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Abstract

We consider strategic problems in college admissions with score-limits in-
troduced by Biró and Kiselgof. We first consider the problem of deciding
whether a given applicant can cheat the algorithm of Biró and Kiselgof so
that this applicant is assigned to a more preferable college. We prove its
polynomial-time solvability. In addition, we consider the situation in which
all applicants strategically behave. We prove that a Nash equilibrium always
exists, and we can find one in polynomial time.
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1. Introduction

The stable matching model introduced by Gale and Shapley [1] is one of
the most important matching models from both the theoretical and practical
viewpoints. Gale and Shapley [1] proved that there always exists a stable
matching, and they proposed a polynomial-time algorithm for finding a sta-
ble matching. One of the most notable properties of the algorithm proposed
by Gale and Shapley [1] is the strategy-proofness for the proposing side [2].
In this paper, we consider a problem in which we assign applicants to col-
leges based on their scores. In such a problem, it is desirable to treat equally
applicants with the same score, i.e., we accept/reject all applicants with the
same score. Based on a real system used in Hungary, Biró and Kiselgof [3]
proposed a variant of the stable matching problem taking such a constraint
into consideration. They proved that there always exists a stable assign-
ment in this problem, and we can find a stable assignment in polynomial
time. However, they also proved that their algorithm is not strategy-proof
for applicants.
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If an algorithm is not strategy-proof, then there exists a possibility that
we can cheat this algorithm. However, it is reasonable to think that if
finding a cheating strategy for this algorithm is NP-hard (and the size of an
instance is sufficiently large), then it is not easy to manipulate it. Thus, it is
important to reveal the computational complexity of the problem of finding
a cheating strategy for an algorithm that is not strategy-proof.

In this paper, we consider the following strategic problem related to the
model proposed by Biró and Kiselgof [3]. In this problem, we are given some
applicant. Then, the goal is to decide whether this applicant can cheat the
algorithm of [3] so that this applicant is assigned to a more preferable college.
We prove that this problem can be solved in polynomial time (Section 3).
Furthermore, we consider the situation in which all applicants strategically
behave. We prove that a Nash equilibrium always exists in this situation,
and we can find a Nash equilibrium in polynomial time (Section 4).

1.1. Related Work

Recently, computational problems related to manipulation of matching
algorithms have been widely studied. In [4, 5, 6, 7, 8, 9, 10], the authors con-
sidered cheating strategies for the Gale–Shapley algorithm in the (classical)
stable matching problem. Huang [11] considered a cheating strategy in the
stable roommate problem. In [12], the authors considered a cheating strat-
egy for the probabilistic serial rule. Nasre [13] considered a cheating strategy
in the popular matching problem. Pini, Rossi, Venable, and Walsh [14] pro-
posed a mechanism such that the problem of finding a cheating strategy
for this mechanism is NP-hard. Matsui [15] considered a game related to
cheating strategies for the Gale–Shapley algorithm. In [16], the authors
considered a game related to cheating strategies for the probabilistic serial
rule.

It should be noted that Fleiner and Jankó [17] proposed a choice function-
based approach for the model proposed by Biró and Kiselgof [3].

2. Preliminaries

We denote by Z+ the set of non-negative integers. For each pair of sets
X,Y , each mapping µ : X → Y , and each element y in Y , we define µ−1(y)
as the set of elements x in X such that µ(x) = y. Assume that we are given
a set X = {x1, x2, . . . , xk} and a strict total order ▷ on X. In addition,
we assume that xi ▷ xj for every pair of integers i, j in {1, 2, . . . , k} such
that i < j. Then, we write ▷ : x1, x2, . . . , xk for representing this strict total
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order ▷. For each subset Y of X, an element x in Y is said to be maximal
in Y with respect to ▷, if x▷ y for every element y in Y \ {x}.

In college admissions with score-limits introduced by Biró and Kisel-
gof [3], we are given a set [n] = {1, 2, . . . , n} of applicants and a set C of
colleges. Define m := |C|. For each applicant i in [n], we are given a strict
total order ≻i on C ∪ {i}. For each applicant i in [n], the strict total order
≻i represents the preference list of i over colleges. For each applicant i in
[n] and each pair of colleges c1, c2 in C, if c1 ≻i c2, then i preferes c1 to c2.
Define ≻ := (≻1,≻2, . . . ,≻n). Furthermore, we are given a capacity function
q : C → Z+. For each applicant i in [n] and each college c in C, we are given
a non-negative integer si(c) that represents the score of i for c.

