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Abstract

In this paper, we extend the proximal point algorithm for vector optimization from the Eu-
clidean space to the Riemannian context. Under suitable assumptions on the objective function
the well definition and full convergence of the method to a weak efficient point is proved.
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1 Introduction

In recent years, extensions to Riemannian manifolds of concepts and techniques which fit in linear
spaces are natural. Several algorithms for optimization problem which involve convexity of the
objective function have been extended from the linear settings to the Riemannian context; see, for
instance, [1, 2, 18, 21, 25, 30, 31] and the references therein. One reason for the success of this
extension is the possibility to transform, by introducing a suitable Riemannian metric, nonconvex
problems in the linear context into convex problems in the Riemannian context; see [10, 16, 17, 28].

In the last few years, researchers began the study of the vector optimization problems on Rie-
mannian manifolds context; papers dealing with this issues include Bento and Cruz Neto [4], Bento
et al. [5], Bento et al. [8] and Bonnel et al. [12]. The present paper deals with the extension of
the proximal point method for vector optimization from the Euclidean settings to the Riemannian
context, which continues the subject addressed in the following papers [18, 9, 7, 31, 22]. To our
best knowledge, this is the first paper extending the proximal point method for vector optimization
to the Riemannian settings. Besides our approach is new even in Euclidean context, since we are
dealing with general convex cone and the nonlinear scalarization is more flexible than the considered
in [6]. Under suitable assumptions on the objective function the well definition and full convergence
of the method to a weak efficient point is proved. It is worth to point out that under assumption
of null sectional curvature, our algorithm retrieves the proximal point method for multobjective
presented in [6] and, somehow, goes further.

This paper is organized as follows. In Section 1.1, we present the notations and terminology
used in the paper. In Section 2, we present the vector optimization problem and the proximal point
method. Our main results are stated and proved in Section 3, and conclusions are discussed in
Section 4.

∗IME, Universidade Federal de Goiás, Goiânia, GO 74001-970, BR (glaydston@ufg.br).
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1.1 Notation and Terminology

In this section, we introduce some notations about Riemannian geometry, which can be found in any
introductory book on Riemannian geometry, such as in Sakai [26], Do Carmo [13]. Let M be a n-
dimentional Hadamard manifold. In this paper, all manifolds M are assumed to be Hadamard finite
dimensional. We denote by TpM the n-dimentional tangent space of M at p, by TM = ∪p∈MTpM
tangent bundle of M and by X (M) the space of smooth vector fields over M . The Riemannian
distance between p, q ∈ M , denoted by d(p, q), and given a nonempty set U ⊂ M , the distance
function associated to U is given by:

M ∋ p 7→ d(p, U) := inf{d(p, q) : q ∈ U}.

Since M is a Hadamard manifold, the Riemannian distance d induces the original topology on
M , namely, (M,d) is a complete metric space and bounded and closed subsets are compact. The
open metric ball at p ∈ M is given by B(p, r) := {q ∈ M : d(p, q) < r}, where r > 0. The
Riemannian metric is denoted by 〈 , 〉 and the corresponding norm by ‖ ‖. The metric induces a
map g 7→ grad g ∈ X (M) which associates to each function differentiable over M its gradient via
the rule 〈grad g,X〉 = dg(X), X ∈ X (M). The geodesic determined by its position p and velocity
v at p is denoted by γ = γv(., p). The restriction of a geodesic to a closed bounded interval is
called a geodesic segment. Since M is a Hadamard manifold the lenght of the geodesic segment
γ joining p to q is equals d(p, q). Moreover, exponential map expp : TpM → M is defined by
exppv = γv(1, p) is a diffeomorphism and, consequently, M is diffeomorphic to the Euclidean space
R
n, n = dimM . Let q ∈ M and exp−1

q : M → TpM be the inverse of the exponential map.
Note that d(q , p) = ||exp−1

p q||, the function d2q : M → R defined by d2q(p) = d2(q, p) is C∞ and
grad d2q(p) := −2exp−1

q p. Furthermore, we know that

d2(p1, p3) + d2(p3, p2)− 〈exp−1
p3
p1, exp

−1
p3
p2〉 ≤ d2(p1, p2). p1, p2, p3 ∈M. (1)

