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1. Introduction

Present-day systems increasingly include adaptive infrastruc-
tures that can involve multiple types of resources. Examples in-
clude dual-sourcing inventory systems [14] (e.g., one supplier
faster than another supplier), communication networks with noisy
channels [8] (e.g., time variations in sources and channels), work-
force management [2] (e.g., more experienced employees faster
than less experienced employees), smart power grids [7] (e.g., time
variations in load and generation with renewable energy), wireless
communication with energy harvesting devices [15] (e.g., time
variations in wireless transmission and energy harvesting), and
hybrid communication networks [1]. In the latter case of hybrid
communication networks, which served as the original motivation
for the present study, we observe that present-day communication
networks increasingly consist of an adaptive infrastructure that
may encompass multiple instances of mobile networks (e.g., wire-
less and cellular networks, public Internet, and various private
intranets) together with a wide range of communication technolo-
gies (e.g., 3G and 4G cellular, wired and satellite networks) [9].
Many of these systems exploit and interoperate with a diversity of
resource types in order to increase both capacity and robustness.

One overlooked property in the literature relevant to systems
involving multiple types of resources concerns the operation of the
comprising resource types at different timescales. To address this
and related issues, there is an important need for mathematical
frameworks that support the design and adaptive control of these
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systems. Such a framework includes fundamental performance
limits and how these limits impact the design of adaptive con-
trol algorithms, convergence of these algorithms in a multiple
timescale environment, and assurance of good performance under
these algorithms. Our present study seeks to establish fundamental
properties of adaptive control policies for the optimal scheduling
across various resource types operating at different timescales that
ensures low delays and high throughput.

We consider a general system that includes a mixture of various
types of resources that operate at different timescales. To elucidate
the exposition of our analysis, we focus on a system environ-
ment comprising two resource types with one working at a faster
timescale than the other. For example, in the context of hybrid
networks, the types of resources could be based on satellite and
wireless networks where the former operates at a slower timescale
than the latter [6], due to its larger propagation delay and round
trip time. We note that our analysis extends in a straightforward
manner to support an arbitrary number of resource types working
at different timescales.

Given the popularity of the max-weight scheduling algorithm
[13] in operations research and related fields, we restrict our
attention to this class of adaptive control policies. Our goal is
to tailor this scheduling algorithm to system environments with
timescale differences and to derive its stability, throughput and de-
lay properties. While these fundamental performance properties of
the max-weight scheduling algorithm in single-timescale systems
have received a great deal of attention in the research literature
(see, e.g., [5,12]), no previous work to our knowledge has studied
the performance properties of max-weight scheduling in a system
environment that comprises multiple types of resources operating
at different timescales.
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Fig. 1. A stochastic network supporting N = 3 nodes and two types of server
resources (fast and slow).

We speak of a fast resource and a slow resource, where the
allocation and feasible service rate over the slow resource remains
fixed for a long period of time relative to that of the fast resource.
This suggests an interesting new class of scheduling problems in
which the longer-term commitment of the slow resource requires
more careful scheduling of both resources than would otherwise
be the case, possibly taking into account future service on the
slow resource when deciding on the usage of the fast resource.
Our study, for the first time, explores and models this scheduling
problem involving different timescales, and provides initial results
on how to handle such environments. We consider a scheduling
algorithm that coordinates between the different timescales and
compare its delay properties against a scheduling algorithm that
does not. To this end we develop new theoretical results that
consider the embedded Markov process on transition moments of
the slow resource.

In some applications, the problem of scheduling resources
across multiple timescales also involves differences in costs among
the types of resources, where some resource types are more expen-
sive than others. For example, in a hybrid network with satellite
and WiFi resources, a satellite link is typically more costly to
operate than a straightforward WiFi link. Although this is outside
the scope of the present study, our mathematical framework can
be extended to include such issues.

The remainder of this paper is organized as follows. We next
present a formal description of our model in Section 2. Section 3
introduces both variants of max-weight scheduling policies con-
sidered in our study, and in Section 4 we provide a mathematical
analysis of these policies. Section 5 discusses and further explores
our results, also considering possible directions for future research.

