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a b s t r a c t

We present constant factor approximation algorithms for the following two problems: First, given a
connected graph G = (V , E) with non-negative edge weights, find a minimumweight spanning tree that
respects prescribed upper bounds on the vertex degrees. Second, given prescribed (exact) vertex degrees
d = (di)i∈V , find a minimum weight connected d-factor. Constant factor approximation algorithms for
these problems were known only for the case that di ≥ 2 for all i ∈ V .

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Finding low-cost spanning subgraphs with prescribed degree
and connectivity requirements is a fundamental problem in the
area of network design. The goal is to find a cheap, connected
subgraph that meets the degree constraints. Most variants of such
problems areNP-hard. Because of this, finding good approximation
algorithms for such network design problems has been the topic of
a significant amount of research [2,4–9,12–17].

In this paper, we study the problem of finding low-cost span-
ning connected subgraphs with degree constraints, where viola-
tion of the degree constraint is not allowed. The degree constraints
are either upper bounds or have to be met exactly.

Minimumweight subgraphswith prescribed vertex degrees can
be found efficiently using Tutte’s reduction to the perfectmatching
problem [18,20]. But asking for connectedness in addition makes
the problem NP-hard [3]. For instance, asking for a 2-regular,
connected spanning subgraph of minimum weight is the NP-hard
traveling salesman problem (TSP) [11, ProblemND22]. Also finding
spanning trees with given upper bounds for the degrees of the
nodes is NP-hard [10].

Approximation algorithms address three variants of the prob-
lem: First, one may relax the degree constraints and compare the

∗ Corresponding author.
E-mail addresses:w.kern@utwente.nl (W. Kern), b.manthey@utwente.nl

(B. Manthey).

http://dx.doi.org/10.1016/j.orl.2017.01.002
0167-6377/© 2017 Elsevier B.V. All rights reserved.
weight of the solution computed (subject to the relaxed require-
ments) with an optimal solution that has to satisfy the require-
ments strictly [6,19]. Second, one may view the problem as a
bicriteria optimization problem, where one objective is the weight
and the other objective is the violation of the degree constraints
[8,9,15–17]. Third, one may insist on meeting the degree con-
straints exactly [5,7]. In this paper, we consider the third variant.

A main obstacle seems to be vertices that are required to have
degree 1. In fact, existing approximation algorithms [5–7] only
work when the minimum degree requirement is at least 2, and it
has been raised as an open problem [5,7] to approximate network
design problems in the presence of vertices that must have
degree 1.

1.1. Problem definition

In this paper, we consider three different optimization prob-
lems. In each case, an instance consists of a simple undirected
complete graph G = (V , E) with edge weights w that satisfy the
triangle inequality and given d = (di)i∈V to be interpreted as either
prescribed vertex degrees or upper bounds thereof. For F ⊆ E, let
degF (i) be the degree of node i ∈ V in the graph (V , F). Further-
more, w(F) =


e∈F w(e) is the total weight of the edge set F . In

case of multi-graphs, edges are counted with multiplicities (both
for the degree and the total weight).

In the bounded-degree minimum spanning tree problem (denoted
by BMST), we are to compute a tree T ⊆ E of minimum weight
with the additional condition that degT (i) ≤ di for all i ∈ V . We
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call such a tree a d-bounded tree. We denote a minimum weight
d-bounded tree by Treed, breaking ties arbitrarily.

In the connected factor problem (denoted by ConnFact), our goal
is to compute a connected d-factor F of minimumweight. Multiple
edges are not allowed. This means that (V , F) must be connected
and degF (i) = di for all vertices i ∈ V . We denote a minimum
weight connected d-factor (without multiple edges) by ConnFactd,
again breaking ties arbitrarily.

The connected factor problem with multiple edges (denoted by
ConnMFact) is similar to ConnFact. The only difference is that
multiple edges are allowed. So a solution F is a multi-set of edges
such that (V , F) is connected and degF (i) = di. We denote a
minimumweight connected d-factor with possibly multiple edges
by ConnMFactd, again breaking ties arbitrarily.

Minimumweight d-factors (without connectivity requirement)
can be computed in polynomial time with and without multiple
edges. We denote a minimum weight d-factor without multiple
edges by Factd and one with multiple edges allowed by MFactd.

1.2. Previous results

Because connected factor problems generalize the TSP, no
polynomial-time constant factor approximation algorithms are
possible in general graphs or without the triangle inequality
[21, Theorem 2.9]. Therefore, we assume that input graphs are
complete and that the edge weights satisfy the triangle inequality.