For each applicant i in [n], we denote by Si the set of strict total orders
on C ∪ {i}. Define S := S1 × S2 × · · · × Sn. An element in S is called a
profile. It should be noted that ≻ is a profile. A function from C to Z+ is
called a score-limit. Furthermore, a mapping from [n] to [n] ∪ C is called a
matching, if µ(i) ∈ C ∪ {i} for every applicant i in [n].

Assume that we are given a profile ▷ = (▷1,▷2, . . . ,▷n) in S. For each
score-limit ℓ and each applicant i in [n], we define Fi,▷(ℓ) as the set of colleges
c in C such that c ▷i i and si(c) ≥ ℓ(c). In addition, for each score-limit
ℓ and each applicant i in [n] such that Fi,▷(ℓ) ̸= ∅, we define fi,▷(ℓ) as the
maximal college in Fi,▷(ℓ) with respect to ▷i. For each score-limit ℓ and each
applicant i in [n] such that Fi,▷(ℓ) = ∅, we define fi,▷(ℓ) := i. For each score-
limit ℓ and each college c in C, we define Gc,▷(ℓ) as the set of applicants
i in [n] such that fi,▷(ℓ) = c. For each score-limit ℓ and each college c
in C such that ℓ(c) > 0, we define a score-limit ℓ−c by ℓ−c (c) := ℓ(c) − 1
and ℓ−c (c

′) := ℓ(c′) for each college c′ in C \ {c}. We call a score-limit
ℓ an H-feasible score-limit with respect to ▷, if for every college c in C,
|Gc,▷(ℓ)| ≤ q(c). In addition, an H-feasible score-limit ℓ with respect to ▷
is called an H-stable score-limit with respect to ▷, if for every college c in
C, at least one of the following conditions holds.

1. ℓ(c) = 0.

2. ℓ(c) > 0 and ℓ−c is not an H-feasible score-limit with respect to ▷.

This concept is motivated by a real system used in Hungary. (Biró and
Kiselgof [3] introduced another stability concept called the L-stability. In
this paper, we do not consider this stability concept.) Biró and Kiselgof [3]
proved that there always exists an H-stable score-limit. Furthermore, they
propose a polynomial-time algorithm for finding an H-stable score-limit (see
the next subsection).
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2.1. Algorithm of Biró and Kiselgof

Here we explain the algorithm of Biró and Kiselgof [3] for finding an
H-stable score-limit. We call this algorithm the BK-algorithm. (Precisely
speaking, Biró and Kiselgof [3] proposed this algorithm as an applicant-
oriented algorithm. They also proposed another algorithm, called a college-
oriented algorithm. Since an applicant-oriented algorithm is the best for
applicants in some sense (see Theorem 2.1), we adopt this algorithm.) The
input of the BK-algorithm is a profile ▷ = (▷1,▷2, . . . ,▷n) in S. For
computing an H-stable score-limit with respect to ≻, we set ▷ := ≻.

Step 1: Define a score-limit δ0 by δ0(c) := 0. Define a matching σ0 by
σ0(i) := i. For each applicant i in [n], set L0(i) to be the set of colleges
c in C such that c ▷i i. Furthermore, set R0 := {i ∈ [n] | L0(i) ̸= ∅}
and t := 0.

Step 2: If Rt = ∅, then output δt and halt. Otherwise, set it to be an
applicant in Rt, and find the maximal college ct in Lt(it) with respect
to ▷it . Furthermore, set πt to be the same matching as σt except that
πt(it) = ct.

Step 3: If |π−1
t (ct)| ≤ q(ct), then go to (a). Otherwise, go to (b).

(a) Set δt+1 := δt and σt+1 := πt. In addition, set Lt+1(it) := Lt(it) \
{ct}, and Lt+1(i) := Lt(i) for each applicant i in [n] \ {it}.

(b) Set ∆t := min{si(ct) | i ∈ π−1
t (ct)}+ 1. Furthermore, set δt+1 to

be the same score-limit as δt except that δt+1(ct) = ∆t. Set σt+1

to be a matching such that

σt+1(i) =

{
i if i ∈ π−1

t (ct) and si(ct) < ∆t

σt(i) otherwise.

For each applicant i in [n], set

Lt+1(i) :=

{
Lt(i) \ {ct} if (i) i = it, or (ii) i ̸= it, si(ct) < ∆t

Lt(i) otherwise.

