
ar
X

iv
:1

60
3.

09
59

5v
1

 [
m

at
h.

O
C

]
 3

1
M

ar
 2

01
6 A Note on Non-Degenerate Integer

Programs with Small Sub-Determinants

S. Artmann1, F. Eisenbrand2, C. Glanzer1, T. Oertel3,
S. Vempala4, and R. Weismantel1

1Swiss Federal Institute of Technology, Zürich (ETH Zürich)

2École Polytechnique Fédérale de Lausanne (EPFL)
3Cardiff University

4Georgia Institute of Technology

October 1, 2018

Abstract

The intention of this note is two-fold. First, we study integer optimization

problems in standard form defined by A ∈ Z
m×n and present an algorithm

to solve such problems in polynomial-time provided that both the largest

absolute value of an entry in A and m are constant. Then, this is applied

to solve integer programs in inequality form in polynomial-time, where

the absolute values of all maximal sub-determinants of A lie between 1

and a constant.

1 Introduction

Let A ∈ Z
m×n be a matrix such that all of its entries are bounded in absolute

value by an integer ∆. Assume that for each row index i, gcd(Ai,·) = 1. We
call the determinant of an (n× n)-submatrix of A an (n × n)-sub-determinant
of A. Let

δmax(A) :=max{|d| : d is an (n× n)-sub-determinant of A}.

We study the complexity of an integer programming problem in terms of the
parameter ∆ when presented in standard form (1). Moreover, we study inte-
ger programming problems in inequality form (2) that are associated with the
matrix A whose ‘complexity’ is measured by the parameter δmax(A).

max
{
cTx : Ax = b, x > 0, x ∈ Z

n
}
, (1)

max
{
cTx : Ax ≤ b, x ∈ Z

n
}
. (2)

1

http://arxiv.org/abs/1603.09595v1

It is known that when the absolute value of all sub-determinants of A is bounded
by one, A is totally unimodular and the integer programs (1) and (2) are poly-
nomially solvable. This concept of total unimodularity was pioneered by the
works of Hoffman, Kruskal, Veinott, Dantzig and many other researchers. It
has led to a beautiful and fundamental theory that is so important that it is
covered by all standard textbooks in combinatorial optimization nowadays. For
instance, see [1] for a thorough treatment of the subject.

When δmax(A) > 1, then surprisingly little is known.
Bonifas et al. showed in [2] that for a bounded polyhedron P = {x ∈

R
n : Ax 6 b} its (combinatorial) diameter is bounded in the order ofO(δmax(A)

2·
n3.5 · log(n · δmax(A))). This improves an important result of Dyer and Frieze
[3] that applies to TU-matrices.

Veselov and Chirkov (2009) showed in [4], how (2) can be solved polynomially
in m and n and the encoding size of the data when δmax(A) ≤ 2 and no (n×n)-
submatrices are singular.

There exists a dynamic programming approach to solve (1) by Papadim-
itriou [5], see also [1], Part IV, Section 18.6: Let ∆(A, b) be an upper bound on
the absolute values of A and b. Then, if (1) is feasible and bounded, it has an
optimal solution with components bounded by U := (n+ 1)(m ·∆(A, b))m.

The dynamic program is a maximum weight path problem on a properly
defined (acyclic) graph. The optimum solution can be found in time

O(|V |) = O(2m · nm+1 · (m ·∆(A, b))m
2

·∆(A, b)m).

We show how to avoid a dependence of the running time on the largest
absolute value of an entry in b: For fixed m, an integer program can be solved
in time polynomially bounded by n and the largest absolute value ∆ of an
entry in A. This result is one important ingredient to solve the optimization
problem (2) in polynomial-time for any constant values of δmax(A), provided
that A has no singular (n× n)-submatrices and rank(A) = n. It turns out that
the condition that all (n× n)-sub-determinants shall be non-zero imposes very
harsh restrictions on A. In particular, A can have at most n+ 1 rows provided
that n exceeds a certain constant.

2 Dynamic Programming Revisited

2.1 The Pure Integer Case

We show that one can solve problem (1) in time polynomial in n, ∆ and
log(maxi{|bi|}) where ∆ = maxi,j{|Ai,j |}. This is an improvement over Pa-
padimitriou’s approach [5], as we eliminate the unary dependency on b. For
S ⊆ {1, . . . , n}, let AS denote the matrix stemming from A by the columns
indexed by S.

