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a b s t r a c t

We give a (2 + ϵ)-approximation algorithm for minimizing total weighted completion time on a
single machine under release time and precedence constraints. This settles a recent conjecture on the
approximability of this scheduling problem (Skutella, 2016).
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1. Introduction

We consider the problem of minimizing the total weighted
completion time on a singlemachine under precedence and release
time constraints, denoted by 1|rj, prec|

∑
wjCj in the standard

notation from [6]. An instance is given by a set of jobs J =

{1, 2, . . . , n} and for each j ∈ J an integer processing time pj ≥ 0,
release time rj ≥ 0, and weight wj ≥ 0. Further, we are given
a partial order ≺ on J representing the precedence constraints
between the jobs. (The partial order is transitive, i.e., if h ≺ j and
j ≺ k then h ≺ k.) A schedule is defined by a start time Sj ≥ 0 for
each j such that no job starts before its release time, i.e., Sj ≥ rj, and
no two jobs are processed at the samemoment, i.e., for any pair j, k
either Sj ≥ Sk+pk or Sk ≥ Sj+pj, where the lattermust hold in case
j ≺ k. The cost of a schedule is the weighted sum of job completion
times,

∑
jwjCj, where Cj = Sj + pj, and the goal is to minimize cost.

We say that an algorithm is an α-approximation algorithm (α ≥ 1)
if for any instance the cost of the algorithm’s schedule is at most α

times the optimal cost.
The special case without release time constraints (rj = 0

for all jobs j) has been well studied but the computational com-
plexity is still not completely settled. Several 2-approximation
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algorithms are known [3] and Bansal and Khot [2] showed that no
(2− ϵ)-approximation algorithm exists under the assumption that
some variant of the unique games conjecture is true. It is yet
unknown if this lower bound holds under the common assumption
P ̸= NP . For the problem with release dates, a 3-approximation
algorithm was given by Schulz [9] and Hall et al. [7] using list
scheduling in order of LP-values. Schulz and Skutella [10] gave an
(e + ϵ)-approximation algorithm by sequencing jobs in order of
random α-points after solving an LP for the preemptive version.
Recently, Skutella [12] improved the ratio to

√
e/(

√
e − 1) <

2.542 and conjectured that a (2 + ϵ)-approximation algorithm
exists. See the papers [1,3] and [12] for a more detailed overview
of approximation results. Here, we give a positive answer to the
conjecture by presenting a polynomial time (2+ϵ)-approximation
algorithm for any constant ϵ > 0. Hence, our algorithm matches
the lower bound for the problem without release time constraints
up to an arbitrarily small factor 1 + ϵ.

The first step of our algorithm is a refined version of a de-
composition technique introduced in [11] to give a polynomial
time approximation scheme for the so called Traveling Repairman
Problem in the Euclidean plane and for the scheduling problem
1|prec|

∑
wjCj with interval ordered precedence constraints. We

show that with loss of a factor (1 + ϵ) we can decompose the
problem into subproblems that can be solved independently. The
final schedule is obtained byplacing the schedules for subproblems
one after the other. The decomposition is simply done by solving
an LP-relaxation and partitioning the jobs according to LP-values.
The decomposition is done at random but is easy to derandomize.
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Each subproblem has the property that all jobs are sched-
uled in an interval [L, δL] where L > 0 and δ > 1 is a con-
stant depending on ϵ only. This property is exploited to get a
(2 + ϵ)-approximation for subproblems. For each subproblem we
work as follows. We guess the approximate start time of O(1/ϵ)
jobs in an optimal schedule and use that information to strengthen
the LP. Then we solve the LP and apply list scheduling in order of
LP-values. Since we only guess the start time of a constant number
of jobs, a polynomial number of guesses is enough and we return
the best solution found.