Set Rt+1 := {i ∈ [n] | Lt+1(i) ̸= ∅, σt+1(i) = i}, and t := t+ 1. Then,
go back to Step 2.

The BK-algorithm is clearly a polynomial-time algorithm (we assume
that for every applicant i in [n] and every pair of elements d1, d2 in C ∪ {i},
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we can check in O(1) time whether d1 ▷i d2). It is known [3, Theorem 3.1]
that an output ℓ of the BK-algorithm with an input profile ▷ in S is an H-
stable score-limit with respect to ▷. The following property of this algorithm
is known.

Theorem 2.1 (Biró and Kiselgof [3, Theorem 4.1]). Assume that we are
given an output ℓ of the BK-algorithm with an input profile ▷ in S. Then,
for every H-stable score-limit ℓ′ with respect to ▷ and every college c in C,
we have ℓ(c) ≤ ℓ′(c).

In Step 2 of the BK-algorithm, there exists a freedom in the choice of it.
However, as proved below, this does not affect an output of this algorithm.
Although this fact was not explicitly stated in [3], it immediately follows
from Theorem 2.1.

Corollary 2.2. An output of the BK-algorithm with an input profile ▷ in
S does not depend on the choice of it in Step 2.

Proof. Theorem 2.1 implies that for every college c in C and every pair of
outputs ℓ1, ℓ2 of the BK-algorithm, we have ℓ1(c) ≤ ℓ2(c) and ℓ2(c) ≤ ℓ1(c),
i.e., ℓ1(c) = ℓ2(c). This completes the proof.

In what follows, for each profile ▷ in S, we denote by ℓ▷ the output of
the BK-algorithm with an input profile ▷. In addition, for each profile ▷ in
S, we define a matching µ▷ by µ▷(i) := fi,▷(ℓ▷) for each applicant i. If the
BK-algorithm with an input profile ▷ in S halts when t = T , then it is not
difficult to see that µ▷ = σT .

3. Finding a Cheating Strategy

In this section, we consider the Cheating Score-Limit Algorithm
problem defined as follows. For each applicant i in [n], a strict total order
▷i in Si is called a cheating strategy of i, if µ▷(i) ≻i µ≻(i) holds, where ▷ is
the profile in S obtained from ≻ by replacing ≻i by ▷i. For each applicant i
in [n], we denote by CSi the set of cheating strategies of i. Then, Cheating
Score-Limit Algorithm is formally defined as follows.

Input: An applicant a in [n].

Goal: Decide whether CSa = ∅. If CSa ̸= ∅, then find a strict total order
▷a in CSa such that µ▷(a) ≻a µ▷′(a) or µ▷(a) = µ▷′(a) for every
strict total order ▷′

a in CSa, where ▷ and ▷′ are the profiles in S
obtained from ≻ by replacing ≻a by ▷a and ▷′

a, respectively.
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In other words, the goal of this problem is to decide whether there exists an
incentive for a to misreport his/her true preference.

In this section, we prove that this problem can be solved in polynomial
time. We first prove necessary lemmas.

Lemma 3.1. Assume that we are given a profile ▷ in S and an H-feasible
score-limit ℓ with respect to ▷. Then, for every college c in C, we have
ℓ▷(c) ≤ ℓ(c).

Proof. If ℓ is an H-stable score-limit with respect to ▷, then this lemma
follows from Theorem 2.1. If ℓ is not an H-stable score-limit with respect
to ▷, then there exists a college c in C such that ℓ(c) > 0 and ℓ−c is an
H-feasible score-limit with respect to ▷. By repeating this, we can see that
there exists an H-stable score-limit ℓ′ with respect to ▷ such that ℓ′(c) ≤ ℓ(c)
for every college c in C. Theorem 2.1 implies that ℓ▷(c) ≤ ℓ′(c) for every
college c in C. Thus, since ℓ′(c) ≤ ℓ(c) for every college c in C, this implies
that ℓ▷(c) ≤ ℓ(c) for every college c in C. This completes the proof.

Lemma 3.2. Assume that we are given a profile ▷ = (▷1,▷2, . . . ,▷n) in S
and an applicant a in [n]. In addition, we assume that ▷a : d1, d2, . . . , dm+1,
µ▷(a) = dk, and dk ̸= a. Let ▷′

a be a strict total order in Sa such that

▷′
a : d1, d2, . . . , dk, d

′
1, d

′
2, . . . , d

′
m+1−k, and

{d′1, d′2, . . . , d′m+1−k} = {dk+1, dk+2, . . . , dm+1}.