Lemma 1. If the integer program (1) is feasible and bounded, there exists an
optimal solution x∗ ∈ Z

n where at least n−m components of x∗ are bounded by

2

(m+2) · (m ·∆)m. Furthermore, the columns of A corresponding to components
of x∗ that are larger than (m+ 2) · (m ·∆)m are linearly independent.

The proof of this Lemma is in Appendix A. Once this Lemma is shown, we
have the following result.

Theorem 2. There exists an algorithm that solves the integer programming
problem (1) in time bounded by

O
(
22m ·∆m3+3m2+2m · nm3+5m2+6m+1

)
.

Proof. We assume that problem is feasible and bounded. Let x⋆ be the optimal
solution as defined in Lemma 1 and let S ⊆ {1, . . . , n} be the set of indices of
the components of x∗ that are bounded by (m+2) · (m ·∆)m. By S̄, we denote
the complement of S. Now, let

b′′ :=
∑

j∈S

x∗
jA·,j and b′ := b− b′′.

It follows that x∗
S is an optimal solution of the integer program

max

∑

j∈S

cjxj :
∑

j∈S

xjA·,j = b′′, x ∈ Z
S
>0

 , (3)

and x∗
S
is the optimal solution of the integer program

max

∑

j∈S

cjxj :
∑

j∈S

xjA·,j = b′, x ∈ Z
S
>0

 . (4)

Since ‖b′′‖∞ 6 ∆ · n · (m + 2) · (m · ∆)m, the integer programming prob-

lem (3) can be solved with Papadimitriou’s algorithm [5] in time O
(
2m ·∆m2+m ·

nm2+2m+1 ·m2m2+m · (m ·∆)m
3+m2)

.
Since the columns of AS are linearly independent, x∗

S
is the unique solution

of the system of equations ∑

j∈S

xjA·,j = b′,

which can be found by using Gaussian elimination.
The algorithm starts by enumerating all possible

O
(
2m ·∆m · nm · (m+ 2)m · (m ·∆)m

2
)

vectors b′′ and then proceeds by enumerating all
(
n
m

)
= O(nm) components of

x∗ whose absolute value might be larger than (m+2) · (m ·∆)m in the optimal
solution x∗. Then, one solves the integer program (3) with Papadimitriou’s
algorithm and the integer program (4) using Gaussian elimination.

3

Altogether this yields a running time of

O (2m ·∆m · nm · (m+ 2)m · (m ·∆)m
2

· nm · 2m

∆m2+m · nm2+2m+1 ·m2m2+m · (m ·∆)m
3+m2

).

We can assume that m 6 n and obtain the running time

O
(
22m ·∆m3+3m2+2m · nm3+5m2+6m+1

)
.

Proof of Lemma 1. We assume that the objective function vector c is non-
degenerate in the following sense: We suppose that cT y 6= 0 for each integral
vector y 6= 0 with ‖y‖∞ 6 (m+2) · (m ·∆)m. This can be achieved without loss
of generality with standard perturbation, i.e., c := c + (ε, ε2, . . . , εn) for ε > 0
small.

Let x∗ be an optimal solution and let S ⊆ {1, . . . , n} be a subset of indices
for which x∗

s > (m+2) · (m ·∆)m for each s ∈ S. If the columns of A·,S are not
linearly independent, then there exists a non-zero integral d ∈ Z

|S|, d 6= 0, with
A·,S · d = 0. We can assume that the support of d fulfills | supp(d)| ≤ m + 1.
Then, as noted in the introduction, there exists a feasible solution to A·,S ·x = 0,
x ∈ Z

|S|, with ‖d‖∞ 6 (m + 2)(m ·∆)m. Without loss of generality, cTd > 0,
using our modified objective function. But then, (x∗

S+d, x∗
S
) is a feasible solution

with better objective function, which is a contradiction. Consequently, the
number of components of x∗ exceeding (m+ 2)(m ·∆)m is bounded by m and
the corresponding columns of A are linearly independent.