2. List scheduling in LP-order

A common technique forminimizing totalweighted completion
time in scheduling is to apply list scheduling in an order that is
derived from a linear program relaxation. In list scheduling, all jobs
are in an ordered list and are added to the schedule one by one in an
order derived from the list. In the presence of release dates, there
are two intuitive versions of List Scheduling. The straightforward
approach is to schedule jobs as early as possible precisely in the
order of the list. Note that this may cause the machine to stay
idle while jobs (later in the list) are available. Schulz [9] showed
that for this version, List Scheduling in order of LP-values is a
3-approximation algorithm for 1|rj, prec|

∑
wjCj. Alternatively,

one may schedule at any moment that the machine is idle the job
that comes earliest in the list among the available jobs. It is this
latter variant that we use here.

Given a (partial) schedule, we say that the machine is available
at time t if for any job in the schedule either Cj ≤ t or Sj ≥ t . We
say that a job j is available at time t if (i) rj ≤ t , (ii) job j was not
scheduled yet, (iii) all jobs k with k ≺ j have been completed.

Algorithm List Scheduling (LS):
Let the jobs J = {1, 2, . . . , n} be labeled such that j < k

whenever j ≺ k. At any moment t that the machine is available,
start the job with the smallest index j among the available jobs.

We assume without loss of generality that for any given in-
stance, release dates are consistent with precedence constraints,
i.e., we assume that rj ≤ rk if j ≺ k.

Lemma 1. If release dates are consistent with precedence constraints,
i.e., rj ≤ rk if j ≺ k, then LS has the following property: If at time t the
machine is available and there is a job j with rj ≤ t and job j has not
started yet, then LS starts some job h ≤ j at time t.

Proof. Let h be jobwith smallest index among the jobswith release
time at most t and that have not been scheduled yet at time t .
Clearly, h ≤ j. Further, h is available since for any k ≺ j we have
rk ≤ rj ≤ t and by minimality of h, job k is completed before time
t . Hence, LS starts h at time t . □

The LP-formulation thatwe use for our problemwas introduced
by Queyranne [8] and is based on completion time variables only.
It was later refined by Goemans [4,5] to handle release times.
Although the number of constraints in the linear program is ex-
ponential, they can be separated in polynomial time by efficient
submodular function minimization [4].

min Z =

n∑
j=1

wjCj

s.t. Cj ≥ rj + pj ∀ j
Cj ≤ Ck ∀ j ≺ k∑
j∈U

pjCj ≥ rmin(U)p(U) +
1
2
p(U)2 ∀ U ⊆ J,U ̸= ∅.

In the last constraint, p(U) =
∑

j∈Upj and rmin(U) = min{rj | j ∈

U}. For later use, we define rmax(U) = max{rj | j ∈ U} and (given a

0 s t

jk > j h < j

Cσ
j

U

solution) define the values Cmin(U) and Cmax(U) in the obviousway.
The constraint Cj ≥ rj + pj is not really needed here since taking
U = {j} in the last constraint implies Cj ≥ rj+pj/2which is enough
for our purpose.

Lemma 2. p(U) ≤ 2Cmax(U) − 2rmin(U) for any U ⊆ J .

Proof. Since the lemma is obviously true for p(U) = 0 we may
assume that p(U) > 0. From the last LP-constraint we have

p(U)Cmax(U) ≥

∑
j∈U

pjCj ≥ rmin(U)p(U) +
1
2
p(U)2,

for any U ⊆ J . Dividing both sides by p(U) gives Cmax(U) ≥

rmin(U) +
1
2p(U) which is the inequality of the lemma. □

Algorithm LP+LS:

(1) Solve the linear program. Relabel such that C1 ≤ · · · ≤ Cn
and such that j < k if j ≺ k.

(2) Run list scheduling (LS) in the order 1, . . . , n. Let Cσ
j be the

completion time of job j in the final schedule σ .

