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Abstract

This paper provides a framework for modeling the financial system with multiple illiquid assets during a crisis.
This work generalizes the paper by Amini, Filipović and Minca (2016) by allowing for differing liquidation strategies.
The main result is a proof of sufficient conditions for the existence of an equilibrium liquidation strategy with
corresponding unique clearing payments and liquidation prices. An algorithm for computing the maximal clearing
payments and prices is provided.
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1 Introduction

Financial contagion occurs when the distress of one bank jeopardizes the health of other financial firms, and can
ultimately spread to the real economy. The spread of defaults in the financial system can occur due to both local
connections, e.g., contractual obligations, and global connections, e.g., through the prices of assets due to mark-to-
market valuation. As evidenced by the 2007-2009 financial crisis, the cost of a systemic event is tremendous, thus
requiring a detailed look at the contributing factors. In this current paper, we will construct and analyze an extension
of the financial contagion model of [13] to include multiple illiquid assets with fire sales.

The baseline network model of [13] considers an interbank network of nominal obligations. That paper studies the
propagation of defaults through the financial system due to unpaid liabilities. Existence and uniqueness is proven in
this base model, as well as algorithms to compute the clearing payments vector which captures the losses in the system.
This model has been extended in multiple avenues, including bankruptcy costs, cross-holdings and fire sales. [5] studies
these three extensions in a single model; we refer to that work and [25] for a review of the prior literature. Bankruptcy
costs have been studied in, e.g., [15, 22, 14, 19, 5, 6]. Cross-holdings have been studied in, e.g., [15, 14, 5]. Fire sales
for a single (representative) illiquid asset have been studied in, e.g., [9, 21, 18, 2, 8, 5, 3]. For multiple illiquid assets,
[11, 12] present a framework for modeling and estimating the volatility and correlations of asset prices during a fire sale.
In contrast to the present paper, in those publications the financial institutions do not exist within a financial network
– by considering the setting as such they are able to study multi-period and continuous-time models, which are not
discussed in the scope of the current paper. Similarly, [7] considers a multiasset system in which financial contagion
happens solely through balance sheet linkages without a network of interbank liabilities; that paper fixes a specific
nonbanking demand to compare different asset allocation strategies. The results of that paper on the robustness of a
liquidity-based allocation would also be true in the current model, though the choice of liquidation strategy will result
in a modified optimal allocation. A mathematical analysis in this vein is beyond the scope of the current work.

Models of financial contagion and systemic risk have been studied empirically in, e.g., [16, 27, 10, 19]. These studies
show that it is unlikely that financial contagion can be captured by the base model of contractual obligations. Thus we
extend the network model of [13] to include multiple illiquid assets. We study the case in which a fire sale is triggered
if liquid capital (e.g., cash) is insufficient to cover the obligations of a firm, as was studied in, e.g., [3, 5]. This is in
comparison with the equilibrium model presented in [9] with a single, representative, illiquid asset that is sold if a
capital adequacy requirement is violated.1 We first briefly extend the results from [3] for existence and uniqueness of
the clearing payments and equilibrium prices under known liquidation strategies. The main result is to prove existence
of a joint clearing payments, asset prices, and an equilibrium liquidation strategy for each financial institution – a
game theoretic liquidation strategy – and uniqueness of the clearing payments and prices under such a liquidation
strategy. We finish by providing, under the necessary conditions, a fictitious default algorithm for computing the
maximal clearing payments and prices; we refer to, e.g., [13, 22, 3] for earlier discussions of this iterative algorithm.

aZachary Feinstein, ESE, Washington University, St. Louis, MO 63130, USA, zfeinstein@ese.wustl.edu.
1The model presented herein is extended in [17] in the direction of [9, 7] by explicitly stipulating leverage requirements.
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2 Setting

Consider a financial system with n financial institutions (e.g., banks, hedge funds, or pension plans) and a financial
market with m illiquid assets. We denote by p ∈ R

n
+ the realized payments of the banks, q ∈ R

m
+ the prices of the

illiquid assets. There is an additional – liquid – asset in which all liabilities must be paid. Throughout this paper we
will use the notation x ∧ y and x ∨ y for x, y ∈ R

d for some d ∈ N to denote

x ∧ y = (min(x1, y1),min(x2, y2), ...,min(xd, yd))
T, x ∨ y = (max(x1, y1),max(x2, y2), ...,max(xd, yd))

T.