We restrict ourselves in the discussion of previous results
to the case of algorithms that meet the degree requirements
exactly. Fukunaga and Nagamochi [7] considered the problem
of finding a minimum weight k-edge-connected subgraph that
meets given degree requirements precisely. They allow multiple
edges between vertices (which seem to simplify the problem
considerably, because it is possible to add connections between
arbitrary vertices, independent of whether the corresponding edge
is already present). For this relaxed variant of the problem, they
obtain approximation ratios of 2.5 for even k and 2.5 + 1.5

k
for odd k if the minimum degree requirement is at least 2. For
the case of simple connectivity, Cornelissen et al. [5] devised an
approximation algorithm with ratio 3. Fekete et al. [6] devised an
approximation algorithm for the bounded-degree spanning tree
problem that achieves an approximation ratio of roughly 2.

1.3. Our contribution

All three algorithms mentioned in the previous section
require that all prescribed di are at least 2, and Fukunaga and
Nagamochi [7] and Cornelissen et al. [5] raised the question if
constant factor approximation algorithms also exist in case someof
the di are equal to 1.We give an affirmative answer to this question.

First, we present a factor 3-approximation algorithm for
BMST (Section 2). Then we use this algorithm to get factor 7 ap-
proximation algorithms for both ConnFact and ConnMFact (Sec-
tion 3).

The approximation ratios that we achieve are considerably
worse than the ratios of roughly 2 [6], 3 [5], 4 [7] for BMST, Con-
nFact, and ConnMFact, respectively, that hold if we forbid degree
1 nodes. (The 4-approximation for ConnMFact without degree-
1-nodes can easily be improved to a factor 3-approximation by
adapting the algorithm by Cornelissen et al. [5].) The obvious open
question is whether this gap can be closed.

2. Bounded-degree spanning trees

We start with a simple observation, based on the standard con-
struction of Hamilton paths by doubling aminimum spanning tree.
Lemma 1. Given an undirected, complete graph G with edge weights
w that satisfy the triangle inequality and an edge e0 = {i0, j0} ∈ E, we
can compute in polynomial time a Hamiltonian path P with endpoints
i0 and j0 such that w(P) ≤ 2w(T ), where T ⊆ E is a spanning tree
that contains e0 and has minimum weight among all such trees.

Proof. After inserting the edge e0 first, we connect all nodes in
a Kruskal-like manner. This yields a spanning tree T containing
e0 that has minimum weight among all such trees. We duplicate
all edges of T to obtain a Eulerian graph T ′. Then we traverse
T ′, starting with the edge e0 and taking shortcuts to obtain a
Hamiltonian cycle H . By construction, w(H) ≤ 2w(T ). We obtain
P by removing e0 from H . �

In what follows, we often distinguish between nodes with
prescribed degree di = 1 and other nodes. For this reason, we
define V=1 = {i ∈ V | di = 1} and V≥2 = {i ∈ V | di ≥ 2}. Any
d-bounded tree T consists of an interior tree Tint that connects only
the V≥2 nodes and to which the V=1 nodes are attached. We may
assume that Tint connects at least two nodes. Otherwise, |V≥2| ≤ 1
and the problem becomes trivial. The most challenging part is to
determine how the vertices in V=1 are attached to the interior tree.

To address this problem, we proceed in two steps. In the first
step, we compute a forest that spans all of V=1 and a subset of V≥2
without violating the degree constraints. This forest is computed
by solving an appropriate minimum-cost flow problem. In the
second step, we connect the components of this forest along a
Hamiltonian path through a subset of the V≥2 nodes. In this way,
we construct a tree whose leaves are a subset of V=1. Note that an
optimal tree can also have leaves from V≥2.

Let us describe the first step. In what follows, we assume that
we know an edge e0 = {i0, j0} ∈ Treed in the interior tree of the
unknown optimum solution Treed. (In our algorithm, we fix i0 ∈
V≥2 arbitrarily, try all possible choices of j0 ∈ V≥2\{i0}, and take the
best outcome.) Removing e0 splits the unknown tree Treed into two
subtrees. To outline the intuition behind our approach, consider i0
and j0 as the roots of these subtrees, and direct all edges in these
two subtrees towards i0 and j0, respectively. We may interpret the
subtrees as ‘‘flows’’ from the V=1 nodes towards the roots i0 and j0,
respectively. In this sense, the two subtrees define a solution to the
flow problem (with node capacities) described below.