A set Ω ⊆ M is said to be convex if any geodesic segment with end points in Ω is contained in
Ω, that is, if γ : [a, b] → M is a geodesic such that x = γ(a) ∈ Ω and y = γ(b) ∈ Ω; then
γ((1− t)a+ tb) ∈ Ω for all t ∈ [0, 1]. Let g :M → R∪ {+∞} be a function. The domain of g is the
set domg := {p ∈M : g(p) <∞} . The function g is said to be proper if dom g 6= ∅ and convex
(resp. strictly convex, strongly convex) on a convex set Ω ⊂ dom g if for any geodesic segment
γ : [a, b] → Ω the composition g ◦ γ : [a, b] → R is convex (resp. strictly convex, , strongly convex).
It is well known that, for each q ∈ M , d2q is strongly convex. Take p ∈ dom g. A vector s ∈ TpM
is said to be a subgradient of g at p, if g(q) ≥ g(p) + 〈s, exp−1

p q〉, for q ∈ M. The set ∂g(p) of all
subgradients of g at p is called the subdifferential of g at p. We remark that, if g is convex then
∂g(p) 6= ∅ for all p ∈ dom g. Moreover, if g is differentiable at p then ∂g(p) = {gradf(p)}. The
function g is lower semicontinuous (lsc) at x ∈ domg if for each sequence {xn} converging to x we
have lim infn→∞ g(xn) ≥ g(x). Given a closed set Ω ⊂ M, it is known that indicator function of Ω,
IΩ : M → R ∪ {+∞}, is a lower semicontinuous function and, for each p ∈ M , ∂IΩ(p) = NΩ(p),
where

NΩ(p) :=
{

v ∈ TpM : 〈v, exp−1
p q〉 ≤ 0, q ∈ Ω

}

.

Definition 1.1. A sequence {pk} ⊂ (M,d) is said to Fejér convergence to a set W ⊂ M if, for
every q ∈W we have d2(w, pk+1) ≤ d2(w, pk).

Proposition 1.1. Let {pk} be a sequence in (M,d). If {pk} is Fejér convergent to non-empty set
W ⊂M , then {pk} is bounded. If furthermore, an accumulation point p of {pk} belongs to W , then
limk→∞ pk = p.
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2 The Proximal Point Method for Vector Optimization

In this section, we present the vector optimization problem, some concepts and results related to
this problem, and introduce the proximal point method for this problem.

Let C ⊂ R
m be a closed, pointed and convex cone. We will use the binary relations �C and ≺C

defined, respectively, by p �C q means q − p ∈ C and p ≺C q means q − p ∈ intC, for all p, q ∈ R
m.

Given a continuously differentiable vector function F :M → R
m, we consider the problem of finding

an efficient point of F, i.e., a point p∗ ∈ R
n such that there exists no p ∈ M with F (p) �C F (p∗)

and F (p) 6= F (p∗). We denote this unconstrained problem as

C −Minp∈MF (p). (2)

We say that p∗ ∈M is a weakly efficient point of (2) if there is no p ∈M such that F (p) ≺C F (p∗).
The set of the weakly efficient points of (2) is denoted by C − argminw{F (p)|p ∈M}. Throughout
this paper we assume that (2) satisfies the following assumption:

(A1) There exists a compact set Z ⊂ R
m\{0} such that C = {y ∈ R

m : 〈y, z〉 ≥ 0, z ∈ Z}.

Remark 2.1. In classical optimization C = R+ and we can take Z = {1}. For multiobjective
optimization, C is the positive orthant of Rm and we can take Z as the canonical base of Rm. For a
generic cone C we can take Z = {z ∈ C∗ : ‖z‖1 = 1}, where C∗ := {y ∈ R

m : 〈y, x〉 ≥ 0, x ∈ R
m}

and ‖z‖1 := |z1|+ |z2|+ · · ·+ |zm|.

We consider the following nonlinear scalar function f : Rm → R, which will play an important role
in our analysis, defined by

f(y) := inf{t ∈ R : te ∈ y + C}, (3)

where e is any fixed point in intC; see [32]. In [15, Proposition 1.44] it was proved that the nonlinear
function above can be rewritten as follow

f(y) = max
z∈Z

〈y, z〉

〈e, z〉
. (4)

Remark 2.2. For the multiobjective case, (3) becomes f(y) = maxi∈I〈y, ei〉, where {ei} ⊂ R
m is

the canonical base of the space in R
m, which has been used in [6].

Next lemma, which proof is trivial, gives us some properties of the function above that will be
useful through the paper.

Lemma 2.1. Let f : Rm → R be a nonlinear function defined in (4), then following properties hold:

i) Given y ∈ R
m, α ∈ R and t > 0, f(ty + αe) = tf(y) + α;

ii) If y �C z then f(y) ≤ f(z) for any y, z ∈ R
m.

Proposition 2.1. Let F :M → R
m be a vectorial function and C ⊂M a closed set. Then,

argminp∈Cf(F (p)) ⊂ argminwp∈CF (p).