Note that we denote the LP-completion time of a job j simply
by Cj and denote its completion time in σ by Cσ

j . The algorithm
as defined above has an unbounded approximation ratio as shown
by the following example. Let p1 = 1, r1 = 1, w1 = M , and
p2 = M, r2 = 0, w2 = 0. For large M , the optimal schedule places
jobs in the order 1, 2 andhas value 2M . The algorithmhowever,will
schedule job 2 first since it is the only available job at time 0which
gives value (M +1)M . If jobs are relatively small compared to their
release time, to be precise if pj ≤ rj for all j, then the algorithm is a
2-approximation as we show below. The proof follows easily from
the next lemma that we use again in Section 4.

Lemma 3. Let σ be a schedule returned by algorithm LP+LS. Let j ∈ J
and let t be the smallest value such that the interval [t, Cσ

j ] has no idle
time and only contains jobs h ≤ j. Let U be the set of jobs processed
in the interval [t, Cσ

j ]. Then,

Cσ
j ≤ t + 2Cj − 2rmin(U). (1)

Further, if no job completes at time t then

Cσ
j ≤ 2Cj. (2)

If some job k completes at time t then

rmin(U) > s, (3)

where s is the start time of job k.

Proof. Note that U ̸= ∅ since j ∈ U . Further, Cj = Cmax(U) since
only jobs with h ≤ j are in U and jobs are relabeled in Step 1.
Now (1) follows directly from Lemma 2.

Cσ
j = t + p(U) ≤ t + 2Cmax(U) − 2rmin(U) = t + 2Cj − 2rmin(U).

If no job completes at time t then either t = 0 or the machine
is idle just before time t . In the former case, it follows from (1)
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that Cσ
j ≤ 0 + 2Cj − 2rmin(U) ≤ 2Cj. In the latter case it follows

from Lemma 1 that t = rmin(U) which, together with (1), implies
Cσ
j ≤ 2Cj − rmin(U) ≤ 2Cj.
Now assume job k completes at time t . If rmin(U) ≤ s then, by

Lemma 1 some job h ≤ j must start at time s. However, k > j.
Hence we must have rmin(U) > s. □

Theorem 1. If pj ≤ rj for all j ∈ J then algorithm LP+LS is a
2-approximation.

Proof. Apply Lemma 3 to an arbitrary job j. If no job completes
at time t then by (2) Cσ

j ≤ 2Cj. On the other hand, if some job k
completes at time t then by (1) and (3)

Cσ
j ≤ t + 2Cj − 2rmin(U) < t + 2Cj − 2s.

Since pk ≤ rk we have t = s + pk ≤ s + rk ≤ 2s. Hence, Cσ
j ≤ 2Cj.

Now take the weighted sum over all jobs:∑
j

wjCσ
j ≤ 2

∑
j

wjCj = 2ZLP ≤ 2Opt,

where Opt is the optimal value. □

Given the theorem above, the following approach leads in-
tuitively to a 2-approximation algorithm. Imagine an unknown
optimal schedule σ ′ and for each job j guess if it starts before
time pj in σ ′ and if so, guess its precise start time. Then use this
information to strengthen the LP and run algorithm LP+LS. Clearly,
the running time is not polynomial in general since there can be
O(n) of those jobs. However, in the next sectionwe show that, with
loss of a factor 1+ ϵ in the approximation, one can decompose any
instance I into independent sub-instance I1, I2, . . . , such that our
guessing plus strengthening approach is polynomial for each of the
sub-instances.

3. Decomposing the instance

We use the common approach of partitioning time into inter-
vals of geometrically increasing length. However, such a partition-
ing gives a significant loss in the approximation ratio in general.
The combination of several techniques ensures that the (expected)
loss is no more than a factor 1 + ϵ. The decomposition is done
based on LP-values, i.e., the job set J is partitioned into subsets Ji
where Ji is the set of jobs that have their LP-completion time Cj
in the ith interval. This ensures that the schedule for Ji is only a
constant factor longer than the length of the ith interval (Lemma4).
This property, together with the large factor used in the geometric
grouping (e3/ϵ) and the randomness, ensures that the expected
delay due to this partitioning is only a factor 1 + ϵ (Theorem 2).