Consider the following flow problem MCFe0 : The underlying
graph has vertex set V ∪ {r}, where r ∉ V is a new node, and edge
set (E \ {e0}) ∪ {{i, r} | i ∈ V≥2}. All edges e ∈ E \ {e0} have a
capacity of 1 in both directions and costs of w(e) per unit of flow.
Each node i ∈ V≥2 has a node capacity of di− 1 (this means that at
most di − 1 units of flow may pass through i). The edges {i, r} for
i ∈ V≥2 are overflow edges. They have cost 0. For i ∈ V≥2 \ {i0, j0},
edge {i, r} has a capacity of di − 2. For i ∈ {i0, j0}, edge {i, r} has
a capacity of di − 1. The task is to find a minimum-cost flow from
the V=1 nodes, each having a supply of 1, to the new root node r ,
which has a demand of |V=1|. Such a minimum-cost flow can be
computed in polynomial time [1].

The set Treed \ {e0} defines a solution fTree of this flow problem
as follows: Recall that we direct all edges in the two subtrees of
Treed \ {e0} towards their roots i0 or j0, respectively. On every arc
e = {i, j} in the directed tree Treed \ {e0}, we have a flow of 1
(towards i0 or j0). Thus, in particular, each i ∈ V=1 has an outflow of
1. If a node i ∈ V≥2 \{i0, j0} has degree ℓ (2 ≤ ℓ ≤ di) in Treed, then
in the directed tree, it has ℓ−1 incoming arcs and one outgoing arc
(in direction to the root i0 or j0). Thus its total inflow equals ℓ − 1
and we send ℓ − 2 units of outflow directly to r on the overflow
arc from i to r . Note that the node capacity constraint (throughput
at most di − 1) is met. If i ∈ {i0, j0} has degree ℓ (2 ≤ ℓ ≤ di − 1)
in Treed, then its inflow equals ℓ units, which we route to r on
the overflow arc {i, r}. This, again, also respects the node capacity
constraints.
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The cost of fTree is equal to w(Treed \ {e0}) = w(Treed)−w(e0).
Now let f ⋆ be any integral optimal solution of MCFe0 . We define

the support of f ⋆ as the set S⋆
⊆ E \ e0 of edges that carry positive

flow in either direction. An integral optimal solution of minimum
support can be computed efficiently by adding ε <

wmin
|E| to the

costs of all edges in E \ {e0} in the flow problem, where wmin is
the smallest positive edge weight. If S is the support of an integral
solution f , then the cost of f is equal to w(S).

Lemma 2. Let f ⋆ be an integral optimum solution of MCF e0 with
minimum support S⋆. Then we have the following properties:
1. w(S⋆) ≤ w(Treed).
2. S⋆ is a forest.
3. degS⋆(i0) ≤ di0 − 1 and degS⋆(j0) ≤ dj0 − 1.
4. Each connected component of S⋆ contains i0 or j0 or a node i ∈ V≥2

with degS⋆(i) ≤ di − 2. (We call such a node i a root.)

Proof. (1) The set Treed\{e0}of edges defines a solution ofMCFe0 as
described above.

(2) If any i ∈ V≥2 has at least two outgoing arcs (corresponding
to out-flow in f ⋆), say, {i, j} and {i, k} for j, k ∈ V≥2, then we could
reroute one unit of flow, say from i to r via k to the overflow edge
{i, r}. This does not increase the cost of the flow. (Note that as
long as the out-flow of i to other nodes in V≥2 is at least 2, the
overflow edge is not saturated because of the node capacity of i.)
This rerouting would decrease the support size, which contradicts
the assumption that f ⋆ has minimum support. We conclude that
in f ⋆, any V≥2 nodes (and also any V=1 node) have at most one
outgoing arc towards V≥2 nodes carrying flow. Hence, if S⋆ contains
cycles, then these correspond to directed cycles of flow 1 arcs.
Removing such a cycle would decrease the support size, again
yielding a contradiction.

(3) Node i0 has an in-flow of at most di0 − 1 and out-flow only
towards r . The same holds for j0.