2.2 Extensions to the Mixed Integer Setting

This section is devoted to generalizations of Lemma 1 and Theorem 2 in order to
apply the idea from the previous section to mixed-integer optimization problems
of the form

max
{
cTx+ dT y : Ax+By = b, x, y > 0, x ∈ Z

n, y ∈ R
l
}
, (5)

where, as before, A ∈ Z
mn with upper bound ∆ on the absolute values of A,

b ∈ Z
m, c ∈ Z

n and d ∈ Q
l.

If we view problem (5) as a parametric integer problem in variables x only,
then Lemma 1 is applicable. This observation directly leads us to a mixed-
integer version of Lemma 1.

Lemma 3. If the mixed-integer program (5) has an optimal solution, then it
has an optimal solution (x∗, y∗) such that x∗ ∈ Z

n, where at least n −m com-
ponents of x∗ are bounded by (m+ 2) · (m ·∆)m. Furthermore, the columns of
A corresponding to components of x∗ that are larger than (m+2) · (m ·∆)m are
linearly independent.

4

With this Lemma, we are prepared to prove a mixed-integer version of The-
orem 2. In the special case when m is a constant, this result gives rise to a
polynomial-time algorithm for solving the mixed-integer optimization problem
(5).

Theorem 4. There exists an algorithm that solves the mixed-integer program-
ming problem (5) in time bounded by

O
(
22m ·∆m3+3m2+2m · nm3+5m2+6m+1

)
· κ(m, l,∆),

where κ(m, l,∆) is the worst case running time for solving a mixed-integer op-
timization problem of the type (5) with m integer variables and l continuous
variables.

Proof. Let (x∗, y∗) be an optimal solution of problem (5) satisfying Lemma 3.
By S ⊆ {1, . . . , n} we denote the indices of the components of x∗ that are
bounded by (m+ 2) · (m ·∆)m. Furthermore let

b′′ :=
∑

j∈S

x∗
jA·,j and b′ := b− b′′.

Then, x∗
S is an optimal solution of the pure integer program

max

∑

j∈S

cjxj :
∑

j∈S

xjA·,j = b′′, x ∈ Z
|S|
>0

 , (6)

and (x∗
S
, y∗) is the optimal solution of the mixed-integer program

max

∑

j∈S

cjxj +

l∑

j=1

djyj :

∑

j∈S

xjA·,j +
l∑

j=1

yjB·,j = b′, x ∈ Z
|S|
>0, y > 0

 .

(7)

As in the previous section, the algorithm first enumerates all possible

O
(
2m ·∆m · nm · (m+ 2)m · (m ·∆)m

2
)

vectors b′′, which satisfy

‖b′′‖∞ 6 ∆ · n · (m+ 2) · (m ·∆)m.

Next, one proceeds by enumerating all
(
n
m

)
= O(nm) components of x∗ whose

absolute value might be larger than (m + 2) · (m · ∆)m in the optimal solu-
tion x∗. The corresponding integer programming problem (6) can be solved

with Papadimitriou’s algorithm in time O
(
2m ·∆m2+m · nm2+2m+1 ·m2m2+m ·

(m · ∆)m
3+m2)

. Since the columns of AS are linearly independent, |S| 6 m.
Therefore, the mixed-integer program (7) can be solved in time κ(m, l,∆).

Altogether, this yields the proposed running time.

5

3 Application to integer programs with non-zero

and bounded sub-determinants

Let us now use Theorem 2 to prove that (2) can be solved in polynomial-time
under the assumption that A has rank n, A has no singular (n×n)-submatrices
and δmax(A) ≤ δ for a constant δ < ∞. Our plan is as follows:

First, we permute the rows of A and transform the permuted matrix into
Hermite Normal Form to obtain the representation illustrated in (8). This can
be accomplished in polynomial-time (cf. [6]). Then, we show that the entries of
A are bounded by a constant C(δ) depending solely on δ and that for n large
enough, A can have at most n+1 rows. Using these results, we find an efficient
algorithm for (2): We reformulate (2) as a program of the form given in (1) with
a matrix whose number of rows is bounded by a constant which only depends
on δ. We then apply Theorem 2 to get a polynomial running-time algorithm.