For the ease of analysis we shall assume that there is no initial
set U with p(U) = 0 since such set can be scheduled at time 0 and
hence can be removed from the instance. What we get from this
is that in any LP-solution, Cj ≥ 1 for all j (using that pj integer).
Further, we assume that ϵ ≤ 1. The decomposition algorithm that
we use here is based on a technique used for the Traveling Repair-
man Problem [11] and is similar to the decomposition algorithm
presented in the forthcoming journal version of that paper.

Algorithm Decompose:

(1) Solve the linear program. Let C1, . . . , Cn be the LP-values.
(2) Let a = 3/ϵ and take b uniformly at random from [0, a].

Let ti = ea(i−3)+b for i = 1, 2, . . . , q + 1. Choose q large
enough such that Cmax(J) < tq+1. Partition the jobs into
Ji = {j|ti ≤ Cj < ti+1}, i ∈ {1, 2, . . . , q}.

(3) Let Ii be the scheduling instance defined by jobs Ji with the
additional constraint that no job is allowed to start before
time 3ti. For each i, run the algorithm described in Section 4
and let σ1, . . . , σq be the schedules returned.

(4) Return σ which is the concatenation of σ1, . . . , σq.

First, let us see why the algorithm returns a feasible schedule.
Step 1 is the same as in algorithm LP+LS except that relabeling is
not needed here since the LP is only used to partition the instance.
To see that the partition is proper note that t1 = eb−2a

≤ e−a < 1 ≤

Cmin(J). Further, the instances of Step 3 are well defined since we
only add a lower bound of 3ti to the start time of each job. Finally,
note that the second LP-constraint ensures that the precedence
constraints are satisfied in σ since if k ≺ j then Ck ≤ Cj and kwill be
scheduled before j in σ . Hence, σ is feasible if we place the partial
schedules in the order σ1, . . . , σq and shift schedules forward in
case of overlap. However, we will show below that schedule σi is
contained in the interval [3ti, 3ti+1]. That means, we can simply
take the union of the σi and do not need to shift.

3.1. Analysis

We say that a schedule is tight if no job can be scheduled earlier
(shifted to the left) whilemaintaining feasibility andwithout shift-
ing any of the other jobs. Clearly, a non-tight schedule can bemade
tight by checking jobs one by one, starting from the left, and shift
it if possible. Hence wemay assume that the schedules σi returned
by the algorithm described in Section 4 are tight.

Lemma 4. Any tight schedule for Ii is contained in the interval
[3ti, 3ti+1].

Proof. By definition, no job starts before time 3ti. Since the sched-
ule is tight, the last job completes latest at time

max{3ti, rmax(Ji)} + p(Ji).

Note that rmax(Ji) ≤ ti+1 since rj ≤ Cj ≤ ti+1 for all jobs j ∈ Ji. Since
we assume that ϵ ≤ 1 we have that ti+1 = e3/ϵti > 3ti. Further, by
Lemma 2,

p(Ji) ≤ 2Cmax(Ji) ≤ 2ti+1.

Hence, the last job completes latest at time

max{3ti, rmax(Ji)} + p(Ji) ≤ ti+1 + 2ti+1 = 3ti+1. □

Let Opti be the optimal value of instance Ii. Now, consider an
optimal schedule σ ∗ for I and let Opt|i be the contribution of Ji
in the optimal schedule. That means, Opt|i =

∑
j∈Ji

wjC∗

j , where
C∗

j is the completion time of job j in σ ∗. A feasible schedule for
Ii is obtained by removing the jobs not in Ji from σ ∗ and shifting
the remaining schedule forward by at most 3ti. Hence, we get the
following bound.

Lemma 5. Opti ≤ Opt|i + 3ti
∑

j∈Ji
wj.