As described in [13], any financial agent i ∈ {1, 2, ..., n} may be a creditor or obligor to other agents. Let p̄ij ≥ 0
be the contractual obligation that firm i owes to firm j. Further, we assume that no firm has an obligation to itself,
i.e., p̄ii = 0. The total liabilities of agent i are given by p̄i :=

∑n
j=1 p̄ij . We can define the vector p̄ ∈ R

n
+ as the vector

of total obligations of each firm. The relative liabilities of firm i to firm j, i.e., the fractional amount of total liabilities
that firm i owes to firm j, are given by aij =

p̄ij

p̄i
if p̄i > 0 and aij ∈ R arbitrary if p̄i = 0. We define the matrix

A = (aij)i,j=1,2,...,n with the property
∑n

j=1 aij = 1 for any i with p̄i > 0. In the case that p̄i = 0 we are able to choose
aij arbitrarily as it only appears as a multiplier of a variable identically equal to 0. Any financial firm may default on
their obligations if sufficient liquid capital is not available. We assume, as per [13], that in case of default the realized
payments will be made in proportion to the size of the obligations, i.e., based on the relative liabilities matrix A.

Each firm i = 1, 2, ..., n has an initial endowment of xi ≥ 0 in liquid assets and si ∈ R
m
+ in illiquid assets. That is,

agent i holds sik ≥ 0 units of illiquid asset k = 1, 2, ...,m. Thus the vector of liquid endowments is given by x ∈ R
n
+

and the matrix of illiquid endowments is given by S = (sik)i=1,2,...,n; k=1,2,...,m ∈ R
n×m
+ . The price of the illiquid

assets is given by a vector valued inverse demand function F : Rm
+ → [0, q̄] ⊆ R

m
+ for maximum prices q̄k for asset

k = 1, 2, ...,m.2 Note that we allow for liquidation of one asset to potentially influence the prices of the other assets as
well during a fire sale. This would allow us to include correlations of asset prices during fire sales as studied in [11, 12].
The inverse demand function maps the quantity of each asset to be sold into a price per share. We will impose the
following assumption for the remainder of this paper.

Assumption 2.1. The inverse demand function F : Rm
+ → [0, q̄] is continuous and nonincreasing.

We now present a comparable setting to that in [9, 3]. We will assume that firms use mark-to-market accounting
rules, so that the value of firm i’s liquid and illiquid endowment is given by xi+qTsi := xi+

∑m
k=1 sikqk when the vector

of prices is given by q ∈ R
m
+ . Additionally, each firm i receives payments from other firms j in proportion to the size of

obligations, as described above. That is, firm j will make payment to firm i in the amount of pji = ajipj if firm j pays
pj ≥ 0 into the system. Thus, the wealth of firm i, taking into account the payments that firm i must make, is given by
xi+

∑m
k=1 sikqk +

∑n
j=1 ajipj − pi. By assuming limited liabilities of the firms, i.e., no firm will go into debt to pay its

obligations, the wealth of any firm i must be greater than or equal to 0. Thus by rearranging terms we deduce that the
payments made by firm i is bounded above by its mark-to-market valuation, i.e., pi ≤ xi +

∑m
k=1 sikqk +

∑n
j=1 ajipj .

Assuming that firm i must first pay all of its debts before reporting positive wealth, under pricing vector q,

pi = p̄i ∧



xi +

m
∑

k=1

sikqk +

n
∑

j=1

ajipj



 .

That is, the amount that firm i pays into the financial system is the minimum of its total liabilities p̄i and the
mark-to-market value of its assets is xi +

∑m
k=1 sikqk +

∑n
j=1 ajipj .