By permuting the rows of A, we may assume without loss of generality that
det(A1:n,·) 6= 0, where A1:n,· is the uppermost (n × n)-submatrix of A. Let U

be the unimodular matrix such that A1:n,·U is in Hermite Normal Form (cf.
[1], Part II, Chapters 4 and 5). Note that as U−1 ∈ Z

n×n, AU has the same
(n×n)-sub-determinants as A and that U can be calculated in polynomial-time
(in m, n and the encoding size of A) and is polynomially bounded in the size
of A (cf. [6] or [1], Part II, Chapter 5.2). After a change of variables from x

to U−1x, we can assume from now on that A is a lower triangular matrix with
diagonal entries

(1, . . . , 1, δ1, 1, . . . , 1, δ2, 1, . . . , 1, δk, 1, . . . , 1, An,n) .

Moreover, we have that δi ≤ δ for all i ∈ {1, . . . , k} and for all 1 ≤ j < i ≤ n

we have Ai,j < Ai,i.
Our next step is to simplify A further. To this end, we apply row permuta-

tions and column permutations iteratively: For i ∈ {1, . . . , k}, assume that after
row and column permutations, the rows corresponding to the diagonal entries
δi+1, . . . , δk are at positions n− i− 1, . . . , n. Let Aδi be the row corresponding
to δi. Then, exchange rows A

δi and An−(i+1),· as well as the column containing
δi with column n − (i + 1). This leads to a representation of the matrix A as
follows:

6

A =

1
. . .

1
∗ · · · ∗ δ1
...

. . .
. . .

∗ · · · · · · · · · ∗ δk
An,1 · · · · · · · · · · · · An,n−1 An,n

An+1,1 · · · · · · · · · · · · An+1,n−1 An+1,n

...
...

...
...

...
...

...
Am,1 · · · · · · · · · · · · Am,n−1 Am,n

. (8)

All entries denoted by ∗ are numbers between 0 and the diagonal entry of
the same row.

The submatrix consisting of the first n rows has a determinant that is
bounded by δ. This allows us to conclude that |δ1| · · · |δk| · |An,n| ≤ δ and
thus k ≤ log2(δ).

We will now make use of two Lemmas. The corresponding proofs are post-
poned to Appendix A.

Lemma 5. The entries in A are bounded by a constant C(δ) which only depends
on δ.

Remark 6. Lemma 5 also holds in the case where A has singular (n × n)
submatrices.

Lemma 7. Let n > (2C(δ) + 1)log2 δ+3 + log2 δ. Then, A has at most n + 1
rows.

We are now prepared to prove the main result of this section.

Theorem 8. There exists an algorithm that solves problem (2) in time polyno-
mially bounded by m, n, δ and the encoding size of the input data.

Proof of Theorem 8. If n 6 (2C(δ) + 1)log2
δ+3 + log2 δ, then by using Lenstra’s

algorithm (cf. [7]), the corresponding integer program can be solved in polynomial-
time.

Otherwise, n > (2C(δ) + 1)log2 δ+3 + log2 δ. By Lemma 7, A has at most
n+ 1 rows. Furthermore, in view of (8), we may assume that A is of the form

A =

[
−I 0

Ã Â

]
,

7

where I denotes the (n−k−1)-dimensional identity matrix, 0 = {0}(n−k−1)×(k+1),

Ã :=

∗ · · · ∗
...

...
∗ · · · ∗
α1 . . . αn−k−1

β1 . . . βn−k−1

∈ Z

(k+2)×(n−k−1)

and

Â :=

δ1
. . .

. . .

· · · ∗ δk
αn−k . . . αn−1 αn

βn−k . . . βn−1 βn

∈ Z

(k+2)×(k+1).

It holds that δ ≥ δi > 0 and by Lemma 5, |Aij | 6 C(δ) for all 1 ≤ i ≤ n + 1,
1 ≤ j ≤ n.

We denote Ā :=
[
Ã Â

]
. For a vector x ∈ R

n, let x̃ ∈ Z
n−k−1 be the first

n−k−1, x̂ ∈ Z
k+1 be the last k+1 components of x. Thus, Āx = Ãx̃+ Âx̂. We

write x =

(
x̃

x̂

)
. Similarly, we write b =

(
b̃

b̄

)
, where b̃ ∈ Z

n−k−1 and b̄ ∈ Z
k+2,

such that Ax ≤ b ⇔ x̃ ≥ b̃, Āx ≤ b̄.
Ax ≤ b, x ∈ Z

n can then be reformulated as Āx ≤ b̄, x̃ ≥ b̃, x ∈ Z
n, which

in turn can be restated as

Āy ≤ b̄− Ā

(
b̃

0

)
,

ỹ ≥ 0,

where y := x−
(
b̃
0

)
.