(4) Any component that contains neither i0 nor j0 must contain a
root i ∈ V≥2 that has no out-flow towards another V≥2 node. Thus, i
gets rid of all its inflow via the corresponding overflow edge {i, r}.
This has capacity di − 2, so the number of in-flow arcs, which is
equal to degS⋆(i), can be at most di − 2. �

Now we are almost done. Given S⋆, the support of a flow as in
Lemma 2, we connect the connected components via a Hamilton
path P with endpoints i0 and j0 as in Lemma 1: In each component
of S⋆ that contains neither i0 nor j0, we pick a root i of degree at
most di − 2 in S⋆. Such a root exists by Lemma 2. Then we connect
the components of S⋆ by following P , starting in i0, ending in j0
and skipping all other vertices except the root nodes chosen. This
yields a d-bounded tree T of weight w(T ) ≤ w(S⋆) + w(P) ≤
w(Treed)+ 2w(Treed) ≤ 3w(Treed). Algorithm 1 summarizes this
procedure, and we obtain the following theorem.

Theorem 3. Algorithm 1 is a polynomial-time 3-approximation for
BMST.

3. Connected factors

The idea to approximate connected factors is as follows: we
compute a minimum-weight d-factor F , which is not necessarily
connected, and a d-bounded tree T . As long as the d-factor F is not
connected, there exists an edge e ∈ T \ F that we can add. In order
tomaintain the degrees, we remove one edge of each endpoint of e
and add another edge. The following lemma states that this always
works. In particular, it is crucial that we never remove edges of the
d-bounded tree.

Lemma 4. Let T be a d-bounded tree, and let F be a d-factor. If F is
not connected, then we can find an edge e = {i, j} ∈ T \F and vertices
i′ and j′ with the following properties:
Algorithm 1: A 3-approximation for BMST.
input : undirected, complete graph G = (V , E), edge

weights w satisfying the triangle inequality, degrees
(di)i∈V

output: d-bounded tree T
1 select an arbitrary i0 ∈ V≥2
2 for j0 ∈ V≥2 \ {i0} do
3 let e0 = {i0, j0}
4 compute an optimal solution f ⋆ of minimum support of

MCFe0
5 extract S⋆ from f ⋆ as described
6 compute a Hamiltonian path P with endpoints i0 and j0
7 restrict P to the ‘‘roots’’ of the connected components of

S⋆ by taking shortcuts
8 Te0 ← P ∪ S⋆

9 end
10 let T be the lightest tree among all Te0

Algorithm 2: A 7-approximation for ConnFact.
input : undirected complete graph G = (V , E), edge weights

w satisfying the triangle inequality, degrees (dv)v∈V
output: connected d-factor F̃ (without multiple edges)

1 compute a 3-approximation T of a d-bounded spanning tree
using Algorithm 1

2 F ← Factd
3 while F is not connected do
4 choose an edge e = {i, j} ∈ T \ F that connects two

different components of F
5 choose i′, j′ as in Lemma 4
6 F ←


F ∪


{i, j}, {i′, j′}


\


{i, i′}, {j, j′}


7 end
8 F̃ ← F

1. e connects two components of F .
2. {i, i′}, {j, j′} ∈ F \ T .
3. {i′, j′} ∈ E \ F .

Proof. Since T is connected and F is not connected, there exists an
edge e = {i, j} ∈ T \ F . We have degT (i) ≤ di = degF (i) and
degT (j) ≤ dj = degF (j). Since e ∈ T \ F , there must be edges
{i, i′}, {j, j′} ∈ F \ T . Since i and j are in different components, we
have {i′, j′} ∉ F . �

Theorem 5. Algorithm 2 is a polynomial-time 7-approximation for
ConnFact.

Proof. Let i, j, i′, j′ be four nodes chosen by Algorithm 2 in some
iteration. By the triangle inequality, we have w(i′, j′) ≤ w(i′, i) +
w(i, j) + w(j, j′). Hence, the weight of F increases by at most
2w(i, j) in this iteration. Since no edge {i, j} of T is consideredmore
than once, we have w(F̃) ≤ w(Factd) + 2w(T ) ≤ w(Factd) +
6w(Treed) ≤ 7w(ConnFactd), where F̃ is the connected d-factor
output by the algorithm.

By construction, F is a d-factor initially, and it remains a
d-factor throughout the execution of the algorithm. Furthermore,
F is connected since, by Lemma 4 and the construction of the
algorithm, any edge of T that is added by the algorithm is never
removed later on. Therefore, after less than n iterations of thewhile
loop, F must be connected. �

The algorithm above also works for the case of ConnMFact,
where multiple edges are allowed. We just have to replace the
initialization of F by MFactd. The analysis of the approximation
ratio follows from w(MFactd) ≤ w(ConnMFactd) and w(Treed) ≤
w(ConnMFactd). Hence, we get the following result.
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Corollary 6. There exists a polynomial-time 7-approximation for
ConnMFact.
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