2. Mathematical model

Consider a stochastic network comprising N nodes, indexed by
i = 1,...,N, to which customer traffic arrives over time. De-
pending on the application, these nodes may for instance represent
job classes or wireless devices. The nodes can have customers
served across two types of servers that represent diverse types
of resources operating at different timescales. This constitutes a
stochastic network that consists of a fast server and a slow server,
as illustrated in Fig. 1, noting that our results can be extended in
a straightforward manner to a general number of types of server
resources. Further note that the names fast and slow servers refer
to the timescale on which they operate, rather than their service
rates.

Time is slotted, indexed by t = 0, 1, ..., and each node i main-
tains a queue of infinite capacity that stores customers awaiting
service. Let Q;(t) denote the number of customers waiting at node i
at the beginning of slot t, and define Q(t) := (Q4(t), ..., Qn(t)). Let
Ai(t) denote the number of customers arriving at node i during slot
t, where arrivals are assumed to be i.i.d. over time and independent
among nodes. Denote by A; = E[A;(0)] the arrival rate at node i, and
define A := (A1, ..., An). Server resource conditions are such that

only a single node can be served over each server resource within
a slot; however, a single node is allowed to be served over both
resources simultaneously.

Let F;(t) and S;(t) respectively denote the feasible service rate
of node i at time t over the fast and slow server resources, rep-
resenting the number of customers that can be served if the cor-
responding server resource is selected in slot t. These rates may
fluctuate over time, and are independent among nodes and server
resources. The feasible service rates of the slow resource remain
fixed throughout each cycle of T > 2 slots, i.e.,

S(LE/TH =S(Le/TI+ 1) = =S([t/T] +T = 1), (1)

while the fast resource service rates Fi(t) can vary from slot to
slot. The feasible service rates for the fast resource and the slow
resource are i.i.d. across slots and cycles, respectively. We denote
the finite first and second moments of the fast and slow service
rates as f; = E[F(0)], s; = E[Si(0)]. /% = E[F(0)], 5" = E[Si(0)?].

At the beginning of each slot (cycle), the scheduling policy
decides what node to assign for service on the fast (slow) resource
during that slot (cycle). The objective is to quickly stabilize the
system and achieve maximum throughput while maintaining ac-
ceptably low queue backlog. Let u;(t) and v;(t) denote the realized
service rates of node i in slot t over the fast and slow resources,
rESPECtiVEva such that Mi(t) = Fi(t) . ]l{fast resource selects node i in slot t}
and Vi(t) = Si(t) . IL{slow resource selects node i in slot t subject to (1)}« Note
that u;(t)and v;(t) represent the control variables of the scheduling
policy in slot t. Define u(t) = (uq(t),..., un(t)) and v(t) =
(vi(£), ..., vn(t)). Let O denote the all-zero vector of length N, e;
the ith unit vector of length N, F(t) = {0, Fi(t)ey, ..., Fy(t)en} and
5(t) = {0, 5y(t)er, ..., Sn(t)en}. It is readily seen that u(t) € F(t)
and v(t) € S(t), and then the individual queues evolve according
to

Q(t + 1) = Qi) + Ai(t) — pilt) — wit) + xi(t), (2)
ki) = (i) + i) — Qi) — A(6))". (3)

3. Scheduling policy and capacity region

We present two versions of the max-weight scheduling algo-
rithm that differ in the extent to which the fast and slow resources
coordinate. The first algorithm makes scheduling decisions in an
uncoordinated manner where each resource independently applies
a max-weight scheduling strategy according to its own timescale.
Namely, after observing the feasible service rates, the slow and fast
resources respectively choose at the beginning of each cycle and
slot the vectors v* and p* that satisfy

N
bi(t) = arvgegr(ljx;Q,(t)v,, t=0,T,2T,..., 4)
vt — I(t)), otherwise,
N
wi(r) = argmax ) | Qi(t)us (5)
MeF(t) =1
where I(t) := t — T|t/T] represents the number of slots into

the cycle associated with time t. Thus (4) reflects the fact that the
service decision of the slow resource remains fixed for each cycle of
T slots. The second policy we consider coordinates the scheduling
decisions of the fast resource to take into account the decisions of
the slow resource, which continue to be governed by (4), such that

N
pi(e) = argmax Y pui(0)[Qi(t) — (T — IO} (E)]. (6)

nef(t) ioq

In (6) we take into account the fact that the slow resource will
continue to serve the same node until the end of the cycle.
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Before turning to our main results, we consider the stochastic
network capacity region which is defined to be the closure of the
set of all arrival rate vectors A that can be stably supported by
the network, considering all possible scheduling decisions. Recall
that the feasible service rates are i.i.d. and denote x(f,s) =
P[(F(t), S(t)) = (f, s)]. Known results in the literature characterize
the capacity region and its coverage by randomized policies (see,
e.g., [5]), as summarized in the following lemma.