However, it may not be possible for a firm i to pay all obligations p̄i with liquid holdings xi +
∑n

j=1 ajipj . This

shortfall, (p̄i−xi−
∑n

j=1 ajipj)
+ := (p̄i−xi−

∑n
j=1 ajipj)∨0, must be made whole, if possible, through the liquidation

of assets. Implicitly we assume that a firm will only sell illiquid assets after it has exhausted its store of liquid capital.
Due to the price impact (modeled by the inverse demand function F ), and the use of mark-to-market accounting, this
is the strategy that an equity maximizer would employ. This is in contrast to the work by [9] in which assets are
liquidated in order to satisfy a capital adequacy requirement. Unlike in the single illiquid asset case (cf. [5]), we cannot
infer more properties without a discussion of the liquidation strategies employed by the financial firms.

3 Clearing mechanism under known liquidation strategy

In this section we consider the realized payments that each firm is able to make under limited liabilities (i.e., no firm
pays more than it owes p̄) and the realized asset prices after fire sales given a strategy of how the assets are liquidated.

2[7] utilizes a demand curve for the nonbanking sector rather than an inverse demand function, the results of this paper can be considered
in that framework by constructing the equivalent inverse demand function from the nonbanking sector’s demand.
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That is, we will define the liquidation function γik : [0, p̄]× [0, q̄] → R+ to be the number of units of asset k = 1, 2, ...,m
that firm i = 1, 2, ..., n wishes to sell. A financial agent will sell assets in order to cover obligations that it cannot meet
through its liquid endowment (and realized payments from other firms) alone. For notational simplicity we will say
that

γi(p, q) = (γi1(p, q), γi2(p, q), ..., γim(p, q))T ∈ R
m
+

is the vector of units of illiquid assets which agent i wishes to sell under payments p ∈ R
n
+ and asset prices q ∈ R

m
+ .

Further denote by γ(p, q) ∈ R
n×m
+ to be the matrix of all asset liquidations under payments p and prices q.

We will assume that short-selling is not allowed in the market. Therefore the number of units of asset k that firm
i wants to sell, for a fixed payment vector p and price vector q, is given by sik ∧ γik(p, q). However, if these sales were
actualized, this leads to an updated price q′ ∈ R

m
+ given by the liquidations sik ∧ γik(p, q) due to price impact. The

updated price is thus given by the inverse demand function, i.e.,

q′ = F

(

n
∑

i=1

[si ∧ γi(p, q)]

)

.

The goal is to find an equilibrium price vector so that the quoted prices take into account the realized liquidations and
vice versa, i.e., q′ = q.

Due to price impact of selling the illiquid assets, firms will generally want to liquidate the fewest assets necessary
under payments p ∈ R

n
+ and prices q ∈ R

m
+ . As such, we will impose the following minimal liquidation condition on

the liquidation function γ.

Assumption 3.1. The liquidation function γ : [0, p̄]× [0, q̄] → R
n×m
+ satisfies the minimal liquidation condition:

qT [si ∧ γi(p, q)] = (qTsi) ∧



p̄i − xi −
n
∑

j=1

ajipj





+

(∀i = 1, 2, ...,m). (3.1)

Assumption 3.1 implies the amount liquidated – with payments p at price q – is sufficient to cover either the shortfall
in obligations or all assets are liquidated. The minimal liquidation condition also implies that no firm liquidates more
assets than is necessary to remain solvent. We will now give a two examples of liquidation functions.

Example 3.2. In the case where there is a single illiquid asset, i.e., m = 1, the constraint (3.1) implies

γi(p, q) =
1

q



p̄i − xi −

n
∑

j=1

ajipj





+

.

This is the single asset model presented in, e.g., [3, 5].

Example 3.3. Firms might sell off their assets proportionally to what they hold, i.e., for some agent i = 1, 2, ..., n
and any asset k = 1, 2, ...,m

γik(p, q) =
sik

∑m
l=1 silql



p̄i − xi −
n
∑

j=1

ajipj





+

.

The number of units of the portfolio si that need to be sold to make up the shortfall in liability payments is given by
(p̄i−xi −

∑n
j=1 ajipj)

+/
∑m

l=1 silql. Thus the number of units of asset k to be sold is exactly that fraction of the total
holdings sik.