Then, we have ℓ▷(c) = ℓ▷′(c) for every college c in C (i.e., µ▷(i) = µ▷′(i)
for every applicant i in [n]), where ▷′ is the profile in S obtained from ▷ by
replacing ▷a by ▷′

a.

Proof. Define D as the set of colleges c in C such that ct = c for some integer
t with it = a in the BK-algorithm. Then, it is not difficult to see that the
definition of the BK-algorithm implies that D ⊆ {d1, d2, . . . , dk}. Thus, the
output of the BK-algorithm does not change even if we change the order of
dk+1, dk+2, . . . , dm+1. This completes the proof.

Lemma 3.3. Assume that we are given a profile ▷ = (▷1,▷2, . . . ,▷n) in S
and an applicant a in [n]. In addition, we assume that ▷a : d1, d2, . . . , dm+1,
µ▷(a) = dk, and dk ̸= a. Define a strict total order ▷′

a in Sa by

▷′
a : dk, dk+1, . . . , dm+1, d1, d2, . . . , dk−1.

Then, we have ℓ▷(c) ≥ ℓ▷′(c) for every college c in C, where ▷′ is the profile
in S obtained from ▷ by replacing ▷a by ▷′

a.
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Proof. If we can prove that ℓ▷ is an H-feasible score-limit with respect to ▷′,
then this lemma follows from Lemma 3.1. If we can prove that fa,▷′(ℓ▷) =
fa,▷(ℓ▷), then we have Gc,▷′(ℓ▷) = Gc,▷(ℓ▷) for every college c in C. Since
ℓ▷ is an H-feasible score-limit with respect to ▷, we have |Gc,▷(ℓ▷)| ≤ q(c)
for every college c in C. Thus, this completes the proof.

It follows from dk ∈ Fa,▷(ℓ▷) that sa(dk) ≥ ℓ▷(dk). This implies that
dk ∈ Fa,▷′(ℓ▷). Thus, we have fa,▷′(ℓ▷) = dk. This completes the proof.

Lemma 3.4. Assume that we are a profile ▷ = (▷1,▷2, . . . ,▷n) in S,
an applicant a in [n], and a college d in C. Furthermore, we assume that
there exists a strict total order ▷′

a in Sa such that µ▷′(a) = d, where ▷′

is the profile in S obtained from ▷ by replacing ▷a by ▷′
a. Then, we have

µa,▷′′(a) = d, where we define a strict total order ▷′′
a in Sa by ▷′′

a : d, a, . . .,
and ▷′′ is the profile in S obtained from ▷ by replacing ▷a by ▷′′

a.

Proof. Assume that ▷′
a : d1, d2, . . . , dm+1 and dk = d. Then, we define a

strict total order ▷◦
a in Sa by

▷◦
a : d1, d2, . . . , dk−1, d, a, . . . .

Lemma 3.2 implies that ℓ▷′(c) = ℓ▷◦(c) for every college c in C and µ▷′(a) =
µ▷◦(a) = d. Thus, Lemma 3.3 implies that ℓ▷◦(c) ≥ ℓ▷′′(c) for every college
c in C. Thus, since d ∈ Fa,▷′(ℓ▷′), we have d ∈ Fa,▷′′(ℓ▷′′), which implies
that fa,▷′′(ℓ▷′′) = d. This completes the proof.

Lemma 3.4 naturally leads to the following algorithm for Cheating
Score-Limit Algorithm, called Algorithm CSLA.

Step 1: Compute a matching µ≻ by using the BK-algorithm.

Step 2: Set C ′ := {c ∈ C | c ≻a µ≻(a)}.

Step 3: If C ′ = ∅, then output null and halt (i.e., there exists no cheating
strategy of a). Otherwise, set c to be the maximal college in C ′ with
respect to ≻, and then do the following steps.

(a) Compute a matching µ▷, where we define a strict total order ▷a

in Sa by ▷a : c, a, . . ., and ▷ is the profile in S obtained from ≻
by replacing ≻a by ▷a.

(b) If µ▷ = c, then output ▷a and halt. Otherwise, set C ′ := C ′ \{c},
and then go back to the beginning of Step 3.
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It is not difficult to see that Algorithm CSLA is a polynomial-time algo-
rithm. The following main result of this section follows from Lemma 3.4.