Lemma 1. The capacity region C is given by the interior of

rerY | am(ux w(u)) € F(t) x S(t) :
A= llm Zu + v(u)},

and, for any A € C, there exists a distribution o 5) such that

A=) alf.s) >

.5 ((0).v(0)eF(£)xS(t)

(1 +v)og s, v).

4. Main results

We now consider the stochastic process X(t) = (Q(t), I(t))
that tracks over time the per-node backlog and cycle stage, with
the goal of deriving the stability region of X(t) and bounds on the
stationary average backlog. Observe that X(t) is not Markovian,
since the allocation and feasible service rate of the slow resource
is fully determined by the state of the system at the beginning of
the cycle. Owing to the fact that X(t) is not Markovian, we cannot
readily apply in a straightforward manner existing results on the
stability region and queue-backlog bounds (such as those found
in [5]). Instead we must demonstrate stability by first considering
the process embedded on cycle renewal instances, from which we
will derive the stability of the general process and its associated
queue-length bounds. Let ||Q(t)||; denote the 1-norm of the Q(t)
associated with X(t). The following lemma provides sufficient sta-
bility conditions and a queue-length bound for a system operating
across multiple time-scales. We note that both the proof and the
bound are different from similar results on single time-scale sys-
tems such as Lemma 4.1 in [5].

Lemma 2. [f there exist a non-negative function L(-) and positive
constants B, € such that, for all k € 7, and all (q,t) € (Zﬁ X
{0,1...,T—=1}),

E[L(X((k + 1)T)) — L(X(KT)) | X(kT) = (q, T)] < B —€llqllx, (7)
then X(t) is stable and

t—1
lim — ZE[HQ(u <= + AT 8)

Proof. First, we show that for the embedded chain {X(kT)}x=o

lim sup ZE[HQ(kT Il <~ (9)

l—>o00 =0

Consider the conditional drift of the embedded process given in
supposition (7). By conditioning on the value of x = (q, ), starting
from some initial state X(0) = Xg, we obtain

D PIX(kT) = x | X(0) = XoIE[L(X(KT + 1)) — L(X(kT)) |

X(kT) = x] < ) PIX(KT) =X | X(0) = Xol(B — €[|x[1).  (10)

which renders
Exo [LX((k + 1)T))] — Ex, [LX(KT))] < Exy[B — €[|Q(KT)II1].
Upon summing both sides overk =0, ...,1— 1,1 € Z*, we have

-1

— B [L(X(0))] + Exo [L(X(IT))] < IB— € ZEXO[IIQLkT)Ih]-

k=0
Dividing both sides by [ and ¢, and rearranging terms yields
-1

1
ZEXO[HQ(kT)nl] < -+
€

k=

0 — B, [L(X(IT))]).

By Foster’s criterion we know that %IEXO [LX(IT))] | 0asl — oo,

and thus we obtain the desired result in (9).

Next, we demonstrate the stability of X(t), assuming for con-
tradiction the opposite to be true. Then for any finite set S and any
starting state Xg, we have lim;_, . ,P[X(t) € S] — 0. Now, letting
Su = {x ez ||qlli <M < oo}, we derive

l

I ZE[HQM = guw + DE[ xgrese, )]
1
M+ 1
= — 1 — P[X(kT .
T ’;( [X(KT) € Sm1)

Taking the limit as | — oo, the right-hand side converges to M + 1,
thus rendering a contradiction with the existence of the limit (9)
since the above inequality holds for any M > 0.

Finally, in order to establish the bound (8), first observe that

E[Q(KT + t)] < [IAll1t + E[Q(KT)], Vt > 0.