With a given liquidation function γ we are able to fully describe the clearing mechanism via the valuation and pricing
formulations given previously. Given a payment vector p ∈ [0, p̄] and pricing vector q ∈ [0, q̄] the updated payments and
prices is given by a clearing mechanism. The clearing mechanism is defined by the function φ : [0, p̄]×[0, q̄] → [0, p̄]×[0, q̄]
where

φ(p, q) :=

(

p̄ ∧
(

x+ Sq +ATp
)

F (
∑n

i=1 [si ∧ γi(p, q)])

)

. (3.2)

We use the clearing mechanism to compute the realized payment or clearing vector p∗ ∈ [0, p̄] and implied clearing
price vector q∗ ∈ [0, q̄] of the illiquid assets. The values of the clearing payments and prices are given by fixed points
of φ defined in Equation (3.2), i.e.,

(p∗, q∗) = φ(p∗, q∗).
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Theorem 3.4. Consider a financial system (A, p̄) with liquid endowments x and illiquid endowments S. Consider
liquidation function γ and inverse demand function F satisfying Assumption 2.1.

(i) If the summation of liquidation functions
∑n

i=1 γi is continuous, then there exists a clearing payment and pricing
vector (p∗, q∗).

(ii) If the summation of liquidation functions
∑n

i=1 γi is nonincreasing, then there exists a greatest and least clearing
payment vector and vector of prices, (p+, q+) ≥ (p−, q−).

(iii) If the summation of liquidation functions
∑n

i=1 γi is nonincreasing and β ∈ R
m
+ 7→ βTF (β) is strictly increasing,

then there exists a unique realized payment vector and implied price vector if the financial system with liquid
endowments x+ SF (

∑n
k=1 sk) (and no illiquid endowments) is regular in the sense of [13, Definition 5].

Proof. This is a trivial application of the Brouwer and Tarski fixed point theorems. The final result is a simple
extension of [3, Theorem 2].

Remark 3.5. The liquidation functions presented in Examples 3.2 and 3.3 are continuous and nonincreasing. As
described in [13], regularity implies that all parts of the financial system have some positive endowment to distribute. A
simple condition for regularity is if all firms i satisfy min(xi,mink sik) > 0 with the minimum prices F (

∑n
i=1 si) ∈ R

m
++

all strictly greater than 0.

4 Equilibrium liquidation strategies

In this section we now consider the case where the liquidation strategy of each firm is not provided a priori. This
is a more realistic scenario since it is rare that an outsider can state exactly how a firm will behave during a crisis.
We assume that all firms are attempting to maximize their own equity value. Since the liquidations of assets of one
institution can impact the equity of another, this is an equilibrium problem. While we will write the problem as a
function of the actions of each bank as individuals, in practice to solve this problem, each firm only needs look at the
aggregate liquidations of all other banks. That is, no firm needs to know who is selling, only the aggregate amount
being sold within the financial network.

Assuming total information, each firm wishes to maximize its equity and loss value – given by xi +
∑m

k=1 sikq
∗
k +

∑n
j=1 ajip

∗
j − p̄i – for some clearing payment and price (p∗, q∗). Each firm, however, can choose the number of each

asset to liquidate, that is, every firm i = 1, 2, ..., n will choose to sell γi ∈ R
m
+ units of each asset. As one firm decides

what to liquidate, all other firms do as well, i.e., given the liquidation strategy γ∗
−i for all other firms, firm i will choose

how to liquidate. Each firm i will choose to liquidate according to the maximization problem

γi(p, q, γ
∗
−i) ∈ argmax

gi∈Γi(p,q)

sTi F



[si ∧ gi] +
∑

j 6=i

[sj ∧ γ∗
j ]





Γi(p, q) =







γi ∈ R
m
+

∣

∣

∣

∣

∣

∣

qT[si ∧ γi] =
(

qTsi
)

∧



p̄i − xi −

n
∑

j=1

ajipj





+





(4.1)

Equation (4.1) gives a formula for finding how many units of each asset any particular firm should sell to maximize
its own valuation. We restrict the allowable liquidations to follow Assumption 3.1 – the minimal liquidation condition
– at the initial set of prices q. If agent i were to act differently (and assuming all other firms liquidate according to
γ∗
−i) then it would decrease its own valuation.
We thus have a modified (possibly set-valued) clearing mechanism to find the clearing payment p∗ ∈ R

n
+, clearing

price q∗ ∈ R
m
+ , and equilibrium liquidation strategy γ∗ ∈ R

n×m
+ . The clearing mechanism is defined by the set-valued

function Ψ : [0, p̄] × [0, q̄] × [0, S] → P([0, p̄] × [0, q̄] × [0, S]) where P denotes the power set. We specify the clearing
mechanism by defining it pointwise as