The value Opti depends on the random variable b that defines
the random partition. For job j, let i(j) be such that j ∈ Ji(j), that
means, ti(j) ≤ Cj < ti(j)+1. Note that ti(j) is a stochastic variable of
the form ti(j) = e−xCj, where x is uniform on [0, a].

E[ti(j)] = CjE[e−x
] =

Cj

a

∫ x=a

x=0
e−xdx =

Cj(1 − e−a)
a

<
Cj

a
. (4)

Lemma 6. E[
∑

iOpti] ≤ (1 + ϵ)Opt.

Proof. By Lemma 5,∑
i

Opti ≤

∑
i

Opt|i + 3
∑

i

∑
j∈Ji

wjti = Opt + 3
∑

j

wjti(j).

From (4), the expected value over b is

E[

∑
i

Opti] ≤ Opt + 3
∑

j

wjE[ti(j)]
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≤ Opt +
3
a

∑
j

wjCj ≤ (1 +
3
a
)Opt

≤ (1 + ϵ)Opt. □

Remember that a schedule is called tight if no job can be shifted
left (scheduled earlier) while maintaining feasibility and without
shifting any of the other jobs.

Definition 1. We say that an instance of 1|rj, prec|
∑

wjCj with
job set J is δ-bounded (where δ > 1 is a constant) if there is
some number L > 0 such that rmin(J) ≥ L and any tight schedule
completes within time δL.

Theorem 2. For any instance I of 1|rj, prec|
∑

wjCj and constant
ϵ > 0 we can find δ-bounded instances I1, . . . , Iq, with δ = e3/ϵ ,
such that if σ1, . . . , σq are (randomized) α-approximate schedules
for I1, . . . , Iq then the schedule obtained by placing the σi’s in order
i = 1, . . . , q is a randomized α(1 + ϵ)-approximate schedule for I.

Proof. Each Ii is a bounded instance with L = 3ti and δ = e3/ϵ .
If each schedule σi is an α-approximation for instance Ii then the
union is feasible (Lemma 4) and has expected value (Lemma 6) at
most∑

i

E[αOpti] = α
∑

i

E[Opti] ≤ α(1 + ϵ)Opt. □

The theorem implies that any (randomized) polynomial time
α-approximation algorithm for bounded instances yields a ran-
domized polynomial time α(1 + ϵ)-approximation for general in-
stances. If the algorithm for the bounded instances is deterministic
then we can easily derandomize the combined algorithm by dis-
cretizing the probability distribution for b ∈ [0, a]. We show in the
next section how to get a deterministic α-approximate schedule
for bounded instances with α = 2(1 + ϵ).

4. An algorithm for bounded instances

In this section we restrict to bounded instances as defined
in Definition 1. Apart from that definition, the analysis here is
independent of Section 3. Hence, let I be any bounded instance
with parameters δ and L and let a constant ϵ > 0 be given. We
show how to get a 2(1 + ϵ)-approximation for this instance.

The main idea of the algorithm is to guess enough information
about an (unknown) optimal schedule for I such that the algorithm
LP+LS of Section 2 yields a 2(1 + ϵ)-approximate schedule. To
restrict the number of guesses we first observe below that we only
need to consider a nearly optimal schedule σ ′ in which each job
j starts at a time that is a multiple of ϵpj. Say that a job j is early
in σ ′ if it starts at a time S ′

j < pj. We will guess the start time
of each early job. The second observation is that the number of
early jobs is O(log δ) (Lemma 7) which is a constant. With these
two observations, the number of guesses is polynomially bounded.
For each guess, we adjust release times of jobs in correspondence
with our guess and run algorithm LP+LS. Note that we do not fix
the early jobs but only adjust their release times in the instance.
The final solution is the best schedule over all guesses.

