex function with Lipschitz
continuous gradient over Ω such that ϑ defined by (22) is positive. Let {X̂k

F} and
{Xk} be the sequences generated by the multi-stage convex relaxation approach with

ρ0 > max
(
cL, f(X̂0

F ),
c2(ϑ+L)2

4L

)
, where L > 0 and L > 0 are the Lipschitz constants

of f and ∇f over Ω, respectively, and c is same as the one in Theorem 2.2. Then,

dist(X̂k
F ,F∗) ≤

M+
√
M2+4ϑ(f(X̂k

F )−f(X∗))

2ϑ
≤ · · · ≤

M+
√

M2+4ϑ(f(X̂0
F )−f(X∗))

2ϑ
(31)

where M := max
Z∈F∗

‖∇f(Z)‖ and X∗∈F∗, and with ρ−1 := cL, it holds that

dist(Xk,F∗) ≤ Ξk ≤ Ξk−1 ≤ · · · ≤ Ξ1 ≤ Ξ0 for k ≥ 1, (32)

where Ξl := 2
√

2L
ϑ

√
f(X l)+ρl−1

∑n
i=κ+1 σi(X

l)+f(X∗).

Proof: We first argue that the sequence {f(X̂k
F )}k≥0 is nonincreasing. Indeed, from the

proof of Propositions 2.1-2.3 we have ‖Xk−X̂k
F‖F ≤ c

∑n
i=κ+1 σi(X

k). This implies that

f(Xk) + ρk−1

n∑

i=κ+1

σi(X
k) ≥ f(Xk) + cL

n∑

i=κ+1

σi(X
k) ≥ f(X̂k

F ), k ≥ 0. (33)

Since ‖X‖κ=
∑κ

i=1 σi(X)=sup‖W‖≤1, rank(W )≤κ〈W,X〉 for any X∈X, it follows that

n∑

i=κ+1

σi(X
k)=‖Xk‖∗− sup

‖W‖≤1,rank(W )≤κ

〈W,Xk〉 ≤ ‖Xk‖∗−〈W k−1,Xk〉 for k ≥ 1. (34)
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From equation (34) and the definitions of Xk and Xk−1
F ∈ Ω for k ≥ 1, we have that

f(Xk) + ρk−1

n∑

i=κ+1

σi(X
k) ≤ f(Xk) + ρk−1

(
‖Xk‖∗ − 〈W k−1,Xk〉

)
≤ f(X̂k−1

F ), (35)

where the last inequality is due to 〈W k−1, X̂k−1
F 〉−‖X̂k−1

F ‖κ = 0, implied by W k−1 ∈
∂‖ · ‖κ(X̂k−1

F ). From (33) and (35), {f(X̂k
F )}k≥0 is nonincreasing. By the definition of ϑ,

ϑ‖X̂k
F−X∗‖2F ≤ f(X̂k

F )−f(X∗)−〈∇f(X∗), X̂k
F−X∗〉 ≤ f(X̂k

F )−f(X∗)+M‖X̂k
F−X∗‖,

which implies that ‖X̂k
F−X∗‖F ≤ 1

2ϑ

(
M +

√
M2 + 4ϑ(f(X̂k

F )− f(X∗))
)
. This, along

with the nonincreasing of the sequence {f(X̂k
F )}k≥0, yields the desired result in (31).

Notice that Xk ∈ Ω for all k ≥ 1. Therefore, from Theorem 2.2 it follows that

dist(Xk,F∗) ≤ c

n∑

i=κ+1

σi(X
k)+

1

ϑ

(
‖∇f(ΠF (X

k))−∇f(Xk)‖F +‖∇f(Xk)−∇f(X∗)‖F
)

≤ c
n∑

i=κ+1

σi(X
k) +

L

ϑ

∥∥ΠF (X
k)−Xk

∥∥
F
+

1

ϑ
‖∇f(Xk)−∇f(X∗)‖F

≤ c
n∑

i=κ+1

σi(X
k) +

L

ϑ

∥∥ΠF (X
k)−Xk

∥∥
F
+

2
√
L

ϑ

√
f(Xk) + f(X∗)

≤ c
(
1 +

L

ϑ

) n∑

i=κ+1

σi(X
k) +

2
√
L

ϑ

√
f(Xk) + f(X∗)

≤ 2
√
L

ϑ

[c(ϑ + L)

2
√
L

√∑n
i=κ+1σi(X

k) +
√

f(Xk) + f(X∗)
]

≤ 2
√
2L

ϑ

√
f(Xk) + ρk−1

∑n
i=κ+1σi(X

k) + f(X∗)

where the second inequality is using the Lipschitz continuity of ∇f over Ω, the third
one is using [20, Equation (2.1.10)] implied by the assumption that f is a nonnega-
tive smooth convex function with Lipschitz continuous gradient, the fifth one is using∑n

i=κ+1 σi(X
k) < 1 implied by ρk−1 > f(X̂0

F ) ≥ f(X̂k
F ) and (35), and the last one

is due to ρk−1 > c2(ϑ+L)2

4L
. Thus, to establish inequality (32), it suffices to show that

Ξk≤Ξk−1≤· · ·≤Ξ0 for k ≥ 1. Indeed, by using equations (33) and (35), we have that

f(Xk) + ρk−1

n∑

i=κ+1

σi(X
k) ≤ f(X̂k−1

F ) ≤ f(Xk−1) + ρk−2

n∑

i=κ+1

σi(X
k−1) for k≥1.

This implies that the sequence {f(Xk)+ρk−1
∑n

i=κ+1 σi(X
k)}k≥0 is nonincreasing. By

the definition of Ξk, it follows that Ξk≤Ξk−1≤· · ·≤ Ξ1≤Ξ0. The proof is completed. ✷
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From the proof of Theorem 3.2, we have
∑n

i=κ+1 σi(X
k) ≤ f(X̂k−1

F )/ρk−1. By noting

that
∑n

i=κ+1 σi(X
k) = 0 means Xk ∈ F , this shows that Xk is an approximate feasible

solution to (1), and the infeasibility violation becomes smaller as the number of stages
increases, since the sequence {f(X̂k−1

F } is nonincreasing and ρk is nondecreasing.

4 Conclusions

In this paper we have provided a sufficient and necessary condition to establish the
Lipschitzian type error bounds for estimating the distance from any X ∈ Ω to the
feasible set F of the rank constrained optimization problem (1), and showed that this
condition is specially satisfied by three classes of common Ω. With the help of this
result and the error bound for the convex feasibility system, we also derived the global
error bound for estimating the distance from any X ∈ X to F . Under an additional
suitable restricted strong convexity for the objective function f , the error bounds for
estimating the distance from X ∈ Ω (or X ∈ X) to the solution set F∗ are also derived.
To illustrate the applications of these error bounds, we have showed that the penalty
problem yielded by moving the rank constraint rank(X) ≤ κ into the objective is exact,
which affirmatively answers the open question proposed in [7] about whether the penalty
problem (32) there is exact or not, and provided the error bound of the iterates generated
by a multi-stage convex relaxation approach to (1) with three classes of special Ω.

To the best of our knowledge, this paper is the first one to touch the error bound and
exact penalty for the NP-hard low-rank optimization problems. Clearly, the error bound
and exact penalty results also hold for the corresponding classes of zero norm constrained
optimization problems, such as the sparse principal components analysis and the sparse
portfolio selection problems. Our future research work will focus on the applications of
these Lipschitzian error bounds to the convergence and iteration complexity of algorithms
for low-rank constrained optimization problems, especially the error bound of the iterates
yielded by the majorized penalty approach [7].
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