Ψ(p, q, γ) :=
{

p̄ ∧ (x+ Sq +ATp)
}

×

{

F

(

n
∑

i=1

[si ∧ γi]

)}

×

n
∏

i=1

argmax
gi∈Γi(p,q)

sTi F



[si ∧ gi] +
∑

j 6=i

[sj ∧ γj ]



 . (4.2)

The clearing payment, price, and liquidation strategies are provided by the fixed point problem (p∗, q∗, γ∗) ∈ Ψ(p∗, q∗, γ∗).
At this equilibrium, each firm is satisfying the minimum liquidation condition (Assumption 3.1) since q∗ = F (

∑n
i=1[si∧

γ∗
i ]). Importantly, at an equilibrium, no firm can increase its own valuation without another firm altering its liqui-

dation strategy, i.e., the solution is a Nash equilibrium. In the following theorem we will provide conditions for the
existence of such an equilibrium solution to the clearing mechanism Ψ.
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Theorem 4.1. Consider a financial system (A, p̄) with liquid endowments x and illiquid endowments S. Consider some
inverse demand function F satisfying Assumption 2.1 such that F (

∑n
i=1 si) ∈ R

m
++ and β ∈ [0,

∑n
j=1 sj ] 7→ sTi F (β)

is quasi-concave for all i = 1, 2, ..., n. There exists a combined clearing payment, clearing price, and equilibrium
liquidation strategy, i.e., there exists (p∗, q∗, γ∗) ∈ Ψ(p∗, q∗, γ∗).

The following simple example demonstrates that the joint clearing payment, clearing price, and equilibrium liqui-
dation strategy will not be unique in general. This example, however, hints to a uniqueness argument we will use in
Corollary 4.4.

Example 4.2. Consider any financial system with n firms and an additional sink node (e.g., the external economy).
Assume additionally that all n firms are symmetric, i.e., they hold the same endowments and have the same obligation
structures (e.g., a ring or completely connected network). Given an equilibrium liquidation strategy γ∗, any other
strategy γ̄ ∈ [0, S] satisfying the minimal liquidation condition such that

∑n
i=1 γ

∗
i =

∑n
i=1 γ̄i will also be an equilibrium

liquidation strategy. However, it should be noted that the clearing payments and prices will be the same for any choice
of γ̄ constructed in this manner.

To define a notion of uniqueness we first need a modified version of diagonally strictly concave games from [23].

Definition 4.3. Let ui : R
n×m
+ → R for each i = 1, 2, ..., n be continuously differentiable payoff functions for a game.

The payoff functions (ui)i=1,2,...,n are called aggregate diagonally strictly concave if

n
∑

i=1

(x̄i − x∗
i )

T∇iui(x
∗) +

n
∑

i=1

(x∗
i − x̄i)

T∇iui(x̄) > 0

for every x∗, x̄ ∈ R
n×m
+ with

∑n
i=1 x

∗
i 6=

∑n
i=1 x̄

∗
i where ∇iui =

(

∂ui

∂xi1
, ∂ui

∂xi2
, ..., ∂ui

∂xim

)T

.

Corollary 4.4. Consider the setting of Theorem 4.1 such that the inverse demand function F is additionally con-
tinuously differentiable and (sTi F (·))i=1,2,...,n is aggregate diagonally strictly concave. There exists a unique ag-
gregate equilibrium liquidation strategy for any given payments p ∈ [0, p̄] and prices q ∈ [F (

∑n
i=1 si), q̄], i.e., if

γ∗
i ∈ γi(p, q, γ

∗
−i) ∩ [0, si] and γ̂∗

i ∈ γi(p, q, γ̂
∗
−i) ∩ [0, si] for every bank i = 1, 2, ..., n then

∑n
i=1 γ

∗
i =

∑n
i=1 γ̂

∗
i . Further,

let (p, q) ∈ [0, p̄]× [F (
∑n

i=1 si), q̄] 7→
∑

γ∗(p, q) ∈ R
m
+ denote this unique aggregate, then

∑

γ∗ is nonincreasing.