Considering up to time kT and letting t = kT + 1, we have

k—1

1« 1
- QBN < - 3 (EHIQUT)I + 1A T)
u=0 =0

k—1

1
% ZE[IIQLIT)H]] + ||A|[4T.
1=0

Taking k, t — oo ast = kT + 1, then (8) follows from (9). O

Throughout the remainder of this section, let p denote the
workload of the system, which is a solution to the equation

1—p = maxi+e¢€ € C.
e>0

4.1. Uncoordinated scheduling policy

Before stating our main results for the uncoordinated policy
in (4) and (5), we need the following auxiliary lemma. Define € :=
(€r. . €).Z() = (A(t) = () = i)+ &7 (E) v = A+ 1= p
and C(t, s) == 05 (t, s)ifI(t +5) =5, C(t,s) = 05 (¢, s) + 05 (¢, 5) if
I(t +5) > sand C(t, s) == OF (t, s) + 05 (t, s)if I(t +5) < s, where

05(t,5) = (s + )P + s + 25£)/4

+ s(fi + 2si — A:)(Ai + 1= p),
05 (t,s) = (I(t +5) — )iy + Ut + 5) — $)f; + Si)sis
05(t,s) = (s — T(t + ) ki — fi — si)y + (I(t +5) — SAss;.

Lemma 3. Let «;(t) be asin (3) with vi(t) = v (t) and p;(t) = uj(t)
as in (4) and (5), respectively. Given the system workload p, we then
have foralls =0,1,..., T —1

N
D EIQ()Zi(t +5) | Qt) =

i=1

ql <C(t.s)—(1—=p)lal:.  (11)
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Proof. We first bound the individual components of the left-hand
side of (11). To start, it is readily verified that

E[Qi(t)Ai(t +5) | Q(t) = q] = gihi. (12)
By the definition of «;*(t) in (3), we have

E[Qi(t)c (t +5) | Q(t) = q1 = E[Q(6)(Z(t +9) " | Q(t) =

Using the fact that
s—1 s—1

QO+ Y Vit +u) < Qt+5) Q) + Y At +u),  (13)
u=0 u=0

where Vi(t) = Ai(t) — Fi(t) — Si(t), together with the bounds
wi(t +s) < Fi(t +s) and vi(t 4 s) < Si(t + s), we obtain

E[Qi(t)k(t +5) | Qt) =

s—1

< E[Q(t)[Z(Fi(t + 1) + Si(t + ) + Fi(t +5)+ St +5)
u=0

—om)t a0 = q} < %(s 06+ 57+ 2s). (14)

The second inequality follows from the fact that the maximum
operator bounds the left-hand side.
To bound the Q;(t)u(t + s) term, first applying (13) renders

s—1

{Qt+5)= Y At +w}ui(t +5). (15)

u=0

Q(O)ui(t +5) =

Let (g, v) denote the result of arandomized policy in Lemma 1 such
that E[ji; + V;] = A; + p. Then, by the choice of u in (5),

N N

D QU +9) = Y QU+ oot + ). (16)
i=1 i=1
Upon combining (15) and (16), we obtain

N

N
D QORI +5) = Y Qi + S B [ilt +5)]

i=1 i=1

s—1
— Si(t+9) Y At +u).
u=0
Using (13) again, we have
N N s—1
3 Quie +5) = Z[{@(r) DV ) Eaglaie + 9)
i=1 i=1 u=0
s—1
— Si(t+9) ) Alt+ u)]. (17)
u=0

Next, the term Q(t)v;(t + s) = Qi(t)vj(t +s —I(t + s)) can be
bounded in a similar fashion. We distinguish these bounds for the
three different cases of I(t + s) values.

Case 1: I(t + s) = s. Here v/(t +s — I(t 4 s)) = vi(t), and thus

N

D QOB [H(0)]- (18)

i=1

N
Y QW+ s —I(t+5)) =
i=1

Case2: I(t +5) > s.Lett = t +s — I(t +s) < t denote the time
when the slow resource service rate for slot t + s was set. It then

follows from (13) that
N N
Saew® = Y [ab+ D vid+uw]vi
1 i=1 u=0
N t—i-1
QD) [B(D)] = > Si(t)

1 i=1 u=0

=

Mz

(F(t + u) + Si(f + u)).