Restricting the optimal schedule. Let Opt be the optimal value for
the bounded instance I . Consider some (unknown and tight) opti-
mal schedule σ ∗ and let C∗

1 < · · · < C∗
n be the completion times.

Assumewe shift jobs one by one (starting with job 1) such that the
start time of each job j is a multiple of ϵpj. Let this schedule be σ ′.
Then, for any j the new completion time is

C ′

j ≤ C∗

j +

∑
k≤j

ϵpk = C∗

j + ϵ
∑
k≤j

pk ≤ (1 + ϵ)C∗

j .

Let Opt′ be the value of σ ′. We have the following properties.

(i) Opt′
≤ (1 + ϵ)Opt.

(ii) The start time S ′

j of job j is a multiple of ϵpj.
(iii) All jobs are scheduled in the interval [L, (1 + ϵ)δL].

From now on, let σ ′ be our (unknown) near-optimal schedule
and let Opt′ be its value. We will show how to get a schedule of
value at most 2Opt′.

Algorithm Bounded:
Guess the set A ⊆ J of jobs that are early in the (near) optimal

schedule σ ′ and for each j ∈ A guess its start time. Then, adjust the
release times, rj → r ′

j , and run algorithm LP+LS. Apply the steps
above for all possible guesses and return the best schedule σ .

Step 1: Guessing the optimal schedule. The first step of the algo-
rithm is to make guesses about σ ′. Let S ′

j be the start time of job
j in σ ′. Say that a job j is early in σ ′ if S ′

j < pj.

Lemma 7. The number of early jobs in σ ′ is O(log δ).

Proof. If j is an early job in σ ′ then C ′

j > 2S ′

j . Hence, the number of
early jobs is bounded by

log2

(
(1 + ϵ)δL

L

)
= log2((1 + ϵ)δ) = O(log δ). □

Our algorithm guesses the set A ⊆ J of early jobs in σ ′ and for
each early job j we guess its start time S ′

j in σ ′. If j is early then
there are at most 1/ϵ possibilities to consider since S ′

j < pj and S ′

j
is a multiple of ϵpj. Hence, the total number of guesses is bounded
by (n/ϵ)O(log δ).

Step 2: Adjusting release times rj → r ′

j . Wedescribe this step under
the assumption that our guess about σ ′ is correct, i.e., A ⊆ J is the
set of early jobs in σ ′ and S ′

j is the start time of j ∈ A. For any early
job we may adjust its release time to r ′

j = S ′

j and for any j ̸∈ A
we may define r ′

j = max{rj, pj} while maintaining feasibility of
σ ′. Next, we may further adjust release times in correspondence
with precedence constraints. The new instance I ′ has the following
properties.

(a) Schedule σ ′ is feasible for I ′.
(b) If j ∈ A then r ′

j ≥ S ′

j .
(c) If j ̸∈ A then r ′

j ≥ max{rj, pj}.
(d) If j ≺ k then r ′

j ≤ r ′

k.

Let T be the set of open time intervals at which an early job is
processed, i.e.,

T =

⋃
j∈A

(
S ′

j , S
′

j + pj
)
.

No job starts at a time t ∈ T in σ ′ so wemay increase release times
further such that

(e) For any j ∈ J , we have r ′

j ̸∈ T .

The increase due to (e) may give a conflict with (d) causing a
sequence of increases by rules (d) and (e). Clearly, this process ends
after a polynomial number of iterations. Hence, we can find release
times r ′

j such that (a)–(e) hold.

4.1. The approximation ratio

Theorem 3. Algorithm Bounded returns a 2(1 + ϵ)-approximate
solution for bounded instances.

Proof. Assume thatwe guessed the information about σ ′ correctly.
Let ZLP be the LP value obtained. Then ZLP ≤ Opt′.Wewill show that
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Cσ
j ≤ 2Cj for any job j, where Cj is the optimal LP-value for I ′. Then

the theorem follows by taking the weighted sum over all jobs:∑
j

wjCσ
j ≤ 2

∑
j

wjCj = 2ZLP ≤ 2Opt′
≤ 2(1 + ϵ)Opt.