Proof. It is similar to the proof of [6, Proposition 3.1].
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Now we introduce the proximal point method for vector optimization. Let {λk} be a sequence
of positive numbers and {ek} ⊂ intC such that ‖ek‖ = 1, for k = 0, 1, . . .. Consider the sequence of
functions

fk(y) := max
z∈Z

〈y, z〉

〈ek, z〉
, k = 0, 1, . . . . (5)

The proximal point method for solving (2), with starting point p0 ∈M , is defined by

pk+1 := argminp∈Ωk
fk

(

F (p) +
λk
2
d2(p, pk)ek

)

, k = 0, 1, . . . , (6)

where Ωk := {p ∈ M : F (p) �C F (pk)}. From now on {pk} denotes the sequence generated by
the proximal point method, with starting point p0 ∈M .

3 Convergence Analysis

In this section, we prove the full convergence of the proximal point method to a weak efficient point.
For this purpose, we need to define the convexity of a function with respect to the order induced
by C. A vectorial function F : M → R

m is called C- convex if, for p, q ∈ M and γ : [0, 1] → M a
geodesic segment joining p to q, there holds F (γ(t)) �C (1− t)F (p) + tF (q), for all t ∈ [0, 1].

We also need of the following assumption:

(A2) Ω̄ :=
⋂∞

k=0Ωk 6= ∅.

Remark 3.1. In general the set Ω̄ in (A2) can be an empty set. One way to guarantee that Ω̄
is nonempty is to assume: for each p0 ∈ M the set (F (p0) − C) ∩ F (M) is C-complete (see [24,
Section 19]), meaning that each sequence {qk} ⊂ M , with q0 = p0, such that F (qk+1) �C F (qk),
for k = 0, 1, . . ., there exists q ∈ M such that F (q) �C F (qk), for k = 0, 1, . . .. This assumption
is standard to ensure the convergence of descent methods in vector optimization; see, for instance,
[11, 14, 19, 20, 29].

Now we ready to state and prove the main result of this section.

Theorem 3.1. Let F : M → Rm be a C-convex function, and assume that (A1) and (A2) hold
and {λk} is bounded. Then, {pk} is well defined and converges to a weakly efficient point.

Proof. Let {fk} be the sequence of functions defined in (5), and define ϕk :M → R ∪ {+∞} by

ϕk(p) = fk

(

F (p) + IΩk
(p)ek + λkd

2(p, pk)ek
)

, k = 0, 1, . . . ,

where IΩk
is the indicator function of Ωk. From item i of Lemma 2.1 we have

ϕk(p) = fk (F (p)) + IΩk
(p) +

λk
2
d2(p, pk), k = 0, 1, . . . . (7)

Since F is C- convex, then fk ◦F is convex and Ωk is a convex and closed set. Hence ϕk is strongly
convex and lower semicontinuous on Ωk, for k = 0, 1, . . .. Thus, there exists a unique pk+1 ∈ Ωk

such that
pk+1 = argminp∈Mϕk(p), k = 0, 1, . . . , (8)

which implies that {pk} is well defined and the first part of the proposition is proved.
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Using convexity of ϕk and (8) we conclude that 0 ∈ ∂ϕk(p
k+1), which from (7) yields

0 ∈ ∂

(

fk ◦ F (·) + IΩK
(·) +

λk
2
d2(·, pk)

)

(pk+1), k = 0, 1, . . . .

Last inclusion implies that there exist wk+1 ∈ ∂(fk ◦ F )(p
k+1) and vk+1 ∈ NΩk

(pk+1) such that

exp−1
pk+1 p

k =
1

λk

(

wk+1 + vk+1
)

, k = 0, 1, . . . . (9)

On the other hand, using inequality (1) with p1 = p ∈M , p2 = pk and p3 = pk+1, we have

d2(p, pk+1) + d2(pk+1, pk)− 〈exp−1
pk+1 p, exp

−1
pk+1 p

k〉 ≤ d2(p, pk), k = 0, 1, . . . .

Substituting the equality in (9) into the last inequality, we obtain

d2(p, pk+1) ≤ d2(p, pk)− d2(pk+1, pk) +
1

λk
〈exp−1

pk+1 p,w
k+1 + vk+1〉, k = 0, 1, . . . .

Since fk ◦ F is convex and wk+1 ∈ ∂(fk ◦ F )(p
k+1) then assumption (A2) implies

〈

exp−1
pk+1 p, w

k+1
〉

≤ fk(F (p))− fk(F (p
k+1)) ≤ 0, p ∈ Ω̄, k = 0, 1, . . . ,

where the last inequality follows from item ii of Lemma 2.1. Now, taking into account that Ω̄ ⊂ Ωk

and vk+1 ∈ NΩk
(pk+1), for k = 0, 1, . . ., we have

〈exp−1
pk+1 p, v

k+1〉 ≤ 0, p ∈ Ω̄, k = 0, 1, . . . .