The following example provides a simple network setting which satisfies the conditions proposed in Corollary 4.4.

Example 4.5. Consider the financial system described in Example 4.2 with each asset’s price determined indepen-
dently, i.e. F (γ) := (F̂1(γ1), F̂2(γ2), ..., F̂m(γm))T for any γ ∈ R

m
+ . Then (sTi F (·))i=1,2,...,n is aggregate diagonally

strictly concave on [0,
∑n

i=1 si] if F̂k : [0,
∑n

i=1 sik] → [0, q̄k] is strictly concave for every asset k = 1, 2, ...,m.

Remark 4.6. Under the conditions of Corollary 4.4, we can guarantee a greatest and least clearing payment vector
and implied price vector as in Theorem 3.4(ii). If additionally the conditions of Theorem 3.4(iii) are satisfied then
there exists a unique realized payment vector and implied price vector. However, even under unique payments and
prices, the equilibrium liquidation strategy may not be unique – only the aggregate need be – we refer to Example 4.2
for a brief discussion of this.

5 Constructing the clearing vector

For this section we will assume the conditions of Theorem 3.4(ii); notably, as stated in Remark 4.6, the equilibrium
strategies under the setting of Corollary 4.4 satisfy the necessary conditions. Under the conditions of uniqueness,
e.g., in Theorem 3.4(iii), Algorithm 5.1 provides the unique clearing payment and vector of prices. We will introduce
a modified version of the fictitious default algorithm from [13, 22, 5, 3] for the construction of the greatest clearing
payment and price (p+, q+). While this algorithm does converge within at most n + 1 iterations, it includes a fixed
point problem at each iteration which may not converge in finite time.

Algorithm 5.1. Under the assumptions of Theorem 3.4(ii) the greatest clearing payment and price (p+, q+) can be
found by the following algorithm in at most n + 1 iterations. Initialize k = 0, pk = p̄, and qk = q̄. Repeat until
convergence:

(i) Increment k = k + 1;

(ii) For any firm i = 1, 2, ..., n, define the equity and loss level by eki = xi +
∑m

l=1 silq
k−1
l +

∑n
j=1 ajip

k−1
j − p̄i;

5



(iii) Denote the set of insolvent banks by Dk :=
{

i ∈ {1, 2, ..., n} | eki < 0
}

;

(iv) If k ≥ 2 and Dk = Dk−1 then terminate;

(v) Define the matrix Λ ∈ {0, 1}n×n so that Λk
ij =

{

1 if i = j ∈ Dk

0 else
. pk = p̂ and qk = q̂ are the maximal solutions

to the following fixed point problem

p̂ =
(

I − Λk
)

p̄+ Λk
(

x+ Sq̂ +ATp̂
)

, (5.1)

q̂ = F





∑

i∈Dk

si +
∑

i6∈Dk

[si ∧ γi(p̂, q̂)]



 . (5.2)

Remark 5.2. If the financial system with liquid endowments x+SF (
∑n

k=1 sk) (and no illiquid endowments) is regular
in the sense of [13, Definition 5] then (5.1) is immediately solvable as a function of q̂ by standard input-output matrix
results (see e.g. [20, Theorem 8.3.2]), given by

p̂ =
(

I − ΛkAT
)−1 [

p̄+ Λk (x+ Sq̂ − p̄)
]

.

Algorithm 5.1 begins with the assumption that all obligations are paid in full (p = p̄) and the price of the illiquid
assets are at the maximum level (q = q̄). The first iterations assumes that no firms have defaulted on their obligations
and finds the resultant asset prices. Using this new vector of prices may cause some firm to go into distress (via
the mark-to-market valuation). If no new firms were forced into distress – in particular, if there were no liquidations
in iteration 1 – then the algorithm terminates. (Note that the algorithm presented in [5] uses this iteration in the
initialization step itself.) This process is then repeated assuming the set of defaulting firms is held constant from the
results of the previous iteration. If at any time the set of defaulting firms is equivalent to the prior set, then the
algorithm stops as the fixed point has been reached. Since there are only n firms, that means this algorithm must take
at least 1 iteration but at most n+ 1 iterations.