Theorem 3.5. Algorithm CSLA can correctly solve Cheating Score-
Limit Algorithm.

4. Finding a Nash Equilibrium

In this section, we consider the following (strategic form) game. The
set of players is [n]. For each applicant i in [n], the set of strategies of an
applicant i in [n] is Si. A profile ▷ = (▷1,▷2, . . . ,▷n) in S is called a Nash
equilibrium [18], if for every applicant i in [n] and every strict total order
▷′

i in Si, we have µ▷(i) ≻i µ▷′(i) or µ▷(i) = µ▷′(i), where ▷′ is the profile
in S obtained from ▷ by replacing ▷i by ▷′

i. We will prove that a Nash
equilibrium always exist, and we can find a Nash equilibrium in polynomial
time.

A Nash equilibrium of the above game is closely related to weakly stable
matching [19] defined as follows. A matching µ such that µ(i) ≻i i or
µ(i) = i for every applicant i in [n] is called a weakly stable matching, if for
every pair (i, c) in [n]× C such that µ(i) ̸= c and c ≻i i, at least one of the
following conditions holds.

1. µ(i) ≻i c.

2. |µ−1(c)| = q(c) and sj(c) ≥ si(c) for every applicant j in µ−1(c).

Theorem 4.1 (Irving [19]). There always exists a weakly stable matching.

In addition, it is known [19] that we can find a weakly stable matching in
polynomial time.

Lemma 4.2. Assume that we are given a weakly stable matching µ. For
each applicant i in [n], we define a strategy ▷i as follows.{

▷i : µ(i), i, . . . if µ(i) ̸= i

▷i : i, . . . if µ(i) = i.
(1)

Then, the profile ▷ = (▷1,▷2, . . . ,▷n) is a Nash equilibrium.

Proof. It is not difficult to see that µ▷(i) = µ(i) for every applicant i in
[n]. Let us fix an applicant i in [n]. We prove that for any college c in C
such that c ≻i µ(i), there does not exists a strict total order ▷′

i in Si such
that µ▷′(i) = c, where ▷′ is the profile in S obtained from ▷ by replacing
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▷i by ▷′
i. Let us fix a college c in C such that c ≻i µ(i). Define a strict

total order ▷′
i by ▷′

i : c, i, . . ., and ▷′ as the profile in S obtained from ▷ by
replacing ▷i by ▷′

i. Lemma 3.4 implies that if µ▷′(i) ̸= c, then the proof is
done. For this, it suffices to prove that c /∈ Fi,▷′(ℓ▷′). In order to prove this,
we prove that si(c) < ℓ▷′(c). Since µ is a weakly stable matching, we have
|µ−1(c)| = q(c) and sj(c) ≥ si(c) for every applicant j in µ−1(c). Notice
that since c ≻i µ(i), we have i /∈ µ−1(c). If si(c) ≥ ℓ▷′(c), then (1) implies
that Gc,▷′(ℓ▷′) = µ−1(c) ∪ {i}, i.e., |Gc,▷′(ℓ▷′)| > q(c). This contradicts the
fact that ℓ▷′ is H-feasible, which completes the proof.

Theorem 4.3. There always exists a Nash equilibrium.

Proof. This theorem follows from Theorem 4.1 and Lemma 4.2.

Furthermore, since we can find a weakly stable matching in polynomial
time [19], we can find a Nash equilibrium in polynomial time.

Lemma 4.2 implies that for every weakly stable matching µ, there exists
a Nash equilibrium ▷ such that µ▷ = µ. However, the other direction does
not necessarily hold.

Theorem 4.4. In some instance, there exists a Nash equilibrium ▷ such
that µ▷ is not a weakly stable matching.

Proof. We give a concrete example for proving this theorem. The set of
applicants is {1, 2}, and the set of colleges is {c1, c2}. Define the total orders
≻1,≻2 by ≻1 : c1, c2, 1 and ≻2 : c1, c2, 2. Define q(c1) = 1 and q(c2) = 2.
In addition, we assume that s1(c1) = s2(c1) and s1(c2) = s2(c2). Then,
µ≻(1) = µ≻(2) = c2. It is not difficult to see that ≻ is a Nash equilibrium.
However, µ≻ is not a weakly stable matching. This completes the proof.
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