Therefore, upon bounding Q;() using (13), we obtain

Z@(t

N t—t-1
)= ) {an) - Y A +w)E
i=1 u=0
t—t-1
- Zsi(r) > (Rt +u) + SiE +w)). (19)

u=0

a(f)[‘jx‘(f)]

Case3:I(t +5s) < s.Heref =t +s — I(t +5s) > t, and thus we
use (13) to obtain the bound

ZQ(t
f—t—1

zi[@(f) o (d) ZAt+u)] 20)

Then, using (13) once more, we have

Z@(t

=

t—t—1

=Y [{a0+ Y Vit + wE,q@)
i=1 u=0

[‘ t—1

e ZAt—i—u] 1)

Hence, depending on the value of I(t + s), we have three differ-
ent bounds for Z?’:]E[Q,-(t)z,'(t +5) | Q(t) = q]. By substituting
(12), (14),(17),(18), (19), (21) for the individual terms, and using
the fact that E[Eq)[Li(t)] + Eq(n[Vi(t)]] = Ai + (1 — p), we then
arrive at (11) for the different instances of C(t, s). O

From Lemmas 2 and 3, we now derive the stability region and
an upper bound on delay for a stochastic network operating under
the uncoordinated scheduling policy in (4) and (5).

Theorem 1. Let . € C and suppose that scheduling decisions are
made according to (4) and (5). Define (Zu VAt + u) )2.
Then the network is stable and the average backlog is upper bounded
as

t—1

lim — ZE[HQ(u I <

,1 1 N T—1
=) @)+ Y 65, 5))
1-p (2 ; ; !
+ AT, (22)

N
X

Proof. We use the quadratic Lyapunov function L(x) =
and consider the T-slot drift

Arl(q. t) = E[L(Q(t + T)) — L(Q(t)) | Q(t) = q]. (23)
After some calculations, we obtain from (2) and (3) that

T-1

QUt+T) < Q(t)+ ZQ(f)<Z Zi(t + u)) +ai(T).

u=0
Substituting this into (23) yields

N
ATL(q,t)gE[ZZQ, (Zz t+u )+a, T)| Q(t) =
i=1
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Next, we use Lemma 3 to further evaluate the upper bound for
the drift (24), and determine when the conditions of Lemma 2 are
satisfied. To this end, we look for a B and € such that

ArL(q.kT) < B—e€llqll;, k=0,1,.... (25)

After some calculations, we see that for all k > 0

ArL(q, kT) Z ( Tlqll:(1 = p +Ze (s, 0) (26)

and then (22) readily follows. O

4.2. Coordinated scheduling policy

We now obtain analogous results for the coordinated schedul-
ing policy in (4) and (6), starting with the following lemma. Recall
that € == (e, ..., €), Zi(t) = (Ai(t) — pj(t) — vi(t) + «7(t)) and
y = )Li—H—p,and define D(t, s) = OD(t s)ifI(t+s) =s,D(t,s) =
0P(t, ) + 02(¢, s)if I(t +s) > sand D(t, s) = 02(t, s) + 62(¢, s) if
I(t +s) < s where

00(t, 5) = (s + D + 57 + 25:£)/4 + (s(f + 251 — Ai) + 5Ty,
02(t, s) == (I(t + ) — )iy + (I(t + ) — $)fi + si)si,

00(t,s) == (s — T(t +8)) i — fi — si)y + (I(t +5) — s)Assi.
Lemma 4. Let «(t) be asin (3) with vi(t) = v} (t) and p;(t) = u;(t)

as in (4) and (6), respectively. Given the system workload p, we then
have foralls =0,1,...,T — 1

ZE[Q(t

Proof. We again want to bound the individual components of (27)
where we can reuse the bounds on Q;(t)A;(t +s), Qi(t)«;(t +s) and
Qi(t)v{(t +s) from the proof of Lemma 3. What remains is to bound
Qi(t)u;(t + s). First, according to (13), we observe

i(t+3) 1 Qt)=q] <D(t,s)—(1—p)lqlli.  (27)

Q)i (t +5s) = {Qi(t +5) = (T = I(t + $))Ljy0)>0)Si
s—1
~ Y Ade+ u)}u;‘(t +s). (28)
u=0

Using the randomized policy fi as before, it follows that

N N
> [amite+5 =Y ]at +5) - T =1+ Do
i=1 i=1

s—1 s—1

~-Y t—}-u)}E[u,(t—i-s)]— (t+5)ZA,~(t+u)]. (29)

u=0 u=0

Applying (13) one final time, we obtain

N N s—1
Y[+ =Y fae+9 -1+ Y vie+w
i=1 i=1 u=0
s—1 s—1
~ S A+ u)}E[ﬁ,-(t +9] =St +5) Y At + u)]. (30)

u=0 u=0
The result then readily follows by substitution. O
Exploiting the above and earlier lemmas, we derive the stability

region and an upper bound on delay for stochastic networks under
the coordinated scheduling policy in (4) and (6).