This reformulation leads to the following maximization problem:

max

{
cTx : Āx ≤ b̄, x =

(
x̃

x̂

)
, x̃ ≥ 0, x ∈ Z

n

}
. (9)

To arrive at a problem of the form (1), we apply a standard technique: We
introduce new variables x̂+

i := max{x̂i, 0} and x̂−
i := min{x̂i, 0} as well as slack

variables z ≥ 0 and reformulate (9) as

max
[
c̃T ĉT − ĉT 0

T
] [
x̃ x̂+ x̂− z

]T

s.t.
[
Ã Â − Â I

] [
x̃ x̂+ x̂− z

]T
= b̄, (10)

x̃, x̂+, x̂−, z ≥ 0,

8

where c =

(
c̃

ĉ

)
. Here, 0 ∈ Z

k+2 denotes the (k + 2)-dimensional zero vector

and I is the (k + 2)× (k + 2)-identity matrix.

Recall that k ≤ log2(δ). Hence, the matrix
[
Ã Â − Â I

]
∈ Z

(k+2)×(n+2k+3)

in (10) has at most log2 δ+2 rows and at most n+2 log2 δ+3 columns. Further-
more, in view of Lemma 5, each entry is bounded by C(δ). We can therefore
apply Theorem 2. This gives the desired result, where the overall running time
is bounded by

O
(
n(log

2
δ+2)3+5(log

2
δ+2)2+6(log

2
δ+2)+1

)
.

A Technical Proofs

Proof of Lemma 5. We assume that A is in the form (8). The first n rows
are part of the Hermite Normal Form. Hence, by definition, they fulfill the
statement. Let α = [α1, . . . , αn] be any other row of A.

Let B0 := δ, q := ⌈log2 δ⌉ and for i ∈ {1, . . . , q}, consider the increasing

sequence Bi := δ +
∑i−1

l=0 Blδ
log

2
δ(log2 δ)

(log
2
δ)/2. We show that all entries of α

are bounded by the constant Bq as follows.
Let Ai denote the square submatrix of A that consists of the first n rows,

except for the i-th row, which is replaced by α. Then, since | det(An)| =
δ1 . . . δk · αn, it follows that |αn| ≤ δ = B0.

Case i) i ≥ n− k:
Consider αi and assume that it holds that Bn−j ≥ |αj | for all n ≥ j > i. We
can express | det(Ai)| as follows.

|δ1| · · · |δr−1|| det

αi · · · αn

∗ δr+1

∗ ∗
. . .

...
... ∗ δk

An,i . . . An,n

︸ ︷︷ ︸
=:Ā

|.

Let Āj be the matrix Ā without the first row and without column j. Then,

δ ≥ | det Ā| =

∣∣∣∣∣αi det Ā
1 +

n−i+1∑

l=2

(−1)l+1αl+i−1 det Ā
l

∣∣∣∣∣

≥ |αi det Ā
1| −

n−i+1∑

l=2

|αl+i−1 det Ā
l|,

9

and thus

|αi| ≤
1

| det Ā1|

(
δ +

n−i+1∑

l=2

|αl+i−1 det Ā
l|

)
.

Furthermore, 1 ≤ | det Ā1| ≤ δ.
Since the absolute value of each entry in Āj is bounded by δ, we can ap-

ply the Hadamard inequality [8] to obtain | det Āj | ≤ δn−i(n − i)(n−i)/2 ≤
δlog2

δ(log2 δ)
(log

2
δ)/2. This provides us with the bound

|αi| ≤ δ +

n−i+1∑

l=2

Bn−l−i+1δ
log

2
δ(log2 δ)

(log
2
δ)/2 = Bn−i ≤ Bk.

Thus |αi| ≤ Bk ≤ Bq.

Case ii) i < n− k:
Similar to the previous case, we can express | det(Ai)| as

| det

αi αn−k · · · · · · αn

∗ δ1

∗ ∗
. . .