Remark 5.3. Under the conditions of Corollary 4.4, the greatest clearing payment vector and implied price vector
(p+, q+) can be computed via Algorithm 5.1. To accomplish this, we modify (5.2) to consider only the aggregate
liquidation rather than the individual strategies. That is, we replace the summation of arguments within the inverse
demand function of (5.2) by the unique aggregate liquidation function

∑

γ∗ defined in Corollary 4.4. This unique
aggregate strategy can be computed by summing any equilibrium strategy (found, e.g., with Scarf’s algorithm [24]).

6 Proofs

Proof of Theorem 4.1. Note that in problem (4.1) the liquidation strategies are always cut off at level of asset holdings.
Therefore we can consider the equivalent problem of maximizing over Γ̂i(p, q) = {γi ∈ [0, si] | qTγi = (qTsi) ∧
(

p̄i − xi −
∑n

j=1 ajipj

)+

}. As there may be a set of solutions to problem (4.1), we will denote the full set of solutions

by the set-valued mapping Gi defined by Gi(p, q, γ
∗
−i) := argmaxgi∈Γ̂i(p,q)

sTi F
(

gi +
∑

j 6=i γ
∗
j

)

for every i.

By assumption the objective function (p, q, γ∗
−i, γi) 7→ sTi F (γi +

∑

j 6=i γ
∗
j ) is continuous and quasi-concave. If Γ̂i is

nonempty compact-valued and a continuous correspondence then we can apply the Berge Maximum Theorem.

(i) (Nonempty and Compact-valued) By construction γi ∈ Γ̂i(p, q) if and only if qTγi = r for some r ∈ [0, qTsi] and
γi ∈ [0, si]. This immediately implies that Γ̂i(p, q) is not empty. Additionally, Γ̂i(p, q) ⊆ [0, si] by definition and
is closed since γi 7→ qTγi is a continuous operator.

(ii) (Upper semicontinuous) Utilizing the Closed Graph Theorem (cf. Theorem 17.11 in [1]), since Γ̂i is closed-valued
and the range space is compact (the range space of Γ̂i is [0, si]) then Γ̂i is upper semicontinuous if and only if it
has a closed graph. This follows trivially from the continuity of the constraint equation of Γ̂i.

(iii) (Lower semicontinuous) By definition Γ̂i is lower semicontinuous if (pk, qk)k∈N → (p, q) with γi ∈ Γ̂i(p, q) then
there exists a subsequence (pkl , qkl)l∈N such that there exists a sequence (γl

i)l∈N → γi with γl
i ∈ Γ̂i(p

kl , qkl) for

every l ∈ N (see, e.g., Theorem 17.19 in [1]). Since Γ̂i(p̂, q̂) is a hyperplane (intersected with a bounded interval)
with normal q̂ and shift parameter (q̂Tsi) ∧ (p̄i − xi −

∑n
j=1 ajip̂j)

+ continuous with respect to (p̂, q̂). This

immediately implies that lim infk→∞ d(γi, Γ̂i(p
k, qk)) = 0 where d(γi, Γ̂i(p

k, qk)) = infγk
i
∈Γi(pk,qk) ‖γi−γk

i ‖ is the

minimum distance between γi and Γ̂i(p
k, qk). Since Γ̂i is compact-valued the infimum is attained, we will call

the solution γk
i . By definition of the limit inferior, there exists a subsequence of (γk

i )k∈N which converges to γi.
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Thus by the Berge Maximum Theorem (cf. Theorem 17.31 in [1]) Gi has nonempty compact values and is upper
semicontinuous. Further, Gi has convex values since the objective function is quasi-concave and Γ̂i is convex-valued
(see, e.g., Corollary 9.20(1) in [26]). Thus we can write the clearing mechanism (4.2) as

Ψ(p, q, γ) =
{

p̄ ∧ (x + Sq +ATp)
}

×

{

F

(

n
∑

i=1

γi

)}

×

n
∏

i=1

Gi(p, q, γ−i),

where Ψ has nonempty compact and convex values. Since Gi is upper semicontinuous and compact-valued, and
(p, q, γ) 7→ p̄∧ (x+Sq+ATp) and (p, q, γ) 7→ F (

∑n
i=1 γi) are continuous and single-valued (and thus compact-valued),

Ψ is upper semicontinuous by Theorem 17.28 of [1]. Thus we can apply the Kakutani Fixed Point Theorem (cf.
Theorem 3.2.3 in [4]) to get the existence of a fixed point (p∗, q∗, γ∗) ∈ Ψ(p∗, q∗, γ∗).