Theorem 2. Let 1 € C and suppose that scheduling decisions are
made according to (4) and (6). Define a;( (Zs VAt + u))z.
Then the network is stable and the average backlog is upper bounded
as

N T-1

t—1
.1 1
Jim = EHQUIL < +—
u=0 i
+ AT (31)

The proof of Theorem 2 is analogous to that of Theorem 1, with
65 (t, s) replaced with 6°(t, s),i = 1, 2, 3, and thus omitted.

5. Discussion

We have shown in Theorems 1 and 2 that the uncoordinated
and coordinated scheduling policies have the same stability region,
but may yield different backlog and delay properties with respect

0 (22) and (31). The fact that these modified versions of max-
weight scheduling remain throughput-optimal is in a sense not
very surprising, as similar robustness of the max-weight algorithm
has been previously demonstrated in settings with imperfect infor-
mation [4] and reconfiguration delays [3].

The different backlog behaviors between both policies is prob-
ably more interesting. Intuitively, one can imagine that the coor-
dinated policy renders better performance by taking into account
within a cycle the future slow resource service allocations when
making scheduling decisions for the fast resource. It turns out,
however, that the coordinated policy is not necessarily better than
the uncoordinated policy, as suggested by the bounds in (22)
and (31). More specifically, there can be situations where either
policy outperforms the other policy with respect to backlog and
delay properties.

To confirm this claim, we simulate a 2-node stochastic network
under different parameters and compare the performance of both
policies. Fig. 2 plots the percentage of relative improvement of
coordinated scheduling over uncoordinated scheduling, in terms
of the average queue length of 10 simulation runs each consisting
of 5 10° time slots. Here we ignore the start-up period of the first
5 10* slots to allow the system to reach steady-state. The gray
line corresponds to the case T = 6, A = A, A, = 1, and
fi = f» = s1 = s, = 1, whereas the black line corresponds to
thecaseT = 3, A1 = Ay = A fi = f, = 1Tands; = s, = 2,
both plotted as functions of A. (The confidence intervals for both
curves are so tight that they are not visible.) We observe that the
coordinated policy yields better backlog properties in the former
case (gray line), while providing poorer backlog properties in the
latter case (black line).

Indeed, the coordinated policy has some advantages in ex-
ploiting future service information of the slow resource for better
decision making on the fast resource. This additional information,
however, is imperfect because it does not take into account future
arrivals, thus possibly providing a skewed perception of future
queue lengths. As a result, even though a node may have a high
backlog, it could be ill-advised to allocate the fast resource to this
node because the node may not receive new customers and could
be better served by the slow resource in the next cycle. Hence,
coordination can actually hurt performance in some cases and
neither of the two scheduling policies is strictly better than the
other. It is worth pointing out that the relative improvement of
each of the scheduling policies in Fig. 2 is relatively small, likely
due in part to the fact that we only consider a small network
instance.

The analysis presented in this paper is only a first step towards
investigating the unique challenges posed by scheduling across
different timescales. Further analysis is necessary to gain a better
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Fig. 2. The relative improvement of coordinated over uncoordinated scheduling for
two stochastic networks with N = 2 nodes.

understanding of these stochastic networks and explore the prop-
erties of coordination. In this case we can exploit existing results
in the max-weight literature without timescale differences, such
as handling, with more resources, time-dependent arrivals and
feasible service rates [4], and intermediate nodes [13].

Although one strength of the max-weight algorithm is that
it does not require knowledge of future arrivals for stability, a
worthwhile extension is to modify the max-weight scheduling
variants presented herein to learn and take into account the per-
node arrival processes in order to better coordinate the various
server resources. A related approach that includes future arrivals
is based on Markov decision processes to determine the optimal
policy; see, e.g., [10]. To the extent possible for large, real-life
networks, this approach may help to derive structural properties
and gain crucial insights into what constitutes a good scheduling
policy, and in what settings coordination works well and provides
the best performance.

Finally, it is worth noting that as T — oco, we obtain a system
where the timescales are fully separated, and thus from the view-
point of scheduling the fast resource it is as if the slow resource
is fixed indefinitively. Here we may exploit existing results on
stochastic networks with this form of timescale separation, such
as so-called bandwidth-sharing networks [11].
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