Consider schedule σ returned by algorithm Bounded. We now
apply Lemma 3. (See the figure.) Let j be an arbitrary job and let t be
the smallest value such that the interval [t, Cσ

j ]has no idle time and
only contains jobs h ≤ j. Let U be the set of jobs processed in the
interval [t, Cσ

j ]. If no job completes at time t then, by (2), Cσ
j ≤ 2Cj.

Now assume some job k completes at time t and let s be its start
time. If t ≤ 2s then from (1) and (3), Cσ

j ≤ t + 2Cj − 2r ′

min(U) <

t + 2Cj − 2s ≤ 2Cj. Hence, assume from now that

t > 2s. (5)

Then, pk = t − s > s ≥ r ′

k and by (c) we must have k ∈ A, i.e., k
is an early job. Since k ∈ A we have (from (b)) S ′

k ≤ r ′

k ≤ s and
(from (3))

r ′

min(U) > s ≥ S ′

k. (6)

Also, since k ∈ A, we know from (e) that r ′

min(U) ̸∈ ]S ′

k, S
′

k + pk[.
Together with (6) and (5) we get that

r ′

min(U) ≥ S ′

k + pk ≥ pk = t − s > t/2.

Again using (1) we conclude that

Cσ
j ≤ t + 2Cj − 2r ′

min(U) < 2Cj. □

4.2. The running time

Lemma 8. Algorithm Bounded runs in polynomial time.

Proof. The number of guesses to consider is (n/ϵ)O(log δ). For each
guess, adjusting the release times, the LP, and list scheduling can
be done in polynomial time. Hence, the total running for algorithm
Bounded is (n/ϵ)O(log δ). □

Given the lemma above, it follows immediately that the total
running time of our algorithm is polynomial. The linear program
is solved once to partition an instance into O(n) instances Ii. For
each Ii the algorithm takes (n/ϵ)O(log δ) time where log δ = O(1/ϵ).
Hence, the total running time is (n/ϵ)O(1/ϵ).

Reducing the running time. We can reduce the total running time
to f (ϵ)p(n) for some function f and polynomial p. To reduce the
number of guesses needed, round the processing times up to pow-
ers of 1 + ϵ. Say that job j is of type i if its rounded processing p′

j is
(1+ϵ)i. Assume that in the near optimal schedule σ ′ the processing
times are rounded. Note that in σ ′ there is at most one early job of
each type. Instead of guessing all early jobs it is enough to guess
which of the types do have an early job. Let S(i) be the smallest
start time among the jobs of type i in σ ′. Say that type i is early
if S(i) < (1 + ϵ)i. Let B be the types that are (guessed) to be early.
Let I ′ be the instance for adjusted release times r ′

j defined by the
following rules.

(a) Schedule σ ′ is feasible for I ′.
(b) If i ∈ B and j is of type i then r ′

j ≥ S(i).

(c) If i ̸∈ B and j is of type i then r ′

j ≥ max{rj, p′

j}.
(d) If j ≺ k then r ′

j ≤ r ′

k.
(e) For any j ∈ J , we have r ′

j ̸∈ T .

Here, T is again the set of open time intervals at which an early
job is processed, i.e.,

T =

⋃
i∈B

]
S(i), S(i) + (1 + ϵ)i

[
.

The analysis is exactly the same except for the bound on the
number of guesses. Note that if type i is early then (1 + ϵ)i > L
since no job starts before time L. Further, we must have (1 + ϵ)i <

(1+ϵ)2δL since no job completes after time (1+ϵ)2δL in σ ′. Hence,
we only need to consider a range of O(log(1+ϵ)δ) values for i. The
number of guesses is bounded by (1/ϵ)O(log(1+ϵ)δ) = (1/ϵ)O((log δ)/ϵ).
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