Proof of Corollary 4.4. Fix p ∈ [0, p̄] and q ∈ [F (
∑n

i=1 si), q̄]. Let γ∗, γ̂∗ ∈
∏n

i=1[0, si] be two equilibrium liquidation
strategies. Assume

∑n
i=1 γ

∗
i 6=

∑n
i=1 γ̂

∗
i . For notation, let JF denote the Jacobian matrix of the inverse demand

function F . Further, let λ ∈ R
n and µ, ν ∈ R

n×m
+ be the optimal KKT multipliers to the optimization problem (4.1)

corresponding to the solution γ∗ (respectively λ̂, µ̂, ν̂ for γ̂∗). Herein λi ∈ R is the multiplier for the equality constraint,
µi ∈ R

m
+ is the multiplier for γi ≥ 0, and νi ∈ R

m
+ is the multiplier for γi ≤ si.

0 =

n
∑

i=1

(γ∗
i − γ̂∗

i )
T



JF (

n
∑

j=1

γ∗
j )

Tsi + λiq + µi − νi



+

n
∑

i=1

(γ̂∗
i − γ∗

i )
T



JF (

n
∑

j=1

γ̂∗
j )

Tsi + λ̂iq + µ̂i − ν̂i



 (6.1)

=

n
∑

i=1

(γ∗
i − γ̂∗

i )
T[JF (

n
∑

j=1

γ∗
i )− JF (

n
∑

j=1

γ̂∗
i )]

Tsi −

n
∑

i=1

[µT

i γ̂
∗
i + νTi (si − γ̂∗

i ) + µ̂T

i γ
∗
i + ν̂Ti (si − γ∗

i )] (6.2)

≤

n
∑

i=1

(γ∗
i − γ̂∗

i )
TJF (

n
∑

j=1

γ∗
i )

Tsi +

n
∑

i=1

(γ̂∗
i − γ∗

i )
TJF (

n
∑

j=1

γ̂∗
i )

Tsi < 0. (6.3)

Thus the aggregate liquidation strategy must be unique. Note that (6.1) follows from the KKT conditions of the
maximization problem (4.1). (6.2) follows from qTγ∗

i = qTγ̂∗
i for every i, µikγik = 0 for every i and k, and νikγik = νiksik

for every i and k. (6.3) follows from µi, νi, µ̂i, ν̂i ≥ 0 and γ∗
i , γ̂

∗
i ∈ [0, si] for every i. The final inequality is trivial

from the definition of aggregate diagonally strictly concave. Further, the aggregate liquidation strategy is trivially
nonincreasing by Bellman’s principle.

Proof of Algorithm 5.1. First, note the only change in the fixed point problem described in Equations (5.1) and (5.2)
is the matrix Λk which depends solely on the defaulting firms Dk. Therefore the fixed point (p̂, q̂) would be the same at
iteration k as at k − 1 if Dk = Dk−1. Thus the termination condition (iv) is valid. Further, Equations (5.1) and (5.2)
are nonincreasing as a function of the defaulting firms D. Since D2 ⊇ D1, it follows that Dk ⊇ Dk−1 by induction.
Since the maximum cardinality of Dk is n, and with the termination condition, the maximum number of iterations is
n+ 1.

To construct Equations (5.1) and (5.2) we assume that the firms in distress are fixed at each iteration k, i.e., a firm
pays p̂ = p̄i if i 6∈ Dk and pays p̂i = xi +

∑m
l=1 silq̂l +

∑n
j=1 ajip̂j if i ∈ Dk, similarly for q̂ we observe that any firm

i ∈ Dk must liquidate all its assets by Assumption 3.1. Thus Equations (5.1) and (5.2) follow immediately.
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