...
... δk

An,i An,n−k · · · · · · An,n

︸ ︷︷ ︸
=:Ā

|.

Let Āj be Ā without the first row and column j, so that

δ ≥ | det Ā| =

∣∣∣∣∣αi det Ā
1 +

k+2∑

l=2

(−1)l+1αl+n−k−2 det Ā
l

∣∣∣∣∣

≥ |αi det Ā
1| −

k+2∑

l=2

|αl+n−k−2 det Ā
l|,

and

|αi| ≤
1

| det Ā1|

(
δ +

k+2∑

l=2

|αl+n−k−2 det Ā
l|

)
.

We arrive at the bound

|αi| ≤ δ +

k+2∑

l=2

Bk+2−lδ
log

2
δ(log2 δ)

(log
2
δ)/2 ≤ Bq.

This completes the proof by letting C(δ) := Bq.

10

Proof of Lemma 7. Let A be defined as illustrated in (8). Recall that A has
no singular (n × n)-submatrices. For the purpose of deriving a contradiction,
assume that n > (2C(δ)+1)log2

δ+3+log2 δ and that A has precisely n+2 rows.
Let Ã be the matrix A without rows i and j, where i, j < n− k, i 6= j. Observe
that

| det Ã| = | det

δ1
...

...
. . .

δk
An,i An,j . . . An,n

An+1,i An+1,j . . . An+1,n

An+2,i An+2,j . . . An+2,n

︸ ︷︷ ︸
=:Âij

|.

Âij is a (k + 3) × (k + 3)-matrix. Its determinant cannot be zero. This

implies that the first two columns of Âij must be different for each choice of i
and j.

From Lemma 5, it follows that the absolute value of any entry of Âij is
bounded by C(δ). Therefore, the first two columns are in {−C(δ), . . . , C(δ)}k+3.
Since k ≤ log2 δ, there exist at most (2C(δ) + 1)log2

δ+3 such vectors. Con-
sequently, as n > (2C(δ) + 1)log2

δ+3 + log2 δ, there must exist two indices

i 6= j ∈ {1, . . . , n − k − 1} such that det(Âij) = 0. This contradicts that there
are no singular (n× n)-submatrices within A. The statement follows.

References

[1] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and
Sons, NY, 1986.

[2] N. Bonifas, M. Di Summa, F. Eisenbrand, N. Hähnle, M. Niemeier, On
sub-determinants and the diameter of polyhedra, Discrete & Computational
Geometry 52 (1) (2014) 102–115. doi:10.1007/s00454-014-9601-x.

[3] M. Dyer, A. Frieze, Random walks, totally unimodular matrices, and a
randomised dual simplex algorithm, Mathematical Programming 64 (1-3)
(1994) 1–16. doi:10.1007/BF01582563.

[4] S. I. Veselov, A. J. Chirkov, Integer programwith bimodular matrix, Discrete
Optimization 6 (2) (2009) 220–222. doi:10.1016/j.disopt.2008.12.002.

[5] C. H. Papadimitriou, On the complexity of integer programming., J. ACM
28 (4) (1981) 765–768. doi:10.1145/322276.322287.

[6] M. A. Frumkin, An algorithm for the reduction of a matrix of integers to
triangular form with power complexity of the computations (in Russian),
Ekonomika i Matematicheskie Metody 12 (1976) 173–178.

11

http://dx.doi.org/10.1007/s00454-014-9601-x
http://dx.doi.org/10.1007/BF01582563
http://dx.doi.org/10.1016/j.disopt.2008.12.002
http://dx.doi.org/10.1145/322276.322287

[7] H. W. Lenstra, Integer programming with a fixed number of vari-
ables, Mathematics of operations research 8 (4) (1983) 538–548.
doi:10.1287/moor.8.4.538.

[8] J. Hadamard, Rèsolution d’une question relative aux dèterminants, Bulletin
des Sciences Mathématiques 2 (17) (1893) 240–246.

12

http://dx.doi.org/10.1287/moor.8.4.538

	1 Introduction
	2 Dynamic Programming Revisited
	2.1 The Pure Integer Case
	2.2 Extensions to the Mixed Integer Setting

	3 Application to integer programs with non-zero and bounded sub-determinants
	A Technical Proofs