Therefore, taking into account (A2), we can combine three last inequalities to conclude that {pk}
is Fejér convergence to Ω̄. In particular, Proposition 1.1 implies that {pk} is bounded. Let p̄ be
a cluster point of {pk} and {pkj} a subsequence of {pk} such that limk→∞ pkj = p̄. Note that (6)
yields

F (pk+1) �C F (pk), k = 0, 1, . . . .

Hence, the continuity of F implies that F (p̄) �C F (pk), for k = 0, 1, . . ., which is equivalent to say
p̄ ∈ Ω̄. Using Proposition 1.1 we conclude that {pk} converges to p̄.

It remains to prove that p̄ is a weakly efficient point. Let us suppose, by contradiction, that
there exists p̂ ∈ M such that F (p̂) ≺C F (p̄) (note that, in particular, p̂ ∈ Ω). Thus, since p̄ ∈ Ω̄,
using item ii) of Lemma 2.1 we have

fk(F (p̂))− fk(F (p̄)) ≥ fk(F (p̂))− fk(F (p
k+1)) ≥ 〈wk+1, exp−1

pk+1 p̂〉, (10)

where the last inequality was obtained by using the convexity of the function fk ◦ F and that
wk+1 ∈ ∂(fk ◦ F )(p

k+1). Using (9) we obtain

〈wk+1, exp−1
pk+1 p̂〉 = −〈vk, exp−1

pk+1 p̂〉+ λk〈exp
−1
pk+1 p

k, exp−1
pk+1 p̂〉.

Using the definition of fk we have fk(F (p̄)− F (p̂)) ≥ fk(F (p̄)) − fk(F (p̂)), for k = 0, 1, . . .. Thus,
combining the last equality with (10) and taking into account that vk+1 ∈ NΩk

(pk+1) we have

fk(F (p̄)− F (p̂)) ≥ fk(F (p̄))− fk(F (p̂)) ≥ λk〈exp
−1
pk+1 p

k, exp−1
pk+1 p̄〉.
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Hence, using again the definition of fk, the last inequality becomes

max
z∈Z

〈F (p̄)− F (p̂), z〉

〈ek, z〉
≥ λk〈exp

−1
pk+1 p

k, exp−1
pk+1 p̄〉.

Since Z is a compact set, then there exists z̄ ∈ Z such that

〈F (p̄)− F (p̂), z̄〉 ≥ λk〈exp
−1
pk+1 p

k, exp−1
pk+1 p̄〉〈ek, z̄〉.

Note that the sequences {〈ek, z̄〉} and {λk} are bounded. Thus, letting k goes to infinity in the last
inequality, we have

〈F (p̄)− F (p̂), z̄〉 ≥ 0,

which contradicts the fact that F (p̄) ≺C F (p̂) and the desired result follows.

4 Final Remarks

It is worth to point out that the nonlinear scalar function, see (5), considered in the iterative step
process of the algorithm, see (6), allows a relationship between the weak sharp minima set of the
vectorial optimization problem and the weak sharp minima set of the scalarized problem. For state
this relationship, we need some definitions and results. Let G :M → Rm, η ∈ R

m and let us define
the following level set

Wη := {p ∈M : G(p) = η} .

We denote by MinG (resp. WMinG) the set of the efficient points (resp. weak efficient points)
associated to (2).

Definition 4.1. A point p̂ ∈ M is said to be weak sharp minimum to (2), if there is a constant
τ > 0 such that

G(p)−G(p̂) /∈ B(0, τd(p,WG(p̂)))− C, p ∈M\WG(p̂), (11)

The set of all weak sharp minimum to (2) is denoted by WSMinG.

The above definition has appeared in several contexts, see for example, [3, 6, 27, 32]. Note that
the relationship (11) can be expressed in following equivalent form

d(G(p) −G(p̂),−C) ≥ τd(p,WG(p̂)), p ∈M,

and there holds WSMinG ⊂ MinG. In the particular case m=1 and C = R+, the last inequality
becomes to the well-known inequality

G(p) −G(p̂) ≥ τd(p,WG(p̂)), p ∈M,

introduced in [23], defining weak sharp minimizer in Riemannian context.
Next result establishes the above mentioned relationship between WSMinF and the weak sharp

minimum associated to the nonlinear scalar function defined in (3), the proof follows by using similar
arguments used in the proof of [32, Theorem 3.4].

Theorem 4.1. Let F : M → Rm and p̂ ∈ M . Suppose that WF (p̂) is closed set and define

F̃ :M → R
n by F̃ (p) = F (p)−F (p̂). If p̂ ∈ WSMinF then p̂ ∈ WSMinf◦F̃ , where f is given by (4).

We expect that the Theorem 4.1 constitutes a first step towards to establish the following result:
“If p̂ ∈ WSMinF , then {pk} converges, in a finite number of iterations”. We foresee further progress
along these line in the nearby future. Similar result has been proven in the Euclidean context; see
[6].
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